BD
AE
C
【二】将△ABD沿着AD翻折到△ADF,连接EF,得 △ABD≌△AFD;△ACE≌△AFE;再证Rt△DFE
BD F
EC
01
知识点
02
03
半角模型 三叉口模型 费马点模型
典例精讲
三叉口模型
【例2】如图,点P为等边△ABC内一点,且PA=5,PB=3,PC=4,
知识点二
(1)求∠BPC的度数;(2)求等边△ABC的边长;(3)求等边△ABC的面积.
【思路点拨】
A
D
(1)将△APD绕点D逆时针旋转90º
P
得△CQD,再连接PQ,
求得∠APD=∠CQD=45º+90º=135°
Q
(2)作CH⊥DQ于点H, B
求得CH=HQ=1,再由勾股定理得出CD= 10
H C
针对训练
三叉口模型
知识点二
2.如图,点P为正六边形ABCDEF内一点,且PA=8,PB= 3 2 ,PC=10,求正六边形
∵MN=AB=600米,
∴ FN = (600 +500 3)米
B
P´
D
P HH C
针对训练
费马点模型
知识点三
如图,已知矩形ABCD的边AB=2,BC= 2 3,点P为矩形内部一点,连接
PA,PB,PC,则PA+PB+PC的最小值为_2__7_.
A
D
P´
A´
P
B
C
课堂小结
旋转三模型
破解半角模型---口诀:
中考数学第二轮总复习
专题15 几何模型
旋转三模型
半角模型、三叉口模型、费马点模型