第一步 寻找、构造几何模型
要求四边形MNFE F/
F
的周长最小?
使线段PO与PD之差最大?若存在,请求出这个最大值和点P的坐标。
N
E
⑵练习①:当已M知点二在次何函处数时图,像AM的+顶C点M坐的标值为最C小(3;,-2),且在x轴上截得的线段AB的长为4,在y轴上有一点P,使△APC的周长最小,求P点
线段和差的最值问题解题策略 一、两条线段和的最小值
例4:在矩形ABCD中,F是BC的三等分点,E是AB的二等分点,在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如
y 果存在,求出周长的最小值;如果不存在,请说明理由.
点A为 y 轴正半轴上的一点,⊙A经过点B和点O,直线BC交⊙A与点D。
(1)点A、B在直线m两侧:
(2)点A、B在直线同侧:
A
A
m B
m P
A
B
A
B m
B m
P
A'
一、求两条线段之和的最小值
例1:在△ABC中,AC=BC=2,
∠ACB=90O,D是BC边的中点,E是AB
上的一动点,则EC+ED的最小值
为
。
A
p
E
C
D
.
B
2、抛物线在坐标系中的位置如图:对 在其称轴上找一点P,使得△PBC的周 长最小,请求出点P的坐标 .
举一反三
典例2 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F
在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿
直线EF翻折,点C落在点P处,则点P到边AB距离的最小
值是
.
1.2
中考专题复习