大学物理----稳恒磁场小结与习题课共32页
- 格式:ppt
- 大小:1.67 MB
- 文档页数:5
*作品编号:DG13485201600078972981* 创作者: 玫霸*第8章 稳恒磁场 习题及答案6. 如图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R 。
若通以电流I ,求O 点的磁感应强度。
解:O 点磁场由AB 、C B、CD 三部分电流产生,应用磁场叠加原理。
AB 在O 点产生的磁感应强度为01=BC B在O 点产生的磁感应强度大小为θπμR I B 402=RIR I 123400μππμ=⨯=,方向垂直纸面向里CD 在O 点产生的磁感应强度大小为)cos (cos 421003θθπμ-=r IB)180cos 150(cos 60cos 400︒︒-=R Iπμ)231(20-=R I πμ,方向垂直纸面向里 故 )6231(203210ππμ+-=++=R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θπθ-==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为)(θππμ-=24101RI B ,方向垂直纸面向外2I 产生的磁感应强度大小为θπμRIB 4202=,方向垂直纸面向里 所以, 1)2(2121=-=θθπI I B B 环中心O 的磁感应强度为0210=+=B B B8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。
解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。
以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。
在载流平板上取dx aIdI =,dI 在P 点产生的磁感应强度大小为 x dI dB πμ20=dx axIπμ20=,方向垂直纸面向里P 点的磁感应强度大小为⎰⎰+==a b b x dx a I dB B πμ20bab a I +=ln 20πμ 方向垂直纸面向里。
衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。
稳 恒 磁 场 习 题 课(数学表达式中字母为黑体者表示矢量)壹 内容提要一、磁感强度B 的定义 1. 用运动的试验电荷q 0在磁场中受力定义: 大小B=F max /(q 0v ),方向与q 0受力为零时的速度方向平行,且矢量F 、v 、B 满足右手螺旋法则。
2. 用磁矩为m (题库为P m ) 的试验线圈在磁场中受力矩定义:大小B=M max /m ,方向与试验线圈处于稳定平衡时m 的方向相同。
二、毕奥—沙伐尔定律 1.电流元I d l 激发磁场的磁感强度 d B =[μ0 /( 4π)]I d l ×r /r 3; 2. 运动点电荷q 激发磁场的磁感强度 B =[μ0 /( 4π)]q v ×r /r 3。
三、磁场的高斯定理 1. 磁感线(略);2. 磁通量 Φm =⎰⋅Sd S B (计算磁通量时注意曲面S 的法线正方向);3. 高斯定理0d =⋅⎰SS B ;4. 稳恒磁场是无源场。
四、安培环路定理 1. 表达式 :真空中⎰∑=⋅l i I 0 d μl B ,介质中⎰∑=⋅li I 0d l H ; 2. 稳恒磁场是非保守场,是涡旋场或有旋场。
五、磁矩 m (题库为P m ): 1. 定义 m =I ⎰S d S (任何载流线圈均可定义磁矩 m );2. 磁偶极子激发的磁场:延长线上 B=[μ0/(4π)](2 m /r 3);中垂线上B=[μ0/(4π)](-m /r 3);3. 载流线圈在均匀磁场中受力矩 M= m ×B 。
六、洛伦兹力 1. 表达式 F m = q v ×B , F = q (E +v ×B );2. 带电粒子在均匀磁场中运动(设v 与B 的夹角为α):回旋半径 R =mv sin α / (qB ), 回旋周期 T =2πm / (qB ), 回旋频率 ν= qB / (2πm ),螺距 d =2π mv cos α / (qB );3.霍耳效应:(1).定义(略), (2).在磁场方向与电流方向不变的情况下正载流子与负载流子受磁场力方向相同, (3).霍耳电压U H =R H IB/d , (4)霍耳系数R H =1/(nq )。
第8章 恒定磁场一、基本要求掌握磁感强度矢量的概念;理解毕奥-萨伐尔定律、磁场的高斯定理、安培环路定理,能计算一些简单问题的磁感强度;理解洛伦兹力公式,能分析点电荷在均匀磁场中的受力和运动;理解安培定律,能计算简单几何形状载流导体在均匀磁场中所受的力(或力矩).了解介质的磁化现象及其微观解释,了解各向同性介质中磁场强度和磁感强度的关系与区别.二、基本内容1.基本概念运动电荷(电流)产生磁场;描述磁场的基本物理量:磁感强度,磁通量;磁场对电流的安培力、磁场对运动电荷的洛伦兹力.2.毕奥-萨伐尔定律20d π4d re l I B r⨯=μ 它是求解磁场的基本规律,从该定律可以直接得到在直电流的延长线和反向延长线上各点的磁感应强度为零.从电流元的磁场出发,得到计算线电流产生磁场的方法:⎰⎰⨯==)(20)(d π4d L rL r e l I B Bμ 应用上式在教材中导出了一些电流产生磁场的计算公式,包括:一段直电流在空间任意一点的磁场,无限长载流直导线在空间任意一点的磁场,圆电流在圆心处的磁场,一段载流圆弧在圆心处的磁场,无限长螺线管内部和两端磁感强度.这些计算公式在求解问题时可以直接使用.3.磁场的叠加原理∑==+++=N i i B B B B B 1n 21该原理表明多个电流在空间某点产生的磁场,等于各电流单独存在时在该点处产生的磁场的矢量和.将磁场的计算公式和叠加原理结合使用,可以求解多个电流在空间某点产生的磁场.在计算中首先应该将复杂的电流分成计算公式已知的电流段,然后分段计算,最后求出矢量和.4.磁场中的高斯定理0d =⋅⎰SS B该定理表明:磁场是无源场,磁感线是无头无尾的闭合曲线.应用该定理求解均匀磁场中非闭合曲面的通量时,可以作平面,使平面和曲面形成闭合曲面,由于闭合曲面的通量为零,即曲面的通量等于平面通量的负值,从而达到以平代曲的目的.5.安培环路定理⎰∑==⋅LN i i I μl B 10d该定理表明:磁场是有旋场,磁场是非保守场.应用该定理时,首先应该注意穿过以L 为边界的任意曲面的电流的正负;其次应该知道环流为零,环路上各点的磁感强度不一定为零.在应用定理求解具有轴对称电流分布的磁场和均匀磁场的磁感应强度时,要根据电流的对称性和磁场的性质选择合适的环路L .6.安培定律B l I F⨯=d d该定律是计算磁场对电流的作用的基本定律.一段载流导线在磁场中受到的安培力为⎰⎰⨯==)()(d d L L B l I F F应用上式时,应该注意电流上各点的磁场是否均匀及磁场力的分布特点.如果电流上各点的磁场相等,并且是一段直电流,可以先求出导线所在处的磁场,然后用公式ϕsin IBL f =求出结果;如果电流上各点所受的磁场力的大小不同但方向相同,可以先在电流上取一小线段l d ,求出l d 段电流所受的磁力,然后通过标量积分得结果.7.洛伦兹力B q F⨯=v洛伦兹力方向始终与电荷运动方向垂直,对运动电荷不做功.质量为m ,电量为q 的粒子以速率v 垂直进入磁场B 时,粒子作匀速率圆周运动:运动半径:qB m R v =,运动周期:qBmT π2=.三、例题详解8-1、一半径cm 0.1=R 的无限长1/4圆柱形金属薄片,沿轴向通有电流A 0.10=I 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感强度.解:取l d 段,其中电流为 πd 2πd 2π21d d θI R θIR R l I I ===在P 点θμθμμd d 222d d 2000RII R RIB π=π⋅π=π=选坐标如图 RI B 20x d sin d π-=θθμ,R I B 20yd cos d π-=θθμ R IR I B 202/π020x d sin π-=π-=⎰μθθμ RI R I B 202/π020y d cos π-=π-=⎰μθθμT 108.12)(4202/12y 2x -⨯=π=+=RI B B B μ方向1/tan xy ==B B α,︒=225α,α为B与x 轴正向的夹角.8-2、电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥-萨伐尔定律求板外任意一点的磁感强度.解:如图,从上向下看,在垂直于j 的l d 长度内流过电流为I d ,I d 在P 点产生的磁场: r)I/(μB π2d d 0=,l j I d d = )2/(d d 0r l j B π=μ由对称性的分析可知0d //=⎰B θμθcos π2d cos d d 0rlj B B ==⊥∵22x l r +=;22/cos x l x +=θ ∴j xl l jxB B 022021d π2d μμ=+==⎰⎰+∞∞-⊥8-3、将通有电流A 0.5=I 的无限长导线折成如图形状,已知半圆环的半径为m 10.0=R .求圆心O 点的磁感强度.(H/m 10π470-⨯=μ)解:O 处总cd bc ab B B B B ++=,方向垂直指向纸里 而)sin (sin 4120ab ββμ-π=aIB∵02=β,π-=211β,R a =∴)4/(0ab R I B π=μ 又)4/(0bc R I B μ=因O 在cd 延长线上0cd =B ,所以 )4/()4/(00cd bc ab R I R I B B B B μμ+π=++=8-4、如图所示为两条穿过y 轴且垂直于x-y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1)推导出x 轴上P 点处的磁感强度)(x B的表达式.(2)求P 点在x 轴上何处时,该点的B 取得最大值.解:(1)利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为: 2/122001)(122x a Ir I B +⋅π=π=μμ 2导线在P 点产生的磁感强度的大小为: 2/122002)(122x a Ir IB +⋅π=π=μμ1B 、2B的方向如图所示.P 点总磁感强度θθcos cos 212x 1x x B B B B B +=+= 02y 1y y =+=B B B)()(220x a Ia x B +π=μ,i x a Ia x B )()(220+π=μ(2)当0d )(d =xx B ,0d )(d 22≤x x B 时,)(x B 最大.由此可得:0=x 处,)(x B 有最大值.8-5、已知空间各处的磁感强度B都沿x 轴正方向,而且磁场是均匀的,T 1=B .求下列三种情形中,穿过一面积为2m 2的平面的磁通量.(1)平面与yz 平面平行; (2)平面与xz 平面平行;(3)平面与y 轴平行,又与x 轴成︒45角.解:(1)平面法线与x 轴平行,有Wb 2±==⋅S Bm Φ(2)平面与xz 坐标面平行,则其法线与B垂直,有0==⋅S B m Φ(3)与x 轴夹角为︒45的平面,其法线与B的夹角为︒45或︒135故有Wb 41.145cos =︒==⋅BS S B m Φ或Wb 41.1135cos -=︒==⋅BS S Bm Φ8-6、一无限长圆柱形铜导体(磁导率0μ),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1m ,宽为2R ),位置如右图中阴影部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得: )(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1Φ为 π=π===⎰⎰⎰⋅4d 2d d 00201I r r R I S B S B R μμΦ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r r IB >π=μ因而,穿过导体外画斜线部分平面的磁通2Φ为2ln 2d 2d 0202π=π==⎰⎰⋅Ir rIS B RRμμΦ穿过整个矩形平面的磁通量2ln 240021π+π=+=IIμμΦΦΦ.8-7、如图所示,一个带有正电荷q 的粒子,以速度v平行于一均匀带电的长直导线运动,该导线的线电荷密度为λ,并载有传导电流I .试问粒子要以多大的速度运动,才能使其保持在一条与导线距离为r 的平行直线上?解:依据无限长带电和载流导线的电场和磁场知:r r E 0π2)(ελ=(方向沿径向向外) rIr B π2)(0μ=(方向垂直纸面向里)运动电荷受力F (大小)为:v rIq r q F π2π200μελ-=此力方向为沿径向(或向里,或向外)为使粒子继续沿着原方向平行导线运动,径向力应为零, 0π2π200=-=v rIq r q F μελ则有I 00μελ=v .8-8、如图所示,载有电流1I 和2I 的长直导线ab 和cd 相互平行,相距为r 3,今有载有电流3I 的导线r MN =,水平放置,且其两端MN 分别与1I 、2I 的距离都是r ,ab 、cd 和MN 共面,求导线MN 所受的磁力大小和方向.解:载流导线MN 上任一点处的磁感强度大小为: )2(π2)(π22010x r I x r I B --+=μμMN 上电流元x I d 3所受磁力:x x r I x r I I x B I F d ])2(π2)(π2[d d 201033--+==μμ)(2ln 2]2ln 2ln [22ln 2ln 2d 22d 2d ])2(2)(2[21302130213002300130020103I I II I Ir r I r r I I x x r I I x x r I I xx r I x r I I F r rr-π=-π=⎥⎦⎤⎢⎣⎡+π=⎥⎦⎤⎢⎣⎡-π-+π=-π-+π=⎰⎰⎰μμμμμμμ 若12I I >,则F 的方向向下,12I I <,则F的方向向上.8-9、半径为R 的半圆线圈ACD 通有电流2I ,置于电流为1I 的无限长直线电流的磁场中,直线电流1I 恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流1I 的磁力.解:长直导线在周围空间产生的磁场分布为)π2/(10r I B μ=取o-xy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin π210R I B =,方向垂直纸面向里,式中θ为场点至圆心的联线与y 轴的夹角.半圆线圈上段线l d 电流所受的力为:I 1I 2I 2I 1θθμd sin 2d d d 21022R R I I l B I B l I F π==⨯=θcos d d y F F =,根据对称性知:0d y y ==⎰F F θsin d d x F F =,2ππ2d 210210π0x x I I I I F F μμ===⎰∴半圆线圈受1I 的磁力的大小为: 2210I I F μ=,方向:垂直1I 向右.8-10、一平面线圈由半径为0.2m 的1/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求:(1)线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力. (2)线圈平面与磁场成60°角时,线圈所受的磁力矩.解:(1)圆弧AC 所受的磁力:在均匀磁场中AC 通电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有N 283.02===RB I F F AC AC方向:与AC 直线垂直,与OC 夹角45°,如图.(2)磁力矩:线圈的磁矩为n n IS p2m 102-⨯π==本小问中设线圈平面与B 成60°角,则m p与B 成30°角,有力矩 m N 1057.130sin 2m m ⋅⨯=︒=⨯=-B p B p M方向:力矩M 将驱使线圈法线转向与B平行.8-11、一通有电流1I (方向如图)的长直导线,旁边有一个与它共面通有电流2I (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23(如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为 ])(π2π2[10102a x I xI aI F +-=μμ方向向右,从a x =到a x 2=磁场所作的功为 )3ln 2ln 2(π2d )11(π22102210-=+-=⎰I aI x a x x I aI W aaμμBI I 28-12、横截面为矩形的环形螺线管,圆环内外半径分别为1R 和2R ,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1)芯子中的B 值和芯子截面的磁通量. (2)在1R r <和2R r >处的B 值.解:(1)在环内作半径为r 的圆形回路,由安培环路定理得NI r B μ=π⋅2,)2/(r NI B π=μ在r 处取微小截面r b S d d =,通过此小截面的磁通量 r b rNIS B d 2d d π==μΦ穿过截面的磁通量 12ln2d 2d R R NIbr b rNIS B Sπ=π==⎰μμΦ (2)同样在环外(1R r <和2R r >)作圆形回路,由于0=∑i I02=π⋅r B ∴0=B四、习题精选8-1、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A )I aB π=02μ. (B )I a B 2π=02μ.(C )B =0. (D )I aB π=0μ.[ ]8-2、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A )RIπ20μ. (B )RI40μ. (C )0.(D ))11(20π-R Iμ. (E ))11(40π+R I μ.[ ]8-3、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R =2r ,则两螺线管中的磁感强度大小R B 和r B 应满足:(A )r R 2B B =.(B )r R B B =. (C )r R 2B B =.(D )r R 4B B =.bIaP[ ]8-4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A )方向垂直环形分路所在平面且指向纸内. (B )方向垂直环形分路所在平面且指向纸外. (C )方向在环形分路所在平面,且指向b . (D )方向在环形分路所在平面内,且指向a . (E )为零.[ ]8-5、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为 (A )RI π40μ. (B )RI π20μ. (C )0. (D )RI 40μ.[ ]8-6、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]8-7、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为θ,则通过半球面S 的磁通量(取弯面向外为正)为(A )B r 2π. (B )B r 22π. (C )θsin π2B r -. (D )θcos π2B r -.[ ]8-9、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的I ∑不变,L 上各点的B不变.(B )回路L 内的I ∑不变,L 上各点的B改变.(C )回路L 内的I ∑改变,L 上各点的B不变.(D )回路L 内的I ∑改变,L 上各点的B改变. [ ]8-10、一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则(A )两粒子的电荷必然同号. (B )粒子的电荷可以同号也可以异号. (C )两粒子的动量大小必然不同. (D )两粒子的运动周期必然不同.[ ]8-11、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A )Oa . (B )Ob . (C )Oc . (D )Od .[ ]8-12、一运动电荷q ,质量为m ,进入均匀磁场中,(A )其动能改变,动量不变. (B )其动能和动量都改变. (C )其动能不变,动量改变. (D )其动能、动量都不变.[ ]8-13、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设A R ,B R 分别为A 电子与B 电子的轨道半径;A T ,B T 分别为它们各自的周期.则(A )2:B A =R R ,2:B A =T T . (B )2/1:B A =R R ,1:B A =T T . (C )1:B A =R R ,2/1:B A =T T .(D )2:B A =R R ,1:B A =T T .[ ]8-14、长直电流2I 与圆形电流1I 共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(A )绕2I 旋转.(B )向左运动.(C )向右运动.(D )向上运动.(E )不动.[ ]8-15、在匀强磁场中,有两个平面线圈,其面积212A A =,通有电流212I I =,它们所受的最大磁力矩之比21/M M 等于(A )1. (B )2. (C )4. (D )1/4.[ ]8-16、两个同心圆线圈,大圆半径为R ,通有电流1I ;小圆半径为r ,通有电流2I ,方向如图.若R r <<(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A )Rr I I 22210πμ. (B )Rr I I 22210μ. (C )rR I I 22210πμ. (D )0.[ ]OI 18-17、如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A )ab 边转入纸内,cd 边转出纸外. (B )ab 边转出纸外,cd 边转入纸内. (C )ad 边转入纸内,bc 边转出纸外. (D )ad 边转出纸外,bc 边转入纸内.[ ]8-18、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的?(A )H仅与传导电流有关.(B )若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.(C )若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D )以闭合曲线L为边缘的任意曲面的H通量均相等. [ ] 8-19、磁介质有三种,用相对磁导率r μ表征它们各自的特性时: (A )顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ. (B )顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ. (C )顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ. (D )顺磁质0r <μ,抗磁质1r <μ,铁磁质0r >μ.[ ]8-20、顺磁物质的磁导率:(A )比真空磁导率略小. (B )比真空磁导率略大. (C )远小于真空磁导率. (D )远大于真空磁导率.[ ] 8-21、电流元l I d 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向______________方向.8-22、半径为R 的细导线环中的电流为I ,那么离环上所有点的距离皆等于r 的一点处的磁感强度大小为=B ____________.(R r ≥)8-23、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此y xzO情形中,线框内的磁通量=Φ______________.8-24、一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10A 的电流时,它的横截面上的磁通量为___________.(真空磁导率m/A T 10π470⋅⨯=-μ)8-25、已知三种载流导线的磁感线的方向如图,则相应的电流流向在 图(1)中为由________向________; 图(2)中为由________向________; 图(3)中为由________向________.8-26、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅Ll Bd 等于:____________________________________(对环路a ). ____________________________________(对环路b ). ____________________________________(对环路c ).8-27、一长直螺线管是由直径mm 2.0=d 的漆包线密绕而成.当它通以A 5.0=I 的电流时,其内部的磁感强度=B ______________.(忽略绝缘层厚度)(270N/A 10π4-⨯=μ)8-28、有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒内空腔各处的磁感强度为________________,筒外空间中离轴线r 处的磁感强度为_____________.8-29、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______________,运动轨迹半径之比是_______________.8-30、电子在磁感强度为B的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流强度=I _____________;等效圆电流的磁矩=m p __________.已知电子电荷为e ,电子的质量为e m .8-31、有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体?ef图(1)图(2)图(3)是_______型,_______型8-32、电子以速率m/s 105=v 与磁力线成交角︒=30θ飞入匀强磁场中,磁场的磁感强度T 2.0=B ,那么作用在电子上的洛伦兹力=F _____________________.(基本电荷C 106.119-⨯=e )8-33、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________,方向__________.8-34、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为__________,方向为____________.把线圈绕OO' 轴转过角度____________时,磁力矩恰为零.8-35、在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.8-36、有一流过电流A 10=I 的圆线圈,放在磁感强度等于0.015T 的匀强磁场中,处于平衡位置.线圈直径cm 12=d .使线圈以它的直径为轴转过角2/π=α时,外力所必需作的功=W _______,如果转角π2=α,必需作的功=W ________.8-37、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为120°的两段,并置于均匀磁场B 中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁力的大小为_____________.8-38、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为___________,方向__________.8-39、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =_____________,磁感强度的大小B =__________.8-40、一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相IBII d对磁导率为r μ的磁介质,则管内中部附近磁感强度B =______________,磁场强度H =_______________.8-41、如图所示,半径为R ,线电荷密度为0λ(00>λ)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω转动,求轴线上任一点的B的大小及其方向.8-42、在一半径cm 0.1=R 的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流A 0.5=I 通过.试求圆柱轴线任一点的磁感强度.(270N/A 10π4-⨯=μ)8-43、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.8-44、如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.8-45、一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.y ORωO bxaPδIa aI xO2a8-46、半径为R的均匀环形导线在b、c两点处分别与两根互相垂直的载流导线相连接,已知环与二导线共面,如图所示.若直导线中的电流强度为I,求:环心O处磁感强度的大小和方向.8-47、已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O点处的磁感强度.8-48、如图两共轴线圈,半径分别为R1、R2,电流为I1、I2.电流的方向相反,求轴线上相距中点O 为x处的P点的磁感强度.8-49、已知载流圆线圈中心处的磁感强度为B0,此圆线圈的磁矩与一边长为a通过电流为I的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.8-50、已知均匀磁场,其磁感强度B=2.0Wb m-2,方向沿x轴正向,如图所示.试求:(1)通过图中abOc面的磁通量;(2)通过图中bedO面的磁通量;(3)通过图中acde面的磁通量.8-51、一根很长的圆柱形铜导线均匀载有10A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率0=4×10-7T ·m/A ,铜的相对磁导率r ≈1)8-52、如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为.该筒以角速度绕其轴线匀速旋转.试求圆筒内部的磁感强度.8-53、在B=0.1T 的均匀磁场中,有一个速度大小为v=104m/s的电子沿垂直于B 的方向通过某点,求电子的轨道半径和旋转频率.(基本电荷e=1.60×1019C ,电子质量m e =9.11×1031kg )8-54、两长直平行导线,每单位长度的质量为m=0.01kg/m ,分别用l=0.04m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2=10°,求电流I .(tg5°=0.087,0=4×10-7N ⋅A -2)8-55、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).x y za b cOe d B30 cm30 cm 40 cm 50 cmSRωσI θ Iθ ⊗ ⊙l lR I I⊗⊗B8-56、如图所示线框,铜线横截面积S=2.0mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B的方向竖直向上.已知铜的密度=8.9×103kg/m 3,当铜线中的电流I=10A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角=15°.求磁感强度B的大小.8-57、已知半径之比为2∶1的两载流圆线圈各自在其中心处产生的磁感强度相等,求当两线圈平行放在均匀外场中时,两圆线圈所受力矩大小之比.8-1 单位时间里通过导体任一横截面的电量叫做 。
大学物理第8章恒定磁场总结及练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第8章 恒定磁场一、基本要求掌握磁感强度矢量的概念;理解毕奥-萨伐尔定律、磁场的高斯定理、安培环路定理,能计算一些简单问题的磁感强度;理解洛伦兹力公式,能分析点电荷在均匀磁场中的受力和运动;理解安培定律,能计算简单几何形状载流导体在均匀磁场中所受的力(或力矩).了解介质的磁化现象及其微观解释,了解各向同性介质中磁场强度和磁感强度的关系与区别. 二、基本内容1.基本概念运动电荷(电流)产生磁场;描述磁场的基本物理量:磁感强度,磁通量;磁场对电流的安培力、磁场对运动电荷的洛伦兹力.2.毕奥-萨伐尔定律20d π4d re l I B r⨯=μ 它是求解磁场的基本规律,从该定律可以直接得到在直电流的延长线和反向延长线上各点的磁感应强度为零.从电流元的磁场出发,得到计算线电流产生磁场的方法:⎰⎰⨯==)(20)(d π4d L rL r e l I B Bμ 应用上式在教材中导出了一些电流产生磁场的计算公式,包括:一段直电流在空间任意一点的磁场,无限长载流直导线在空间任意一点的磁场,圆电流在圆心处的磁场,一段载流圆弧在圆心处的磁场,无限长螺线管内部和两端磁感强度.这些计算公式在求解问题时可以直接使用.3.磁场的叠加原理∑==+++=N i i B B B B B 1n 21该原理表明多个电流在空间某点产生的磁场,等于各电流单独存在时在该点处产生的磁场的矢量和.将磁场的计算公式和叠加原理结合使用,可以求解多个电流在空间某点产生的磁场.在计算中首先应该将复杂的电流分成计算公式已知的电流段,然后分段计算,最后求出矢量和.4.磁场中的高斯定理0d =⋅⎰SS B该定理表明:磁场是无源场,磁感线是无头无尾的闭合曲线.应用该定理求解均匀磁场中非闭合曲面的通量时,可以作平面,使平面和曲面形成闭合曲面,由于闭合曲面的通量为零,即曲面的通量等于平面通量的负值,从而达到以平代曲的目的.5.安培环路定理⎰∑==⋅LN i i I μl B 10d该定理表明:磁场是有旋场,磁场是非保守场.应用该定理时,首先应该注意穿过以L 为边界的任意曲面的电流的正负;其次应该知道环流为零,环路上各点的磁感强度不一定为零.在应用定理求解具有轴对称电流分布的磁场和均匀磁场的磁感应强度时,要根据电流的对称性和磁场的性质选择合适的环路L .6.安培定律B l I F⨯=d d该定律是计算磁场对电流的作用的基本定律.一段载流导线在磁场中受到的安培力为⎰⎰⨯==)()(d d L L B l I F F应用上式时,应该注意电流上各点的磁场是否均匀及磁场力的分布特点.如果电流上各点的磁场相等,并且是一段直电流,可以先求出导线所在处的磁场,然后用公式ϕsin IBL f =求出结果;如果电流上各点所受的磁场力的大小不同但方向相同,可以先在电流上取一小线段l d ,求出l d 段电流所受的磁力,然后通过标量积分得结果.7.洛伦兹力B q F ⨯=v洛伦兹力方向始终与电荷运动方向垂直,对运动电荷不做功.质量为m ,电量为q 的粒子以速率v 垂直进入磁场B时,粒子作匀速率圆周运动:运动半径:qBm R v=,运动周期:qBmT π2=. 三、例题详解8-1、一半径cm 0.1=R 的无限长1/4圆柱形金属薄片,沿轴向通有电流A 0.10=I 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P的磁感强度.解:取l d 段,其中电流为πd 2πd 2π21d d θI R θIR R l I I ===在P 点θμθμμd d 222d d 2000RII R RIB π=π⋅π=π=选坐标如图RI B 20x d sin d π-=θθμ,R I B 20yd cos d π-=θθμ R IR IB 202/π020x d sin π-=π-=⎰μθθμ RIRI B 202/π020y d cos π-=π-=⎰μθθμ T 108.12)(4202/12y 2x -⨯=π=+=RIB B B μ方向1/tan x y ==B B α,︒=225α,α为B与x 轴正向的夹角.8-2、电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥-萨伐尔定律求板外任意一点的磁感强度.解:如图,从上向下看,在垂直于j 的l d 长度内流过电流为I d ,I d 在P 点产生的磁场:r)I/(μB π2d d 0=,l j I d d = )2/(d d 0r l j B π=μ由对称性的分析可知0d //=⎰Bθμθcos π2d cos d d 0rlj B B ==⊥∵22x l r +=;22/cos x l x +=θ ∴j x l l jxB B 022021d π2d μμ=+==⎰⎰+∞∞-⊥8-3、将通有电流A 0.5=I 的无限长导线折成如图形状,已知半圆环的半径为m 10.0=R .求圆心O 点的磁感强度.(H/m 10π470-⨯=μ)解:O 处总cd bc ab B B B B ++=,方向垂直指向纸里 而)sin (sin 4120ab ββμ-π=aIB∵02=β,π-=211β,R a = ∴)4/(0ab R I B π=μ 又)4/(0bc R I B μ=因O 在cd 延长线上0cd =B ,所以)4/()4/(00cd bc ab R I R I B B B B μμ+π=++=8-4、如图所示为两条穿过y 轴且垂直于x-y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1)推导出x 轴上P 点处的磁感强度)(x B的表达式. (2)求P 点在x 轴上何处时,该点的B 取得最大值.解:(1)利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:2/122001)(122x a IrIB +⋅π=π=μμ2导线在P 点产生的磁感强度的大小为:2/122002)(122x a Ir IB +⋅π=π=μμ1B 、2B的方向如图所示.P 点总磁感强度θθcos cos 212x 1x x B B B B B +=+= 02y 1y y =+=B B B)()(220x a Ia x B +π=μ,i x a Ia x B )()(220+π=μ(2)当0d )(d =xx B ,0d )(d 22≤x x B 时,)(x B 最大.由此可得:0=x 处,)(x B 有最大值.8-5、已知空间各处的磁感强度B都沿x 轴正方向,而且磁场是均匀的,T 1=B .求下列三种情形中,穿过一面积为2m 2的平面的磁通量.(1)平面与yz 平面平行; (2)平面与xz 平面平行;(3)平面与y 轴平行,又与x 轴成︒45角.解:(1)平面法线与x 轴平行,有Wb 2±==⋅S Bm Φ(2)平面与xz 坐标面平行,则其法线与B垂直,有0==⋅S B m Φ(3)与x 轴夹角为︒45的平面,其法线与B的夹角为︒45或︒135故有Wb 41.145cos =︒==⋅BS S Bm Φ或Wb 41.1135cos -=︒==⋅BS S Bm Φ8-6、一无限长圆柱形铜导体(磁导率0μ),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1m ,宽为2R ),位置如右图中阴影部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得:)(220R r rR IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1Φ为π=π===⎰⎰⎰⋅4d 2d d 00201Ir r RIS B S B RμμΦ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通2Φ为2ln 2d 2d 0202π=π==⎰⎰⋅Ir rIS B RRμμΦ穿过整个矩形平面的磁通量2ln 240021π+π=+=IIμμΦΦΦ.8-7、如图所示,一个带有正电荷q 的粒子,以速度v平行于一均匀带电的长直导线运动,该导线的线电荷密度为λ,并载有传导电流I .试问粒子要以多大的速度运动,才能使其保持在一条与导线距离为r 的平行直线上?解:依据无限长带电和载流导线的电场和磁场知:r r E 0π2)(ελ=(方向沿径向向外) rIr B π2)(0μ=(方向垂直纸面向里)运动电荷受力F (大小)为:v rIq r q F π2π200μελ-=此力方向为沿径向(或向里,或向外)为使粒子继续沿着原方向平行导线运动,径向力应为零,0π2π200=-=v rIq r q F μελ则有I 00μελ=v .8-8、如图所示,载有电流1I 和2I 的长直导线ab 和cd 相互平行,相距为r 3,今有载有电流3I 的导线r MN =,水平放置,且其两端MN 分别与1I 、2I 的距离都是r ,ab 、cd 和MN 共面,求导线MN 所受的磁力大小和方向.解:载流导线MN 上任一点处的磁感强度大小为:)2(π2)(π22010x r I x r I B --+=μμMN 上电流元x I d 3所受磁力:x x r I x r I I x B I F d ])2(π2)(π2[d d 201033--+==μμI 1I 2)(2ln 2]2ln 2ln [22ln 2ln 2d 22d 2d ])2(2)(2[21302130213002300130020103I I II I Ir r I r r I I x x r I I x x r I I xx r I x r I I F r rr-π=-π=⎥⎦⎤⎢⎣⎡+π=⎥⎦⎤⎢⎣⎡-π-+π=-π-+π=⎰⎰⎰μμμμμμμ 若12I I >,则F 的方向向下,12I I <,则F的方向向上.8-9、半径为R 的半圆线圈ACD 通有电流2I ,置于电流为1I 的无限长直线电流的磁场中,直线电流1I 恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流1I 的磁力.解:长直导线在周围空间产生的磁场分布为)π2/(10r I B μ=取o-xy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin π210R I B =,方向垂直纸面向里,式中θ为场点至圆心的联线与y 轴的夹角.半圆线圈上段线l d 电流所受的力为:θθμd sin 2d d d 21022R R I I l B I B l I F π==⨯=θcos d d y F F =,根据对称性知:0d y y ==⎰F F θsin d d x F F =,2ππ2d 210210π0x x I I I I F F μμ===⎰∴半圆线圈受1I 的磁力的大小为:2210I I F μ=,方向:垂直1I 向右.8-10、一平面线圈由半径为0.2m 的1/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求:(1)线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力.(2)线圈平面与磁场成60°角时,线圈所受的磁力矩.2I 1B解:(1)圆弧AC 所受的磁力:在均匀磁场中AC 通电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有N 283.02===RB I F F AC AC方向:与AC 直线垂直,与OC 夹角45°,如图.(2)磁力矩:线圈的磁矩为n n IS p2m 102-⨯π==本小问中设线圈平面与B 成60°角,则m p与B 成30°角,有力矩m N 1057.130sin 2m m ⋅⨯=︒=⨯=-B p B p M方向:力矩M 将驱使线圈法线转向与B平行.8-11、一通有电流1I (方向如图)的长直导线,旁边有一个与它共面通有电流2I (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23(如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为])(π2π2[10102a x I xI aI F +-=μμ方向向右,从a x =到a x 2=磁场所作的功为)3ln 2ln 2(π2d )11(π22102210-=+-=⎰I aI x a x x I aI W aaμμ8-12、横截面为矩形的环形螺线管,圆环内外半径分别为1R 和2R ,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1)芯子中的B 值和芯子截面的磁通量. (2)在1R r <和2R r >处的B 值.解:(1)在环内作半径为r 的圆形回路,由安培环路定理得NI r B μ=π⋅2,)2/(r NI B π=μ在r 处取微小截面r b S d d =,通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量12ln2d 2d R R NIbr b rNIS B Sπ=π==⎰μμΦ (2)同样在环外(1R r <和2R r >)作圆形回路,由于0=∑i II I 2b02=π⋅r B∴0=B四、习题精选8-1、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A )I aB π=02μ. (B )I a B 2π=02μ.(C )B =0. (D )I aB π=0μ.[ ]8-2、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A )RIπ20μ. (B )RI40μ. (C )0.(D ))11(20π-R Iμ. (E ))11(40π+R I μ.[ ]8-3、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R =2r ,则两螺线管中的磁感强度大小R B 和r B 应满足:(A )r R 2B B =.(B )r R B B =. (C )r R 2B B =.(D )r R 4B B =.[ ]8-4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A )方向垂直环形分路所在平面且指向纸内. (B )方向垂直环形分路所在平面且指向纸外. (C )方向在环形分路所在平面,且指向b .IaP(D )方向在环形分路所在平面内,且指向a . (E )为零. [ ]8-5、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A )RI π40μ. (B )RI π20μ. (C )0. (D )RI 40μ.[ ]8-6、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是[ ]8-7、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为θ,则通过半球面S 的磁通量(取弯面向外为正)为(A )B r 2π. (B )B r 22π. (C )θsin π2B r -. (D )θcos π2B r -.[ ]8-9、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的I ∑不变,L 上各点的B不变.(B )回路L 内的I ∑不变,L 上各点的B改变.(C )回路L 内的I ∑改变,L 上各点的B不变.(D )回路L 内的I ∑改变,L 上各点的B改变.[ ]8-10、一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则(A )两粒子的电荷必然同号. (B )粒子的电荷可以同号也可以异号. (C )两粒子的动量大小必然不同. (D )两粒子的运动周期必然不同.[ ]8-11、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A )Oa . (B )Ob . (C )Oc . (D )Od .[ ]8-12、一运动电荷q ,质量为m ,进入均匀磁场中,(A )其动能改变,动量不变. (B )其动能和动量都改变. (C )其动能不变,动量改变. (D )其动能、动量都不变.[ ]8-13、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设A R ,B R 分别为A 电子与B 电子的轨道半径;A T ,B T 分别为它们各自的周期.则(A )2:B A =R R ,2:B A =T T . (B )2/1:B A =R R ,1:B A =T T . (C )1:B A =R R ,2/1:B A =T T .(D )2:B A =R R ,1:B A =T T .[ ]O8-14、长直电流2I 与圆形电流1I 共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(A )绕2I 旋转.(B )向左运动.(C )向右运动.(D )向上运动.(E )不动.[ ]8-15、在匀强磁场中,有两个平面线圈,其面积212A A =,通有电流212I I =,它们所受的最大磁力矩之比21/M M 等于(A )1. (B )2. (C )4. (D )1/4.[ ]8-16、两个同心圆线圈,大圆半径为R ,通有电流1I ;小圆半径为r ,通有电流2I ,方向如图.若R r <<(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A )RrI I 22210πμ. (B )RrI I 22210μ. (C )rRI I 22210πμ. (D )0.[ ]8-17、如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A )ab 边转入纸内,cd 边转出纸外. (B )ab 边转出纸外,cd 边转入纸内. (C )ad 边转入纸内,bc 边转出纸外. (D )ad 边转出纸外,bc 边转入纸内.[ ]8-18、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的?(A )H仅与传导电流有关.(B )若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.I 1(C )若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D )以闭合曲线L为边缘的任意曲面的H通量均相等.[ ]8-19、磁介质有三种,用相对磁导率r μ表征它们各自的特性时: (A )顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ. (B )顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ. (C )顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ. (D )顺磁质0r <μ,抗磁质1r <μ,铁磁质0r >μ.[ ]8-20、顺磁物质的磁导率:(A )比真空磁导率略小. (B )比真空磁导率略大. (C )远小于真空磁导率. (D )远大于真空磁导率.[ ]8-21、电流元l Id 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向______________方向.8-22、半径为R 的细导线环中的电流为I ,那么离环上所有点的距离皆等于r 的一点处的磁感强度大小为=B ____________.(R r ≥)8-23、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量=Φ______________.y xzO8-24、一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10A 的电流时,它的横截面上的磁通量为___________.(真空磁导率m/A T 10π470⋅⨯=-μ)8-25、已知三种载流导线的磁感线的方向如图,则相应的电流流向在图(1)中为由________向________; 图(2)中为由________向________; 图(3)中为由________向________.8-26、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅Ll Bd 等于:____________________________________(对环路a ). ____________________________________(对环路b ). ____________________________________(对环路c ).8-27、一长直螺线管是由直径mm 2.0=d 的漆包线密绕而成.当它通以A 5.0=I 的电流时,其内部的磁感强度=B ______________.(忽略绝缘层厚度)(270N/A 10π4-⨯=μ)8-28、有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒内空腔各处的磁感强度为________________,筒外空间中离轴线r 处的磁感强度为_____________.ef图(1)图(2)图(3)8-29、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______________,运动轨迹半径之比是_______________.8-30、电子在磁感强度为B的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流强度=I _____________;等效圆电流的磁矩=m p __________.已知电子电荷为e ,电子的质量为e m .8-31、有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体?是_______型,_______型8-32、电子以速率m/s 105=v 与磁力线成交角︒=30θ飞入匀强磁场中,磁场的磁感强度T 2.0=B ,那么作用在电子上的洛伦兹力=F _____________________.(基本电荷C 106.119-⨯=e )8-33、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________,方向__________.8-34、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为__________,方向为____________.把线圈绕OO' 轴转过角度____________时,磁力矩恰为IB零.8-35、在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.8-36、有一流过电流A 10=I 的圆线圈,放在磁感强度等于0.015T 的匀强磁场中,处于平衡位置.线圈直径cm 12=d .使线圈以它的直径为轴转过角2/π=α时,外力所必需作的功=W _______,如果转角π2=α,必需作的功=W ________.8-37、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为120°的两段,并置于均匀磁场B 中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁力的大小为_____________.8-38、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为___________,方向__________.8-39、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =_____________,磁感强度的大小B =__________.8-40、一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为r μ的磁介质,则管内中部附近磁感强度B =______________,磁场强度H =_______________.II d8-41、如图所示,半径为R ,线电荷密度为0λ(00>λ)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω转动,求轴线上任一点的B的大小及其方向.8-42、在一半径cm 0.1=R 的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流A 0.5=I 通过.试求圆柱轴线任一点的磁感强度.(270N/A 10π4-⨯=μ)8-43、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.8-44、如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.8-45、一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.y ORωO bxaPδI a aI xO2a8-46、半径为R 的均匀环形导线在b 、c 两点处分别与两根互相垂直的载流导线相连接,已知环与二导线共面,如图所示.若直导线中的电流强度为I ,求:环心O 处磁感强度的大小和方向.8-47、已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.8-48、如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.8-49、已知载流圆线圈中心处的磁感强度为B 0,此圆线圈的磁矩与一边长为a 通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.8-50、已知均匀磁场,其磁感强度B=2.0Wb ⋅m -2,方向沿x 轴正向,如图所示.试求:(1)通过图中abOc 面的磁通量; (2)通过图中bedO 面的磁通量; (3)通过图中acde 面的磁通量.8-51、一根很长的圆柱形铜导线均匀载有10A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率0=4×10-7T ·m/A ,铜的相对磁导率r ≈1)8-52、如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为.该筒以角速度绕其轴线匀速旋转.试求圆筒内部的磁感强度.x y za b cOe d B30 cm30 cm 40 cm 50 cmSRωσ8-53、在B=0.1T 的均匀磁场中,有一个速度大小为v=104m/s 的电子沿垂直于B 的方向通过某点,求电子的轨道半径和旋转频率.(基本电荷e=1.60×1019C ,电子质量m e =9.11×1031kg )8-54、两长直平行导线,每单位长度的质量为m=0.01kg/m ,分别用l=0.04m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2=10°,求电流I .(tg5°=0.087,0=4×10-7N ⋅A -2)8-55、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).8-56、如图所示线框,铜线横截面积S=2.0mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度=8.9×103kg/m 3,当铜线中的电流I=10AI θ Iθ ⊗ ⊙l lR I⊗⊗BOBADCO 'ααB时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角=15°.求磁感强度B 的大小.8-57、已知半径之比为2∶1的两载流圆线圈各自在其中心处产生的磁感强度相等,求当两线圈平行放在均匀外场中时,两圆线圈所受力矩大小之比.8-1 单位时间里通过导体任一横截面的电量叫做 。
第8章 恒定磁场一、基本要求掌握磁感强度矢量的概念;理解毕奥-萨伐尔定律、磁场的高斯定理、安培环路定理,能计算一些简单问题的磁感强度;理解洛伦兹力公式,能分析点电荷在均匀磁场中的受力和运动;理解安培定律,能计算简单几何形状载流导体在均匀磁场中所受的力(或力矩).了解介质的磁化现象及其微观解释,了解各向同性介质中磁场强度和磁感强度的关系与区别.二、基本内容1.基本概念运动电荷(电流)产生磁场;描述磁场的基本物理量:磁感强度,磁通量;磁场对电流的安培力、磁场对运动电荷的洛伦兹力.2.毕奥-萨伐尔定律20d π4d re l I B r⨯=μ ,它是求解磁场的基本规律,从该定律可以直接得到在直电流的延长线和反向延长线上各点的磁感应强度为零.从电流元的磁场出发,得到计算线电流产生磁场的方法:⎰⎰⨯==)(20)(d π4d L rL r e l I B Bμ 应用上式在教材中导出了一些电流产生磁场的计算公式,包括:一段直电流在空间任意一点的磁场,无限长载流直导线在空间任意一点的磁场,圆电流在圆心处的磁场,一段载流圆弧在圆心处的磁场,无限长螺线管内部和两端磁感强度.这些计算公式在求解问题时可以直接使用.3.磁场的叠加原理∑==+++=N i i B B B B B 1n 21该原理表明多个电流在空间某点产生的磁场,等于各电流单独存在时在该点处产生的磁场的矢量和.将磁场的计算公式和叠加原理结合使用,可以求解多个电流在空间某点产生的磁场.在计算中首先应该将复杂的电流分成计算公式已知的电流段,然后分段计算,最后求出矢量和.4.磁场中的高斯定理0d =⋅⎰SS B.该定理表明:磁场是无源场,磁感线是无头无尾的闭合曲线.应用该定理求解均匀磁场中非闭合曲面的通量时,可以作平面,使平面和曲面形成闭合曲面,由于闭合曲面的通量为零,即曲面的通量等于平面通量的负值,从而达到以平代曲的目的.5.安培环路定理⎰∑==⋅LN i i I μl B 10d该定理表明:磁场是有旋场,磁场是非保守场.应用该定理时,首先应该注意穿过以L 为边界的任意曲面的电流的正负;其次应该知道环流为零,环路上各点的磁感强度不一定为零.在应用定理求解具有轴对称电流分布的磁场和均匀磁场的磁感应强度时,要根据电流的对称性和磁场的性质选择合适的环路L .6.安培定律B l I F⨯=d d该定律是计算磁场对电流的作用的基本定律.一段载流导线在磁场中受到的安培力为⎰⎰⨯==)()(d d L L B l I F F]应用上式时,应该注意电流上各点的磁场是否均匀及磁场力的分布特点.如果电流上各点的磁场相等,并且是一段直电流,可以先求出导线所在处的磁场,然后用公式ϕsin IBL f =求出结果;如果电流上各点所受的磁场力的大小不同但方向相同,可以先在电流上取一小线段l d ,求出l d 段电流所受的磁力,然后通过标量积分得结果.7.洛伦兹力B q F⨯=v洛伦兹力方向始终与电荷运动方向垂直,对运动电荷不做功.质量为m ,电量为q 的粒子以速率v 垂直进入磁场B 时,粒子作匀速率圆周运动:运动半径:qB m R v =,运动周期:qBmT π2=.三、例题详解8-1、一半径cm 0.1=R 的无限长1/4圆柱形金属薄片,沿轴向通有电流A 0.10=I 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感强度.解:取l d 段,其中电流为 πd 2πd 2π21d d θI R θIR R l I I ===在P 点θμθμμd d 222d d 2000RII R R I B π=π⋅π=π=选坐标如图RI B 20x d sin d π-=θθμ,R I B 20y d cos d π-=θθμ RIR I B 202/π020x d sin π-=π-=⎰μθθμ R I R I B 202/π020y d cos π-=π-=⎰μθθμ【T 108.12)(4202/12y 2x -⨯=π=+=RIB B B μ/方向1/tan x y ==B B α,︒=225α,α为B与x 轴正向的夹角.8-2、电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥-萨伐尔定律求板外任意一点的磁感强度.解:如图,从上向下看,在垂直于j 的l d 长度内流过电流为I d ,I d 在P 点产生的磁场: r)I/(μB π2d d 0=,l j I d d =)2/(d d 0r l j B π=μ`由对称性的分析可知0d //=⎰B θμθcos π2d cos d d 0rlj B B ==⊥∵22x l r +=;22/cos x l x +=θ ∴j xl l jxB B 022021d π2d μμ=+==⎰⎰+∞∞-⊥8-3、将通有电流A 0.5=I 的无限长导线折成如图形状,已知半圆环的半径为m 10.0=R .求圆心O 点的磁感强度.(H/m 10π470-⨯=μ)解:O 处总cd bc ab B B B B ++=,方向垂直指向纸里 而)sin (sin 4120ab ββμ-π=aIB∵02=β,π-=211β,R a =∴)4/(0ab R I B π=μ 又)4/(0bc R I B μ=因O 在cd 延长线上0cd =B ,所以 )4/()4/(00cd bc ab R I R I B B B B μμ+π=++=8-4、如图所示为两条穿过y 轴且垂直于x-y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1)推导出x 轴上P 点处的磁感强度)(x B的表达式.(2)求P 点在x 轴上何处时,该点的B 取得最大值.解:(1)利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为: 2/122001)(122x a Ir I B +⋅π=π=μμ 2导线在P 点产生的磁感强度的大小为:):2/122002)(122x a IrIB +⋅π=π=μμ …1B 、2B的方向如图所示.P 点总磁感强度θθcos cos 212x 1x x B B B B B +=+= 02y 1y y =+=B B B)()(220x a Ia x B +π=μ,i x a Ia x B )()(220+π=μ (2)当0d )(d =xx B ,0d )(d 22≤x x B 时,)(x B 最大.由此可得:0=x 处,)(x B 有最大值.8-5、已知空间各处的磁感强度B都沿x 轴正方向,而且磁场是均匀的,T 1=B .求下列三种情形中,穿过一面积为2m 2的平面的磁通量.(1)平面与yz 平面平行;~(2)平面与xz 平面平行;(3)平面与y 轴平行,又与x 轴成︒45角.解:(1)平面法线与x 轴平行,有Wb 2±==⋅S Bm Φ(2)平面与xz 坐标面平行,则其法线与B垂直,有0==⋅S B m Φ(3)与x 轴夹角为︒45的平面,其法线与B的夹角为︒45或︒135故有Wb 41.145cos =︒==⋅BS S B m Φ或Wb 41.1135cos -=︒==⋅BS S Bm Φ8-6、一无限长圆柱形铜导体(磁导率0μ),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1m ,宽为2R ),位置如右图中阴影部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得: )(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1Φ为 π=π===⎰⎰⎰⋅4d 2d d 00201I r r R I S B S B R μμΦ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通2Φ为%2ln 2d 2d 0202π=π==⎰⎰⋅Ir rIS B RRμμΦ穿过整个矩形平面的磁通量2ln 240021π+π=+=IIμμΦΦΦ.·8-7、如图所示,一个带有正电荷q 的粒子,以速度v平行于一均匀带电的长直导线运动,该导线的线电荷密度为λ,并载有传导电流I .试问粒子要以多大的速度运动,才能使其保持在一条与导线距离为r 的平行直线上解:依据无限长带电和载流导线的电场和磁场知: r r E 0π2)(ελ=(方向沿径向向外) rIr B π2)(0μ=(方向垂直纸面向里)运动电荷受力F (大小)为:v rIq r q F π2π200μελ-=此力方向为沿径向(或向里,或向外)为使粒子继续沿着原方向平行导线运动,径向力应为零, 0π2π200=-=v rIq r q F μελ则有I 00μελ=v .8-8、如图所示,载有电流1I 和2I 的长直导线ab 和cd 相互平行,相距为r 3,今有载有电流3I 的导线r MN =,水平放置,且其两端MN 分别与1I 、2I 的距离都是r ,ab 、cd 和MN 共面,求导线MN 所受的磁力大小和方向.解:载流导线MN 上任一点处的磁感强度大小为:【)2(π2)(π22010x r I x r I B --+=μμMN 上电流元x I d 3所受磁力:x x r I x r I I x B I F d ])2(π2)(π2[d d 201033--+==μμ )(2ln 2]2ln 2ln [22ln 2ln 2d 22d 2d ])2(2)(2[21302130213002300130020103I I II I Ir r I r r I I x x r I I x x r I I xx r I x r I I F r rr-π=-π=⎥⎦⎤⎢⎣⎡+π=⎥⎦⎤⎢⎣⎡-π-+π=-π-+π=⎰⎰⎰μμμμμμμ 若12I I >,则F 的方向向下,12I I <,则F的方向向上.8-9、半径为R 的半圆线圈ACD 通有电流2I ,置于电流为1I 的无限长直线电流的磁场中,直线电流1I 恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流1I 的磁力.…I 1I 22I 1解:长直导线在周围空间产生的磁场分布为)π2/(10r I B μ=取o-xy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin π210R I B =,方向垂直纸面向里,…式中θ为场点至圆心的联线与y 轴的夹角.半圆线圈上段线l d 电流所受的力为:θθμd sin 2d d d 21022R R I I l B I B l I F π==⨯=θcos d d y F F =,根据对称性知:0d y y ==⎰F F θsin d d x F F =,2ππ2d 210210π0x x I I I I F F μμ===⎰∴半圆线圈受1I 的磁力的大小为: 2210I I F μ=,方向:垂直1I 向右.8-10、一平面线圈由半径为0.2m 的1/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求:(1)线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力. (2)线圈平面与磁场成60°角时,线圈所受的磁力矩.解:(1)圆弧AC 所受的磁力:在均匀磁场中AC 通电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有N 283.02===RB I F F AC AC方向:与AC 直线垂直,与OC 夹角45°,如图.(2)磁力矩:线圈的磁矩为n n IS p2m 102-⨯π==—本小问中设线圈平面与B 成60°角,则m p与B 成30°角,有力矩 m N 1057.130sin 2m m ⋅⨯=︒=⨯=-B p B p M方向:力矩M 将驱使线圈法线转向与B平行.8-11、一通有电流1I (方向如图)的长直导线,旁边有一个与它共面通有电流2I (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23(如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为 ])(π2π2[10102a x I xI aI F +-=μμ~方向向右,从a x =到a x 2=磁场所作的功为;BI I 2)3ln 2ln 2(π2d )11(π22102210-=+-=⎰I aI x a x x I aI W aaμμ8-12、横截面为矩形的环形螺线管,圆环内外半径分别为1R 和2R ,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1)芯子中的B 值和芯子截面的磁通量. (2)在1R r <和2R r >处的B 值.解:(1)在环内作半径为r 的圆形回路,由安培环路定理得|NI r B μ=π⋅2,)2/(r NI B π=μ在r 处取微小截面r b S d d =,通过此小截面的磁通量 r b rNIS B d 2d d π==μΦ穿过截面的磁通量 12ln2d 2d R R NIbr b rNIS B Sπ=π==⎰μμΦ (2)同样在环外(1R r <和2R r >)作圆形回路,由于0=∑i I02=π⋅r B ∴0=B!四、习题精选8-1、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A )I aB π=02μ. (B )I a B 2π=02μ.(C )B =0. (D )I aB π=0μ.[ ]{8-2、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A )RIπ20μ. (B )RI40μ. (C )0.(D ))11(20π-R Iμ. (E ))11(40π+R I μ.[ ]8-3、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管bIaP单位长度上的匝数相等.设R =2r ,则两螺线管中的磁感强度大小R B 和r B 应满足:(A )r R 2B B =.(B )r R B B =. (C )r R 2B B =.(D )r R 4B B =.}[ ]8-4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A )方向垂直环形分路所在平面且指向纸内. (B )方向垂直环形分路所在平面且指向纸外. (C )方向在环形分路所在平面,且指向b . (D )方向在环形分路所在平面内,且指向a . (E )为零.、[ ]8-5、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为 (A )RI π40μ. (B )RI π20μ. (C )0. (D )RI 40μ.[ ]8-6、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]8-7、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为θ,则通过半球面S 的磁通量(取弯面向外为正)为(A )B r 2π. (B )B r 22π.@(C )θsin π2B r -. (D )θcos π2B r -.[ ]8-9、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的I ∑不变,L 上各点的B不变.(B )回路L 内的I ∑不变,L 上各点的B改变.(C )回路L 内的I ∑改变,L 上各点的B不变.(D )回路L 内的I ∑改变,L 上各点的B改变. [ ]8-10、一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则(A )两粒子的电荷必然同号. (B )粒子的电荷可以同号也可以异号. (C )两粒子的动量大小必然不同. (D )两粒子的运动周期必然不同.[ ]!8-11、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A )Oa . (B )Ob . (C )Oc . (D )Od .[ ]8-12、一运动电荷q ,质量为m ,进入均匀磁场中,(A )其动能改变,动量不变. (B )其动能和动量都改变. (C )其动能不变,动量改变. (D )其动能、动量都不变.[ ]8-13、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设A R ,B R 分别为A 电子与B 电子的轨道半径;A T ,B T 分别为它们各自的周期.则 |(A )2:B A =R R ,2:B A =T T . (B )2/1:B A =R R ,1:B A =T T .(C )1:B A =R R ,2/1:B A =T T .(D )2:B A =R R ,1:B A =T T .[ ]8-14、长直电流2I 与圆形电流1I 共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(A )绕2I 旋转.(B )向左运动.(C )向右运动.(D )向上运动.(E )不动.[ ]8-15、在匀强磁场中,有两个平面线圈,其面积212A A =,通有电流212I I =,它们所受的最大磁力矩之比21/M M 等于~OI 1>(A )1. (B )2. (C )4. (D )1/4.[ ]8-16、两个同心圆线圈,大圆半径为R ,通有电流1I ;小圆半径为r ,通有电流2I ,方向如图.若R r <<(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A )Rr I I 22210πμ. (B )Rr I I 22210μ. (C )rR I I 22210πμ. (D )0.[ ]8-17、如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A )ab 边转入纸内,cd 边转出纸外. (B )ab 边转出纸外,cd 边转入纸内. (C )ad 边转入纸内,bc 边转出纸外. (D )ad 边转出纸外,bc 边转入纸内.[ ]8-18、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的(A )H仅与传导电流有关.)(B )若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.(C )若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D )以闭合曲线L为边缘的任意曲面的H通量均相等. [ ]8-19、磁介质有三种,用相对磁导率r μ表征它们各自的特性时: (A )顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ. (B )顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ. (C )顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ.`(D )顺磁质0r <μ,抗磁质1r <μ,铁磁质0r >μ.[ ]8-20、顺磁物质的磁导率:(A )比真空磁导率略小. (B )比真空磁导率略大. (C )远小于真空磁导率. (D )远大于真空磁导率.[ ]8-21、电流元l I d 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向______________方向.8-22、半径为R 的细导线环中的电流为I ,那么离环上所有点的距离皆等于r 的一点处的磁感强度大小为=B ____________.(R r ≥)8-23、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量=Φ______________.8-24、一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10A 的电流时,它的横截面上的磁通量为___________.(真空磁导率m/A T 10π470⋅⨯=-μ),8-25、已知三种载流导线的磁感线的方向如图,则相应的电流流向在 图(1)中为由________向________; 图(2)中为由________向________; 图(3)中为由________向________.8-26、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅Ll Bd 等于:____________________________________(对环路a ).…____________________________________(对环路b ). ____________________________________(对环路c ).8-27、一长直螺线管是由直径mm 2.0=d 的漆包线密绕而成.当它通以A 5.0=I 的电流时,其内部的磁感强度=B ______________.(忽略绝缘层厚度)(270N/A 10π4-⨯=μ)8-28、有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒内空腔各处的磁感强度为________________,筒外空间中离轴线r 处的磁感强度为_____________.<ef图(1)图(2)图(3)y xzO8-29、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______________,运动轨迹半径之比是_______________.~8-30、电子在磁感强度为B的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流强度=I _____________;等效圆电流的磁矩=m p __________.已知电子电荷为e ,电子的质量为e m .8-31、有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体是_______型,_______型8-32、电子以速率m/s 105=v 与磁力线成交角︒=30θ飞入匀强磁场中,磁场的磁感强度T 2.0=B ,那么作用在电子上的洛伦兹力=F _____________________.(基本电荷C 106.119-⨯=e )?8-33、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________,方向__________.8-34、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为__________,方向为____________.把线圈绕OO' 轴转过角度____________时,磁力矩恰为零.8-35、在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.8-36、有一流过电流A 10=I 的圆线圈,放在磁感强度等于0.015T 的匀强磁场中,处于平衡位置.线圈直径cm 12=d .使线圈以它的直径为轴转过角2/π=α时,外力所必需作的功=W _______,如果转角π2=α,必需作的功=W ________.!IB8-37、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为120°的两段,并置于均匀磁场B 中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁力的大小为_____________.8-38、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为___________,方向__________.8-39、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =_____________,磁感强度的大小B =__________.!8-40、一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为r μ的磁介质,则管内中部附近磁感强度B =______________,磁场强度H =_______________.8-41、如图所示,半径为R ,线电荷密度为0λ(00>λ)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω转动,求轴线上任一点的B的大小及其方向.;8-42、在一半径cm 0.1=R 的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流A 0.5=I 通过.试求圆柱轴线任一点的磁感强度.(270N/A 10π4-⨯=μ)8-43、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.、a bI120°BO IaI dy ORωO bxaPδ8-44、如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.】8-45、一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.'8-46、半径为R 的均匀环形导线在b 、c 两点处分别与两根互相垂直的载流导线相连接,已知环与二导线共面,如图所示.若直导线中的电流强度为I ,求:环心O 处磁感强度的大小和方向.\8-47、已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.)8-48、如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.?8-49、已知载流圆线圈中心处的磁感强度为B 0,此圆线圈的磁矩与一边长为a 通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.8-50、已知均匀磁场,其磁感强度B=2.0Wb ⋅m -2,方向沿x 轴正向,如图所示.试求:(1)通过图中abOc 面的磁通量; (2)通过图中bedO 面的磁通量;·(3)通过图中acde 面的磁通量.8-51、一根很长的圆柱形铜导线均匀载有10A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.!(真空的磁导率=4×10-7T ·m/A ,铜的相对磁导率r≈1)8-52、如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为.该筒以角速度绕其轴线匀速旋转.试求圆筒内部的磁感强度.:8-53、在B=0.1T 的均匀磁场中,有一个速度大小为v=104m/s 的电子沿垂直于B的方向通过某点,求电子的轨道半径和旋转频率.(基本电荷e=1.60×1019C ,电子质量m e =9.11×1031kg )*x y za b cOe d B30 cm30 cm 40 cm 50 cmSRωσ8-54、两长直平行导线,每单位长度的质量为m=0.01kg/m ,分别用l=0.04m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2=10°,求电流I .(tg5°=0.087,0=4×10-7N ⋅A -2)-8-55、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).?8-56、如图所示线框,铜线横截面积S=2.0mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度=8.9×103kg/m 3,当铜线中的电流I=10A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角=15°.求磁感强度B 的大小.~8-57、已知半径之比为2∶1的两载流圆线圈各自在其中心处产生的磁感强度相等,求当两线圈平行放在均匀外场中时,两圆线圈所受力矩大小之比.8-1 单位时间里通过导体任一横截面的电量叫做 。