第7章 (稳恒磁场)习题课
- 格式:ppt
- 大小:815.00 KB
- 文档页数:38
习题7解答1.解:不是,在它的延长线上就不产生磁场。
2.解:如果一个电子在通过空间某一区域时不发生偏转,不能判断该区域无磁场,因为有可能存在与电子运动速度垂直的磁场,此时电子不受力,将维持惯性保持直线运动。
如果它发生偏转,也不能肯定那个区域存在着磁场,因为电场也可以使电子偏转.3解:此题利用场强叠加原理求解。
将无限长导线看作三部分组成:射线AB 、CD 和半圆弧BC ,三段导线在O 点产生的磁感应强度分别为(设垂直纸面向里为正方向):R40πμIB AB =RIB BC 40μ=0=CD B (因为O 点在CD 延长线上)故所求为:)11(40+=++=πμR I B B B B CD BC AB O 。
4解:与上题类似,将整段导线分成四部分:两个半圆和两段直线,并取垂直纸面向里为正方向。
两个半圆在O 点产生的磁感应强度分别为a I 40μ和bI40μ,两段直线的延长线都过O 点,所以在O 点产生的磁感应强度均为零。
故所求为:)11(40ba I B +=μ。
5解:与上题类似,将整段导线看成两部分组成:圆和无限长直导线,并取垂直纸面向里为正方向。
圆环导线在O 点产生的磁感应强度为2R0Iμ,无限长直导线在O 点产生的磁感应强度为R20πμI -。
故所求为:)11(20πμ-=R I B 。
6.解:此题关键点在于对匝数密度n 的理解:一匝宽为d ,则单位宽度内有n 匝(dn 1=)。
故所求为:)(103.1430T nI B -⨯==μ,方向平行于管轴。
7.解:把电子绕核运动看作圆电流,则电流强度I 为:aev e T e I πωπ22===于是圆电流中心磁感应强度为:)(T rIB 12.420==μ8.解:如题8图,旋转的带电圆盘可以看作一组同心圆电流,所求可以理解为这组圆电流在盘心处产生的磁感应强度之和。
取一半径为r 、宽为dr 的细环,以ω旋转起来形成的电流dI 为:rdr rdr Tq dI σωωππσ==∑=22该环在盘心处激发的磁感应强度dB 为:dr r dI dB σωμμ00212==整个圆盘在盘心处激发的磁感应强度B 为:R dr dB B Rσωμσωμ0002121===⎰⎰9.解:如题9图选取坐标,在θ处取一宽为d l 的无限长直电流dI :d d d d I I I I l R R R θθπππ===dI在轴上P 点产生的磁场dB 为:0002d d d d 222I I I B R R Rμμθπμθπππ===dB 的方向垂直于dl 所在的半径,且有RI B B x 202d cos cos d d πθθμ=θ=RI B B y 202d sin )2cos(d d πθθμ-=θ+π=题7图rd θx yd lθθdB xdB ydBR O题9图于是有502222cos d 6.3710T 2x I I B R Rππμμθθππ--===⨯⎰() 0)2d sin (2220=πθθμ-=⎰ππ-RI B y所以)(1037.65T i B B B y x -⨯=+=10.解:同轴电缆导体内的电流均匀分布,产生的磁场呈轴对称分布,可利用安培环路定理求磁感。
40 第7章 稳恒磁场7-1 如图,一个处在真空中的弓形平面载流线圈acba ,acb 为半径cm 2=R 的圆弧,ab 为圆弧对应的弦,圆心角090aob ∠=, A 40=I ,试求圆心O 点的磁感应强度的大小和方向。
解 由例7-1 线段ba 的磁感应强度 o o 40140(cos45-cos135) =410T4π0.02cos45B μ-=⨯⨯︒方向垂直纸面向外。
由例7-2 圆弧 acb的磁感应强度 4002π1402 3.1410T 2π2420.02I μB R μ-==⨯=⨯方向垂直纸面向内。
4120.8610TB B B -=-=⨯方向垂直纸面向外。
7-2 将载流长直导线弯成如图所示的形状,求圆心O 点处磁感应强度。
解 如图,将导线分成1(左侧导线)、2(半圆导线)、3(右侧导线)三部分,设各部分在O 点处产生的磁感应强度分别为1B 、2B 、3B。
根据叠加原理可知,O 点处磁感应强度321B B B B ++=。
01=B024I B Rμ=,方向垂直于纸面向里034πI B Rμ=,方向垂直于纸面向里O 点处磁感应强度大小为0O 23(1π)4πIB B B Rμ=+=+ ,方向垂直于纸面向里。
7-3 一圆形载流导线圆心处的磁感应强度为1B ,若保持导线中的电流强度不变,而将导线变成正方形,此时回路中心处的磁感应强度为2B ,试求21:B B解 设导线长度为l ,为圆环时, 2πl R = 001π2I I B R l μμ==为正方形时,边长为4l,由例7-100024(cos 45cos135)4π8IBlμ=⨯-=⨯习题7-1图41212 :πB B =7-4 如图所示,一宽为a 的薄长金属板,均匀地分布电流I ,试求在薄板所在平面、距板的一边为a 的点P 处的磁感应强度。
解 取解用图示电流元,其宽度为d r ,距板下边缘距离为r ,其在P 点处激发的磁感应强度大小为00d d d 2π22π(2)II r B (a r)a r aμμ==--,方向垂直于纸面向外。
第七章稳恒电流1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . . (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α.2、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]3、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅LlB d 等于(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.4、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动.5、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ =______________.n B α SOB x O R (A) BxO R (B)Bx O R (D) Bx O R (C)BxO R (E)x 电流 圆筒II ab c d 120°I 1I 2b baI6、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为____,方向________.7、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B 的方向在水平面内,导线中电流方向如图所示,当导线所受磁力与重力平衡时,导线中电流I =___________________.8、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.9、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案: 一 选择题1、D2、A3、D4、B5、2ln 20πIaμ6、a l I 4/d 20μ 垂直电流元背向半圆弧(即向左)7、)/(lB mgIlI dIBI8、解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d δ=(2) 这载流长条在P 点产生的磁感应强度 x i B π=2d d 0μxxπ=2d 0δμ 方向垂直纸面向里. (3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度==⎰B B d ⎰+πba bxdx x20δμb b a x +π=ln 20δμ 方向垂直纸面向里.9、解:由安培环路定理: ∑⎰⋅=i I l Hd 0< r <R 1区域: 212/2R Ir rH =π 212R Ir H π=, 2102R Ir B π=μR 1< r <R 2区域: I rH =π2r I H π=2, rIB π=2μR 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r r IH ---π= )1(2222322200R R R r r IH B ---π==μμ r >R 3区域: H = 0,B = 0x d x PO x党的十九届四中全会精神解读1.《中共中央关于坚持和完善中国特色社会主义制度、推进国家治理体系和治理能力现代化若干重大问题的决定》提出,到(),各方面制度更加完善,基本实现国家治理体系和治理能力现代化。
第7章 稳恒磁场7-1 如图,一个处在真空中的弓形平面载流线圈acba ,acb 为半径cm 2=R 的圆弧,ab 为圆弧对应的弦,圆心角090aob ∠=,A 40=I ,试求圆心O 点的磁感应强度的大小和方向。
解 由例7-1 线段ba 的磁感应强度 o o 40140(cos45-cos135) =410T4π0.02cos45B μ-=⨯⨯︒方向垂直纸面向外。
由例7-2 圆弧acb 的磁感应强度4002π1402 3.1410T 2π2420.02I μB R μ-==⨯=⨯方向垂直纸面向内。
4120.8610TB B B -=-=⨯方向垂直纸面向外。
7-2 将载流长直导线弯成如图所示的形状,求圆心O 点处磁感应强度。
解 如图,将导线分成1(左侧导线)、2(半圆导线)、3(右侧导线)三部分,设各部分在O 点处产生的磁感应强度分别为1B 、2B 、3B 。
根据叠加原理可知,O 点处磁感应强度321B B B B++=。
01=B024I B Rμ=,方向垂直于纸面向里034πI B Rμ=,方向垂直于纸面向里O 点处磁感应强度大小为习题7-1图0O 23(1π)4πIB B B Rμ=+=+ ,方向垂直于纸面向里。
7-3 一圆形载流导线圆心处的磁感应强度为1B ,若保持导线中的电流强度不变,而将导线变成正方形,此时回路中心处的磁感应强度为2B ,试求21:B B解 设导线长度为l ,为圆环时, 2πl R = 001π2I I B R l μμ==为正方形时,边长为4l,由例7-100024(cos 45cos135)4π8IB lμ=⨯-=⨯212 :πB B =7-4 如图所示,一宽为a 的薄长金属板,均匀地分布电流I ,试求在薄板所在平面、距板的一边为a 的点P 处的磁感应强度。
解 取解用图示电流元,其宽度为d r ,距板下边缘距离为r ,其在P 点处激发的磁感应强度大小为00d d d 2π22π(2)II r B (a r)a r aμμ==--,方向垂直于纸面向外。
稳 恒 磁 场 习 题 课(数学表达式中字母为黑体者表示矢量)壹 内容提要一、磁感强度B 的定义 1. 用运动的试验电荷q 0在磁场中受力定义: 大小B=F max /(q 0v ),方向与q 0受力为零时的速度方向平行,且矢量F 、v 、B 满足右手螺旋法则。
2. 用磁矩为m (题库为P m ) 的试验线圈在磁场中受力矩定义:大小B=M max /m ,方向与试验线圈处于稳定平衡时m 的方向相同。
二、毕奥—沙伐尔定律 1.电流元I d l 激发磁场的磁感强度 d B =[μ0 /( 4π)]I d l ×r /r 3; 2. 运动点电荷q 激发磁场的磁感强度 B =[μ0 /( 4π)]q v ×r /r 3。
三、磁场的高斯定理 1. 磁感线(略);2. 磁通量 Φm =⎰⋅Sd S B (计算磁通量时注意曲面S 的法线正方向);3. 高斯定理0d =⋅⎰SS B ;4. 稳恒磁场是无源场。
四、安培环路定理 1. 表达式 :真空中⎰∑=⋅l i I 0 d μl B ,介质中⎰∑=⋅li I 0d l H ; 2. 稳恒磁场是非保守场,是涡旋场或有旋场。
五、磁矩 m (题库为P m ): 1. 定义 m =I ⎰S d S (任何载流线圈均可定义磁矩 m );2. 磁偶极子激发的磁场:延长线上 B=[μ0/(4π)](2 m /r 3);中垂线上B=[μ0/(4π)](-m /r 3);3. 载流线圈在均匀磁场中受力矩 M= m ×B 。
六、洛伦兹力 1. 表达式 F m = q v ×B , F = q (E +v ×B );2. 带电粒子在均匀磁场中运动(设v 与B 的夹角为α):回旋半径 R =mv sin α / (qB ), 回旋周期 T =2πm / (qB ), 回旋频率 ν= qB / (2πm ),螺距 d =2π mv cos α / (qB );3.霍耳效应:(1).定义(略), (2).在磁场方向与电流方向不变的情况下正载流子与负载流子受磁场力方向相同, (3).霍耳电压U H =R H IB/d , (4)霍耳系数R H =1/(nq )。