小学数学8种简便计算方法归类(精编版)
- 格式:docx
- 大小:28.43 KB
- 文档页数:5
小学数学简便计算总结小学数学中,有很多简便的计算方法,可以帮助我们更快速、准确地算出答案。
以下是小学数学中常用的几种简便计算方法的总结。
一、加法计算方法:1.相邻进位法:对于两位数相加时,如果两个数的个位数相加大于等于10,就要进位。
这时,只需将两个个位数的十位数相加,然后加上原本的十位数即可。
例子:25+17=(20+10)+5+7=332.韦达定理:对于一连串相邻的整数相加时,可以直接使用韦达定理来计算。
韦达定理说,这一连串的整数相加的结果是首项与末项的和乘以项数的一半。
例子:1+2+3+...+10=11×5=553.数根法:数根是一个数逐位相加直到得到个位数的过程。
对于一串整数相加,我们可以分别求出每个数的数根,然后将这些数根相加,最终得到的数就是整串数的和的数根。
二、减法计算方法:1.差位相减法:对于两个数相减时,通过分别减去两个数的个位数、十位数、百位数等来得到差。
例子:864-329=(800-300)+(60-20)+(4-9)=500+40-5=5352.差根法:差根法的思路与数根法类似,只是将减法运算转化为数根运算。
对于减法题目,我们可以分别求出被减数和减数的数根,然后将这两个数的数根相减,最终得到的数就是差的数根。
例子:452-177=(4-1)+(5-7)+(2-7)=2-5=7三、乘法计算方法:1.末尾相乘法:对于两个数相乘时,可以将两个数末尾的数相乘得到个位数,再将十位数和千位数(如果有)相乘得到十位数和百位数的和,以此类推。
例子:23×14=2×4+2×10+3×4+3×10=92+60+12=1642.平方尾法:对于一个数的平方,我们可以快速计算出个位数的平方,并且个位数之前的数与个位数之后的数是对称的。
通过这个规律,可以简化平方的计算。
例子:32²=09+2×3×10+1×3²=900+60+9=961四、除法计算方法:1.估商除法:对于一个除法题目,我们可以先用整数估算出商,然后将估算的商与被除数相乘得到一个近似的积,再用这个积减去被除数,看看差是否小于除数。
小学数学简便运算方法归类小学数学中有许多简便的运算方法,可以帮助学生更快更准确地完成计算。
以下是一些常见的简便运算方法的分类。
一、加法和减法运算方法:1.结合律:根据结合律,可以改变加法和减法运算的顺序,将数按照方便计算的顺序进行合并。
例如:45+28+12=(45+12)+28=57+282.换位律:根据换位律,可以改变加法和减法运算的位置,使得计算更方便。
例如:25+18=18+253.去零法:当加数或被减数的个位数是0时,可以利用去零法简化运算。
例如:140+60=14+6×10=140+60×10=140+600=740。
4.进退法:可以通过进退法在心算中进行数位的进位和退位。
例如:67-28=67-8-20=59二、乘法运算方法:1.对称律:根据对称律,可以改变乘法运算中因数的顺序,使计算更方便。
例如:8×9=9×82.乘法交换律:根据乘法交换律,可以将乘法算式的因数换位,计算结果不变。
例如:4×6×5=4×5×63.合并乘法:当计算两个数量较多的乘法时,可以将其中一部分相乘得到一个新的因数,再进行计算。
例如:4×7×5=(4×5)×7=20×7=140。
4.进位法:在乘法中,可以先忽略进位,最后再进行进位操作。
例如:25×8=(20×8)+(5×8)=160+40=200。
三、除法运算方法:1.整十整百法:在除法中,可以先通过整十整百法将被除数和除数调整为容易计算的数。
例如:169÷8=160÷8+9÷8=20+1.125=21.1252.倍数法:在除法中,可以利用倍数法将除数调整为被除数的倍数,简化计算。
例如:314÷8=31.4÷8=3.9253.高位除法:在除法中,可以先从高位开始计算,忽略低位的数,最后再计算低位的数。
小学数学简便运算方法小学数学中的简便运算方法是指通过一些技巧和规律来简化运算的过程,从而提高计算速度和准确度。
以下是一些常见的简便运算方法:1.快速加法:当两个数相加时,可以从十位开始逐位相加,然后再加上个位。
例如:36+48=(30+40)+(6+8)=70+14=842.快速减法:当两个数相减时,可以通过借位的方式来简化计算。
例如:74-58=(70-50)+(4-8)=20-4=163.快速乘法:对于两个两位数相乘,可以先分解成个位和十位相乘,再相加。
例如:23×45=(20×40)+(20×5)+(3×40)+(3×5)=920+100+120+15=11554.快速除法:对于两个两位数相除,可以先进行估算,再进行调整。
例如:187÷12≈200÷10=205.平方的快速计算:对于一个数的平方,可以利用乘法的快速方法,将平方数拆分成更小的乘法。
例如:22²=(20+2)²=400+80+4=4846.立方的快速计算:对于一个数的立方,可以利用乘法的快速方法,将立方数拆分成更小的乘法。
例如:4³=(40+4)²=1600+320+16=19367.近似计算:当进行一些复杂的计算时,可以对数字进行近似,例如将小数进行适当的四舍五入,从而简化运算。
8.利用数的性质:例如对于分数的加减运算,可以找到公共分母后再进行计算,对于分数的乘除运算,可以先进行约分再进行计算,从而简化分数运算的过程。
9.利用倍数关系:当计算乘以或除以一些数的倍数时,可以先计算倍数部分,再调整。
例如:60×7=(10×6)×7=60×6=360以上是一些小学数学中常用的简便运算方法,通过掌握这些方法,可以提高计算速度和准确度,帮助学生更好地应对数学运算的挑战。
小学数学简便运算方法总结小学数学的简便运算方法是指在计算时采用一些简单且快速的技巧和策略,可以帮助学生提高计算速度和准确性。
下面将总结一些小学数学的简便运算方法。
一、加法运算的简便方法:1.集合法:将两个数的个位数、十位数、百位数等进行分列,然后相同位置上的数进行相加。
2.交换单位:当计算时遇到多位数相加时,可以先进行个位数的相加,然后再相加十位数、百位数等。
3.近似法:将数以10的倍数进行近似,例如:47+24≈50+20=70二、减法运算的简便方法:1.集合法:将减数和被减数的个位数、十位数、百位数等进行分列,然后相同位置上的数进行相减。
2.借位法:当个位上的数不够减时,可以向十位或更高的位借位。
例如:25-8可以变为15-8+10=173.自动借位法:当减法的结果小于0时,可以将被减数的个位数向十位数借位,并将减数的个位数加上10进行计算。
三、乘法运算的简便方法:1.分解法:将乘数分解成一个较大的数和一个较小的数,然后分别与被乘数相乘。
例如:7×8=7×5+7×3=35+21=562.乘数与倍数法:当乘数是5、10、100等的倍数时,可以直接将被乘数的数字后面加上相应的0。
例如:6×70=420。
3.交换律:乘法满足交换律,可以根据需要改变乘数的位置,使计算更方便。
例如:7×6=6×7四、除法运算的简便方法:1.试商法:对于小的除数,可以通过试除法的方式,逐位进行计算,从最高位开始试商,最后将商依次相加得到最终的商。
2.粗略法:对于较大的除数,可以先估算商的范围,然后根据计算结果进行微调,以接近准确的商。
3.除数整除法:当被除数能整除除数时,可以直接得到商为整数的结果。
例如:18÷6=3五、数字进位的简便方法:1.进位法则:当个位数为9时,相应位置的数要进位,个位数变为0,十位数加1、例如:29+8=30+7=372.高位进位:当计算中的高位数相加后需要进位时,可以向更高的位数进行进位。
小学数学简便运算方法总结
一、加法与减法:
1.用进位或借位:当两个数相加的和大于9时,可以将进位的数加到十位上。
当两个数相减的差小于0时,可以向高一位借位。
2.整十数相加或减:当一个数是整十数时,可以将另一个数分解为个位和十位,然后单独计算个位和十位的运算结果。
3.规律运算:例如,从1加到100的和是5050,可以利用这个规律快速计算其他类似的运算。
二、乘法:
1.分解法:将待运算的两个数分解为更易计算的数,然后逐步相乘得到结果。
2.缩位相乘法:将乘数中的数按位分解,并将其与被乘数相乘,然后相加得到结果。
3.乘数零尾法:当乘数中有0时,可以直接得到结果为0。
4.对乘数交换律与分配律:乘法的交换律与分配律可以帮助简化乘法运算。
三、除法:
1.整十数的除法:除数或被除数为整十数时,可以将其分解为更易计算的数,然后逐步计算得到结果。
2.乘法逆运算法:将除法问题转化为乘法问题,然后利用乘法逆运算得到结果。
3.余数法:当被除数小于除数时,可以直接将被除数作为结果,而余数为被除数。
4.规律运算:例如,在100以内求2的倍数,可以利用规律每隔2个数选出一个即可。
四、整数计算:
1.加法与减法:正整数与负整数相加减时,可以将它们的绝对值相加减,并保持原有的正负号。
2.乘法:正整数与负整数相乘时,可以将它们的绝对值相乘,并根据两个数的正负确定结果的正负号。
3.除法:正整数除以负整数时,将它们的绝对值相除,并根据两个数的正负确定结果的正负号。
简便运算大全在日常生活和工作中,我们经常需要进行各种简便运算,比如加减乘除、百分比计算、平方根求值等等。
本文将为大家介绍一些常见的简便运算方法,希望能够帮助大家更加便捷地进行数学计算。
一、加减乘除。
1. 加法,加法是最基本的运算之一,例如,3 + 5 = 8。
在进行加法运算时,我们只需要将两个数相加即可得到结果。
2. 减法,减法是加法的逆运算,例如,9 4 = 5。
在进行减法运算时,我们只需要将被减数减去减数即可得到结果。
3. 乘法,乘法是重复加法的简化形式,例如,6 ×7 = 42。
在进行乘法运算时,我们只需要将两个数相乘即可得到结果。
4. 除法,除法是乘法的逆运算,例如,12 ÷ 3 = 4。
在进行除法运算时,我们只需要将被除数除以除数即可得到结果。
二、百分比计算。
百分比是表示数值相对于100的比例关系,常用于表示增长率、减少率、比例等。
例如,75%表示75/100,即0.75。
在进行百分比计算时,我们可以利用以下公式:百分数 = (所求数 / 总数)× 100%。
例如,某班级有60名学生,其中男生占总人数的40%,则男生人数为60 ×40% = 24人。
三、平方根求值。
平方根是一个数的平方等于另一个数时,这两个数互为平方根。
例如,√9 = 3,因为3 × 3 = 9。
在进行平方根求值时,我们可以利用计算器或者手算方法得到结果。
四、小数运算。
小数运算是运用于小数的加减乘除等运算。
在进行小数运算时,我们需要注意小数点的位置,确保运算的准确性。
例如,0.6 + 0.25 = 0.85。
五、分数运算。
分数是表示整体的若干等分之一,分母表示等分数的总份数,分子表示取得的份数。
在进行分数运算时,我们可以通过通分、约分等方法简化计算,确保结果的准确性。
六、整数指数运算。
整数指数运算是指数为整数的幂运算,例如,2^3 = 8。
在进行整数指数运算时,我们可以通过连乘的方式或者计算器进行运算,得到结果。
卓立教育-小学数学简便计算方法总结一、拆分法:为了方便计算或能使计算变得简便,在进行计算时,会将某些数字拆分开来再进行重新组合,这样的方法叫拆分法。
例题1:101+75=(100+1)+75=100+75+1=176 例题2:125×32=125×8×4=1000×4=4000 例题3:999×999+1999=999×999+(1000+999)【将1999拆分】=999×999+999+1000 去括号,并使用交换律交换位置=999×999+999×1+1000 为使用乘法分配律,故将原式变形,给拆分出来的999乘以1 =999(999+1)+1000 使用 乘法分配律,提取999 =999000+1000=1000000例题4:33333×66666+99999×77778此题数字中最为特殊的是77778,我们发现这个数字加上22222正好等于100000,所以最好能从其他数字中拆分出来22222。
经过观察,我们发现只有66666可以拆出,所以将66666拆分成22222×3。
原式=33333×3×22222+99999×77778 =99999×22222+99999×77778 =99999(22222+77778) =9999900000例题5:13000÷125=13×1000÷125=13×8=104 例题6:19881988÷20002000= 1988×10001÷2000×10001=1998÷2000,即19982000二、归零法:为了方便计算或能使计算变得简便,在进行计算时,要在计算式中加上一个数再减去同一个数的方法叫归零法。
研修文档小学数学简便运算方法归类一、加法运算方法1.单位增量法:将加数的单位数字顺次逐个增加,逐位相加得和。
2.进位相加法:按位相加时,若和大于9,则向前一位进1(进位),并将和减去10得到该位的和。
3.补数相加法:将被加数变换为补数,即9减去被加数的各位上的数字,然后将补数与加数相加。
4.隔位相加法:逐位相加时,对加数的各位数字,交替相加后再相加得和。
5.半加法:将两个一位数相加,若和大于9,则向前一位进1并将和减去10,得到十位上的数。
二、减法运算方法1.计算补数法:将减数通过补数转化为加数,然后用加法运算求差。
2.分项减法法:将减法拆解为多个部分,分别计算再相减得差。
3.颠倒相减法:把被减数和减数颠倒位置,然后按照加法的法则进行计算,得到的和就是差。
4.借位相减法:按位相减时,若不够减,则向前一位借1(借位),并将被减数的该位数加10,然后相减得差。
三、乘法运算方法1.九九乘法表法:通过九九乘法表中的数字相乘得到乘积。
2. 分配律法则:如ab * cd = (a * c * 10 + a * d) + (b * c *10 + b * d)。
3.近似除法法则:将两个乘数近似分解,并进行乘法运算得到近似乘积。
4.倍数加法法则:将乘数分解成加数的倍数,并分别相加得到乘积。
四、除法运算方法1.试除法:用除数的倍数去试除,直到余数小于除数,得到商和余数。
2.乘法逆运算法:用已知的乘法算式来进行逆运算,找出被除数的倍数。
3. 分配律法则:如ab ÷ cd = (a * c * 10 + a * d) + (b * c * 10 + b * d) ÷ (c * 10 + d)。
4.近似乘法法则:将除数和被除数都写成倍数的形式,进行相除得到近似商。
五、简便运算法则1.乘法简便法则:将两个乘数中的一个数取整数倍,计算后再乘以原来不取整数倍的数,得到乘积。
2.使数尽量最大法则:将两个乘数中的大数分解成相对较小的数,计算后再相乘得到乘积。
请归纳小学数学简便计算得几种方法1、利用运算定律、性质、法则。
①加法加法交换律:a+b=b+a,加法结合律:(a+b)+c=a+(b+c),②减法性质a-(b+c)=a-b-c,a-(b-c)=a-b+c,a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a。
③乘法乘法交换律:a×b=b×a,乘法结合律:(a×b)×c=a×(b×c),乘法分配律:(a+b)×c=a×c+b×c,(a-b)×c=a×c-b×c,④除法性质a÷(b×c)=a÷b÷c,a÷(b÷c)=a÷b×c,a÷b÷c=a÷c÷b,(a+b)÷c=a÷c+b÷c,(a-b)÷c=a÷c-b÷c、⑤与、差、积、商不变得规律与不变:如果a+b=c,那么(a+d)+(b-d)=c,差不变:如果a-b=c,那么(a+d)-(b+d)=c,积不变:如果a×b=c,那么(a×d)×(b÷d)=c,商不变:如果a÷b=c,那么(a×d)÷(b×d)=c,(a÷d)÷(b÷d)=c、2、拆数法、凑整法。
3、利用基准数法。
4、等差数列求与。
例1:87+44+56=?分析:运用加法结合律,先将44与56凑整,再计算。
解:87+44+56=87+(44+56)=87+100=187例2:63+18+19=?分析:将63拆分为60+1+2,然后再用结合律将18与2,19与1凑整。
解:63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100例3:45-18+19=?分析:在只有加减法得同级运算中,运算顺序可改动,先+19,再-18,也可以理解为“带符号搬家”。
小学数学8种简便计算方法归类小学数学中,有很多种简便计算方法,可以帮助学生更快地计算出结果。
下面将其归类为8种简便计算方法。
方法一:整数的乘法加法法则当两个整数相乘时,可以将其中一个整数拆分成几个较小的整数相加,再与另一个整数相乘。
例如,计算57×8时,可以将8拆分为5和3,然后计算57×5和57×3,最后将结果相加得到最终答案。
方法二:整数的乘10法则当一个整数乘以10时,可以在原整数末尾添加一个零。
例如,计算57×10时,只需在57的后面添加一个零,即得570。
方法三:整数的除10法则当一个整数除以10时,可以将该整数的末尾的零去掉。
例如,计算570÷10时,只需去掉570的末尾的零,即得57方法四:整数的乘法乘方法则当一个整数的乘方为2的幂时,可以利用整数的乘积规律简化计算。
例如,计算57×57时,可以将57拆分为50和7,然后计算50×50和50×7,最后将结果相加得到最终答案。
方法五:整数的除法分解法则当一个整数除以一个较大的整数时,可以将被除数拆分成几个较小的部分,再分别除以除数。
例如,计算226÷7时,可以将226拆分为210和16,然后分别计算210÷7和16÷7,最后将结果相加得到最终答案。
方法六:整数的因数分解法则当一个整数需要因式分解时,可以将该整数分解为几个较小的整数的乘积。
例如,计算36的因数时,可以将36分解为2×2×3×3,即36的因数为2和3的平方。
方法七:小数的近似法则当计算小数加减法时,可以将小数近似为最接近的整数进行计算,再将结果近似为小数。
例如,计算3.4+2.6时,可以将3.4近似为3,2.6近似为3,然后计算3+3得到6,最后将6近似为6.0。
方法八:小数的乘法除法法则当计算小数的乘法时,可以将小数的乘积的小数点位置向左移动到合适的位置,再将结果近似为小数。
小学数学8种简便计算方法归类(精编版)
小学阶段(中、高年级)的简便运算,在一定程度上突破了算式原来的运算顺序,根据运算定律、性质重组运算顺序。
如果学生没真正理解运算定律、性质,他只能照葫芦画瓢。
在实际解题的过程当中,学生的思路不清晰,常出现这样或那样的错误。
因此,培养学生思维的灵活性就显得尤为重要。
1.提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
2.借来借去法
看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1-4
3.拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
4.加法结合律
注意对加法结合律
(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+
6.33
=(5.76+4.24)+(13.67+6.33)
5.拆分法和乘法分配律结合
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再现:57×101=?
6.利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的
数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
7.利用公式法
(1) 加法:
交换律,a+b=b+a
结合律,(a+b)+c=a+(b+c)
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c
a-b-c=a-c-b
(a+b)-c=a-c+b=b-c+a
(3):乘法(与加法类似):
交换律,a*b=b*a
结合律,(a*b)*c=a*(b*c)
分配率,(a+b)xc=ac+bc
(a-b)*c=ac-bc
(4) 除法运算性质(与减法类似):
a÷(b*c)=a÷b÷c
a÷(b÷c)=a÷bxc
a÷b÷c=a÷c÷b
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
8.裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。
常见的裂项方法是将数字分拆成两个或多个数字单位的和
或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。
公式:。