(完整)四年级数学简便运算方法归类及公式
- 格式:doc
- 大小:47.53 KB
- 文档页数:2
在四年级数学学习中,学生需要进行各种计算,包括加减乘除等。
为了提高计算效率,同时培养学生的计算能力,老师们常常会教授一些简便计算方法。
本文将总结四年级数学中常用的简便计算方法,并进行类型归类。
一、整数相加、相减的简便计算方法1.同位数相加、相减法:将两个整数的个位数、十位数等对齐,然后从低位开始逐位相加或相减。
例如:245+187=400+40+2=4422.转化法:将除个位数外的其他位数转换成相同数位上的数。
例如:245+187=200+40+420+5=4423.进位法:当个位数相加或相减大于9时,需要向上一位进位。
例如:9+7=16,将6写在个位上,再向上一位进位,即得16二、整数相乘的简便计算方法1.同位数相乘法:将两个整数按位进行相乘,然后将各位结果相加。
例如:37×8=(30×8)+(7×8)=240+56=2962.综合算法:将一个整数分解成更简单的数相乘。
例如:37×12=(30×10)+(30×2)+(7×10)+(7×2)=370+60+70+14=514三、整数相除的简便计算方法1.倍数法:将除数转化为一个最接近被除数的整倍数,然后计算倍数与商的乘积。
例如:126÷7≈120÷7=172.近似数法:将被除数与除数调整到相近的数,然后计算它们之间的关系。
例如:235÷14≈210÷12=17.5四、其他简便计算方法1.结果优选法:当需要计算的数超过100时,可以用下一个最接近的整百数来计算。
2.整十整百调整法:将需要计算的数调整为一个更接近的整十或整百的数,然后计算。
例如:396+48≈400+50=450综上所述,四年级数学中常用的简便计算方法主要包括整数相加、相减的简便计算方法、整数相乘的简便计算方法、整数相除的简便计算方法以及其他简便计算方法。
这些方法能够有效地提高计算效率,并培养学生的计算能力。
一、加法和减法1.加法的简便计算:-利用进位法进行计算。
如24+36=2十几位进1,4+6=10,进1后变成0十位,所以答案是60。
-利用补数法进行计算。
如32+48=30+50-2=80-2=782.减法的简便计算:-利用退位法进行计算。
如57-28=5十位退1变成4,7退8变成9,所以答案是49-利用补数法进行计算。
如86-47=90-40+6-7=56-3=53二、乘法和除法1.乘法的简便计算:-利用分配律进行计算。
如24×5=20×5+4×5=100+20=120。
-利用倍数的概念进行计算。
如7×8=(7×10)-(7×2)=70-14=562.除法的简便计算:-利用倍数和因数的关系进行计算。
如56÷8=56÷(2×4)=28÷4=7三、整数1.正负数的运算:-同号相加,异号相减。
如(-5)+(-3)=-8,(-5)-3=-8-利用加减法性质简化计算。
如(-7)+5=5-7=-22.整数的比较:-当整数绝对值相等时,正数大于负数。
如7>(-7),(-3)<3-当整数符号相同时,绝对值大的整数大。
如(-8)<(-2),5>3四、分数和小数1.分数化简:-找出分子和分母的最大公约数,然后将分子和分母同时除以最大公约数。
如12/16=(12÷4)/(16÷4)=3/42.分数的加减乘除:-加减法:先求出相同的分母,然后分子相加或相减。
如1/4+3/4=4/4=1-乘法:将分子相乘,分母相乘。
如2/3×5/6=(2×5)/(3×6)=10/18=5/9-除法:将除数的分子乘以除数的倒数。
如3/4÷2/5=(3/4)×(5/2)=15/83.小数的四则运算:-加减法:先补齐小数位数,然后按照整数相加或相减的规则进行计算。
简便算法的公式四年级下册一、加法交换律和结合律。
1. 加法交换律。
- 公式:a + b=b + a- 示例:计算34+56,根据加法交换律也可以写成56 + 34,结果都是90。
- 应用场景:当两个数相加时,如果交换两个加数的位置可以使计算更简便,就可以使用加法交换律。
比如在连加算式中,25+36+75,先把25和75相加,因为25+75 = 100,再加上36就很容易得出结果136。
2. 加法结合律。
- 公式:(a + b)+c=a+(b + c)- 示例:计算(23+45)+55,根据加法结合律可以写成23+(45 + 55),先算45+55 = 100,再加上23得到123。
- 应用场景:在多个数相加时,如果其中有两个数相加可以凑成整十、整百等,就可以利用加法结合律先把这两个数相加,再与其他数相加。
二、乘法交换律、结合律和分配律。
1. 乘法交换律。
- 公式:a× b = b× a- 示例:计算3×5和5×3,结果都是15。
在算式25×4×8中,可以根据乘法交换律写成25×8×4,因为25×8=200,再乘以4得到800。
- 应用场景:当两个数相乘时,如果交换因数的位置能使计算简便,就使用乘法交换律。
2. 乘法结合律。
- 公式:(a× b)× c=a×(b× c)- 示例:计算(2×5)×4,根据乘法结合律可以写成2×(5×4),先算5×4 = 20,再乘以2得到40。
- 应用场景:在连乘算式中,如果其中有两个数相乘可以得到整十、整百等,就可以利用乘法结合律先把这两个数相乘,再与其他数相乘。
3. 乘法分配律。
- 公式:a×(b + c)=a× b+a× c或者a×(b - c)=a× b - a× c- 示例:计算5×(20 + 4),根据乘法分配律可得5×20+5×4 = 100 + 20=120。
四年级数学简便计算方法总结及类型归类四年级数学简便计算:乘除法篇一、乘法:1.含有25和125的因数算式:例如①:25×42×4.我们可以交换因数位置,使算式变为25×4×42,因为25×4=100.同样含有因数125的算式要先用125×8=1000.例如②:25×32,我们要根据25×4=100将32拆成4×8,原式变成25×4×8.例如③:72×125,我们根据125×8=1000将72拆成8×9,原式变成8×125×9.重点例题:125×32×25=(125×8)×(4×25)2.含有5或15、35、45等的因数算式:例如:35×16.我们可以将16拆分成2×8,这样原式变为35×2×8.因为这样就可以先得出整十的数,运算起来比较简便。
3.乘法分配律的应用:例如:56×32+56×68.我们可以提出56,将算式变成56×(32+68)。
如果是56×132—56×32,同样提出56,算式变成56×(132-32)。
注意:56×99+56应该想99个56加上1个56应为100个56,所以原式变为56×(99+1),或者56×101-56=56×(101-1)。
另外,可以综合运用,例如:36×58+36×41+36=36×(58+41+1)。
4.乘法分配律的另外一种应用:例如:102×47.我们可以先将102拆分成100+2,算式变成(100+2)×47.然后将括号里的每一项都要与括号外的47相乘,算式变为:100×47+2×47.例如:99×69,我们将99变成100-1,算式变成(100-1)×69.然后将括号里的数分别乘上69,注意中间为减号,算式变成:100×69-1×69.二、除法:1.连续除以两个数等于除以这两个数的乘积:例如:÷125÷8,我们可以将算式变为÷(125×8)=÷1000.2.例如:630÷18,我们可以将18拆分成9×2,这时原式变为630÷(9×2),注意要加括号,然后打开括号,原式变成630÷9÷2=70÷2.三、乘除综合:例如6300÷(63×5),我们需要打开括号,此时要将括号里的乘号变为除号,原式变为6300÷63÷5.四年级数学简便计算:加减法篇一、加法:1.利用加法交换律,例如:254+158+246,我们可以将算式变为246+158+254.我们发现254和246相加可以凑成整百,因此交换158和246的位置,变成254+246+158.同样地,对于365+458+242这个算式,我们可以利用加法结合律,将后两个加数相加成整百数,变成365+(458+242)。
四年级数学简便计算:乘除法篇?一、乘法:?1.因数含有25和125的算式:?例如①:25×42×4?我们牢记25×4=100,所以交换因数位置,使算式变为25×4×42.?同样含有因数125的算式要先用125×8=1000。
?例如②:25×32?此时我们要根据25×4=100将32拆成4×8,原式变成25×4×8。
?例如③:72×125?我们根据125×8=1000将72拆成8×9,原式变成8×125×9。
?重点例题:125×32×25?=(125×8)×(4×25)?2.因数含有5或15、35、45等的算式:?例如:35×16?我们根据需要将16拆分成2×8,这样原式变为35×2×8。
因为这样就可以先得出整十的数,运算起来比较简便。
?3.乘法分配律的应用:?例如:56×32+56×68?我们注意加号两边的算式中都含有56,意思是32个56加上68个56的和是多少,于是可以提出56将算式变成56×(32+68)?如果是56×132—56×32?一样提出56,算是变成56×(132-32)?注意:56×99+56?应想99个56加上1个56应为100个56,所以原式变为56×(99+1)?或者56×101-56??=56×(101-1)?另外注意综合运用,例如:?36×58+36×41+36?=36×(58+41+1)?47×65+47×36-47?=47×(65+36-1)?4.乘法分配律的另外一种应用:?例如:102×47?我们先将102拆分成100+2?算式变成(100+2)×47?然后注意将括号里的每一项都要与括号外的47相乘,算式变为:?100×47+2×47?例如:99×69?我们将99变成100-1?算式变成(100-1)×69?然后将括号里的数分别乘上69,注意中间为减号,算式变成:?100×69-1×69?二、除法:?1.连续除以两个数等于除以这两个数的乘积:?例如:32000÷125÷8?我们可以将算式变为32000÷(125×8)=32000÷1000?2.例如:630÷18?我们可以将18拆分成9×2?这时原式变为630÷(9×2)?注意要加括号,然后打开括号,原式变成630÷9÷2=70÷2?三、乘除综合:?例如6300÷(63×5)?我们需要打开括号,此时要将括号里的乘号变为除号,原式变为?6300÷63÷5?四年级数学简便计算:加减法篇?一、加法:?1.利用加法交换律?例如:254+158+246?我们首先观察发现254与246相加可以凑成整百,于是交换158和246两个加数的位置,变成254+246+158。
四年级数学简便运算方法总结一、加法简便运算1.加法交换律:两个数相加,交换加数的位置,和不变。
用字母表示为(a +b = b + a)。
-例如:(25 + 36 = 36 + 25)。
2.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
用字母表示为((a + b)+c = a+(b + c))。
-例如:((25 + 36)+64 = 25+(36 + 64))。
二、减法简便运算1. 减法的性质:一个数连续减去两个数,等于这个数减去这两个数的和。
用字母表示为(a - b - c = a-(b + c))。
-例如:(100 - 25 - 35 = 100-(25 + 35))。
三、乘法简便运算1.乘法交换律:两个数相乘,交换因数的位置,积不变。
用字母表示为(a×b = b×a)。
-例如:(25×4 = 4×25)。
2.乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变。
用字母表示为((a×b)×c = a×(b×c))。
-例如:((25×4)×3 = 25×(4×3))。
3.乘法分配律:两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。
用字母表示为((a + b)×c = a×c + b×c)。
-例如:((25 + 4)×4 = 25×4 + 4×4)。
四、除法简便运算1. 除法的性质:一个数连续除以两个数,等于这个数除以这两个数的积。
用字母表示为(a÷b÷c = a÷(b×c))。
-例如:(100÷25÷4 = 100÷(25×4))。
一、加法:1.零的性质:任何数与0相加等于它本身。
即a+0=a。
2.进位原理:当两个数的个位相加超过10时,需要进位到十位,再与十位的数相加。
例如:25+18可以拆成(20+10)+(5+8),即20+5和10+8,再将计算结果相加。
3.集合、交换和结合律:加法满足集合律、交换律和结合律。
例如:(4+5)+6=4+(5+6)=15二、减法:1.零的性质:任何数减去0等于它本身。
即a-0=a。
2.同号相减:两个数的符号相同,绝对值相减。
例如:9-3=63.异号相减:两个数的符号不同,绝对值相加,符号取绝对值大的数的符号。
例如:5-(-3)=5+3=8三、乘法:1.零的性质:任何数乘以0等于0。
即a×0=0。
2.乘法口诀:记住乘法口诀,可以简化乘法运算。
例如,计算6×9,可以利用乘法口诀中的“6乘9得54”来计算。
3.乘法分配律:a×(b+c)=(a×b)+(a×c)。
例如:3×(4+5)=(3×4)+(3×5)=27四、除法:1.零的性质:任何数除以0没有意义。
2.除法口诀:记住除法口诀,可以简化除法运算。
例如,记住“腰6小普通,脑中有个凶”,可以帮助计算36÷63.除法的基本性质:a÷a=1、例如:6÷6=1以上是四年级数学中常用的简便运算方法和公式。
除了这些方法外,还有一些特殊的计算技巧,例如快速估算、约数和倍数的运用等,可以帮助提高计算速度和准确性。
通过反复练习和运用这些方法,可以让孩子在数学运算中更加得心应手。
一、加法的简便计算方法:1.同位数相加:将相同位数的数竖直对齐,从右向左逐位相加,如果一些的和大于10,则向高位进12.零相加:任何数与0相加,都等于这个数本身。
3.十相加:相同位数数的十位数字相加,个位数字保持不变。
4.进位相加:当个位数的和大于10时,需要将进位的数与其他位相加。
5.拆分相加:将数拆分成容易计算的两个部分后进行相加,然后再将结果相加。
二、减法的简便计算方法:1.同位数相减:将相同位数的数竖直对齐,从右向左逐位相减,如果被减数一些小于减数的对应位,则需要向高位借位。
2.借位相减:当个位数的被减数小于减数时,需要从高位向低位借位,例如:8-6=2,8的十位没有可以借的数,所以要向更高位借13.零相减:任何数减去0,都等于这个数本身。
4.移位相减:将被减数移到减数的旁边形成整数减整数的形式,然后进行相减。
5.拆分相减:将数拆分成容易计算的两个部分后进行相减。
三、乘法的简便计算方法:1.乘法交换律:乘法中,元素的交换不改变积的值,例如:3×4=4×32.同倍数相乘:当两个数都是一些数的倍数时,可以先忽略这个倍数,之后再乘以这个倍数。
3.零乘法:任何数乘以0都等于0。
4.单位数相乘:乘法中,任何数与1相乘都等于这个数本身。
5.同数字相乘:例如:999×999可以改写成(1000-1)(1000-1)=(1000×1000)-(2×1000)+1四、除法的简便计算方法:1.零除法:任何数除以0都是没有意思的,因为0不能作为除数。
2.整数除法取整:例如:13除以4,可以先估算一下4的倍数最接近13的数,我们可以得到4×3=12,然后再将此结果与13相减得到余数13.除数和商的奇偶性:当除数和商的奇偶性相同时,商为整数;当除数和商的奇偶性不同时,商为非整数。
4.末尾0的处理:如果被除数和除数末尾有0,则可以依次去掉0,直到不再有为止。
四年级数学简便计算:乘除法篇一、乘法:1.因数含有25和125的算式:例如①:25×42×4我们牢记25×4=100,所以交换因数位置,使算式变为25×4×42. 同样含有因数125的算式要先用125×8=1000。
例如②:25×32此时我们要根据25×4=100将32拆成4×8,原式变成25×4×8。
例如③:72×125 我们根据125×8=1000将72拆成8×9,原式变成8×125×9。
重点例题:125×32×25 =(125×8)×(4×25)2.因数含有5或15、35、45等的算式:例如:35×16我们根据需要将16拆分成2×8,这样原式变为35×2×8。
因为这样就可以先得出整十的数,运算起来比较简便。
3.乘法分配律的应用:例如:56×32+56×68我们注意加号两边的算式中都含有56,意思是32个56加上68个56的和是多少,于是可以提出56将算式变成56×(32+68)如果是56×132—56×32 一样提出56,算是变成56×(132-32)注意:56×99+56 应想99个56加上1个56应为100个56,所以原式变为56×(99+1) 或者56×101-56=56×(101-1)另外注意综合运用,例如:36×58+36×41+36=36×(58+41+1)47×65+47×36-47 =47×(65+36-1)4.乘法分配律的另外一种应用:例如:102×47我们先将102拆分成100+2 算式变成(100+2)×47 然后注意将括号里的每一项都要与括号外的47相乘,算式变为:100×47+2×47 例如:99×69 我们将99变成100-1算式变成(100-1)×69然后将括号里的数分别乘上69,注意中间为减号,算式变成:100×69-1×69二、除法:1.连续除以两个数等于除以这两个数的乘积:例如:32000÷125÷8 我们可以将算式变为32000÷(125×8)=32000÷10002.例如:630÷18 我们可以将18拆分成9×2 这时原式变为630÷(9×2)注意要加括号,然后打开括号,原式变成630÷9÷2=70÷2三、乘除综合:例如6300÷(63×5)我们需要打开括号,此时要将括号里的乘号变为除号,原式变为6300÷63÷5四年级数学简便计算:加减法篇一、加法:1.利用加法交换律例如:254+158+246我们首先观察发现254与246相加可以凑成整百,于是交换158和246两个加数的位置,变成254+246+158。
四年级数学简便计算:方法归类第一类:在纯加法混合运算中:(1)多加的部分在后面减去;例如:783+999+98 279+91=783+1000+100-1-2 =279+100-9=1883-(1+2) =379-9=1883-3 =370=18809999+999+99+9=10000+1000+100+10-4=11110-4=11106(2)少加的部分在后面加去;例如:456+203+104 591+201=456+200+100+3+4 =591+200+1=756+(3+4) =791+1. =763 =792(3)根据数字特点,拆其中的一个加数,再结合,使其凑整,从而达到简算的目的。
(拆分结合法)例如:187+63 296+325=287+13+50 =296+4+321=(287+13)+50 =(296+4)+321=300+50 =300+321=350 =621第二类:在纯减法混合运算中:(1)少减的部分在后面减去;例如:487-102=487-100-2=387-2=385(2)多减的部分在后面加上;例如:363-98=363-100+2=263+2=265(3)根据数字特点,改变运算顺序,从而达到简算的目的。
例如:675-134-175=675-175-134=500-134=366(4)利用减法的性质:一个数连续减去两个数,可以减去这两个减数的和。
用字母表示:a-b-c=a-(b+c)例如: 458-45—155 2354-456-544=458-(45+155) =2354-(456+544)=458-200 =2354-1000=258 =1354例如:743-119-81 345-67-33=743-(119+81) =345-(67+33)=743-200 =345-100=543 =245第三类:拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。
小学数学简便运算方法归类
一、带符号搬家法(根据:加法交换律和乘法交换率)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 符号搬家”。
(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;a ×b ×c=a ×c ×b,
a ÷
b ÷c=a ÷
c ÷b,a ×b ÷c=a ÷c ×b,a ÷b ×c=a ×c ÷b)
二、结合律法
(一)加括号法
1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括
号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,
原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号
前是加号,括号里不变号,括号前是减号,括号里要变号。
)
a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a -(b-c), a-b-c= a-( b +c);
2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括
号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,
原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括
号前是乘号,括号里不变号,括号前是除号,括号里要变号。
)
a ×
b ×c=a ×(b ×c), a ×b ÷c=a ×(b ÷c), a ÷b ÷c=a ÷(b ×c), a ÷b ×c=a ÷(b ÷c)
(二)去括号法
1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来
是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变
为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了哈) (注:去掉
括号是添加括号的逆运算)
a+(b+c)= a+b+c a +(b-c)= a+b-c a- (b-c)= a-b+c a-( b +c)= a-b-c
2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来
是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为
除;原来是除,现在就要变为乘。
(现在没有括号了,可以带符号搬家了哈) (注:去掉
括号是添加括号的逆运算)
a ×(
b ×c) = a ×b ×c, a ×(b ÷c) = a ×b ÷c, a ÷(b ×c) = a ÷b ÷
c , a ÷(b ÷c) = a ÷b
×c
三、乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
24×(1211-83-61-3
1) 2.提取公因式
注意相同因数的提取。
0.92×1.41+0.92×8.59 516×137-53×13
7 3.注意构造,让算式满足乘法分配律的条件。
257×103-257×2-25
7 2.6×9.9 四、借来还去法
看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意
还哦 ,有借有还,再借不难嘛。
9999+999+99+9 4821-998
五、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,
如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
四.运算定律
加法交换律:a+b = b+a
加法结合律:(a+b)+c = a+(b+c)
乘法交换律:a×b = b×a
乘法结合律:(a×b)×c = a×(b×c)
乘法分配律:(a+b)×c = a×c+b×c
(a-b)×c = a×c-b×c
五.其它性质
a-b-c = a-c-b 可以变化顺序
a-b-c = a-(b+c)可以加起来一起减
a-(b-c)= a-b+c括号前是减号,去掉后变符号
a+(b-c)= a+b-c括号前是加号,去掉后不变符号
a÷b÷c = a÷c÷b可以变化顺序
a÷b÷c = a÷(b×c)可以乘起来一起除
a-b+c = a+c-b 可以变化顺序
a÷b×c = a×c÷b可以变化顺序
六、总结
1、在简便运算中,运算定律的区别和适用范围最重要,通常情况下,交换律和结合律只适用于同种运算或者同级运算,在交换的时候要注意连同前面的符号一起交换;
2、在减法和除法的性质中,括号外面和里面必须是同级运算才可以用,如果括号前面是减法,括号里面有加法和减法,去括号以后里面的每一个数前面的符号都要改变;如果括号前面是除号,括号里面有乘法和除法,去括号以后每一个数前面的符号都要改变;
3、对于分配律,如果被除数是几个数的和或者差,除数是某一个数,可以用分配律,如果除数是几个数的和或者差,不能用分配律;
4、两种运算技巧:
(1)凑数:把一个数写成是一个与它相近的整十、整百或者整千数与一个较小的数的和或者差,在运用运算定律达到简便运算的效果;
(2)拆数:把一个合数分解质因数,写成几个数的积,然后在运用乘法的运算定律,达到简便运算的目的。