液压与气压传动第3章液压马达与液压缸汇总讲解
- 格式:ppt
- 大小:18.93 MB
- 文档页数:7
液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。
2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。
3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。
常用的黏度有3种:动力黏度,运动黏度,相对黏度。
4、液压油分为3大类:石油型、合成型、乳化型。
5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。
2、静止液体内任意一点的压力在各个方向上都相等。
5、液体压力分为绝对压力和相对压力。
6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。
7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。
9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。
当液体整个作线形流动时,称为一维流动。
10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流.液流完全紊乱,这时液体的流动状态称为紊流。
11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。
当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。
12、连续性方程是质量守恒定律在流体力学中的一种表达形式。
13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。
14、动量方程是动量定理在流体力学中的具体应用。
15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。
液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。
2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。
3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。
常用的黏度有3种:动力黏度,运动黏度,相对黏度。
4、液压油分为3大类:石油型、合成型、乳化型。
5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。
2、静止液体内任意一点的压力在各个方向上都相等。
5、液体压力分为绝对压力和相对压力。
6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。
7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。
9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。
当液体整个作线形流动时,称为一维流动。
10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。
液流完全紊乱,这时液体的流动状态称为紊流。
11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。
当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。
12、连续性方程是质量守恒定律在流体力学中的一种表达形式。
13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。
14、动量方程是动量定理在流体力学中的具体应用。
15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。
液压与气压传动电子教案第一章:液压与气压传动概述1.1 液压与气压传动的概念讲解液压与气压传动的定义介绍液压与气压传动的基本原理解释液压与气压传动的应用范围1.2 液压与气压传动系统的组成分析液压与气压传动系统的典型组成讲解液压与气压传动系统中各个组成部分的作用介绍液压与气压传动系统中各个组件的类型及特点第二章:液压元件2.1 液压泵讲解液压泵的分类及特点介绍液压泵的工作原理分析液压泵的性能参数2.2 液压缸与液压马达解释液压缸与液压马达的工作原理分析液压缸与液压马达的结构特点讲解液压缸与液压马达的性能参数2.3 液压控制阀介绍液压控制阀的分类及功能讲解液压控制阀的工作原理分析液压控制阀的性能参数第三章:液压系统设计3.1 液压系统的基本设计原则讲解液压系统设计的基本原则分析液压系统设计的要求及注意事项3.2 液压系统的动力元件选择介绍液压泵的选择依据讲解液压泵的性能参数计算3.3 液压系统的执行元件设计分析液压缸与液压马达的设计方法讲解液压缸与液压马达的性能参数计算第四章:气压传动基础4.1 气压传动概述讲解气压传动的定义及原理介绍气压传动的特点及应用范围4.2 气压传动系统组成分析气压传动系统的典型组成讲解气压传动系统中各个组成部分的作用4.3 气压元件介绍气压泵与气压马达的工作原理及性能参数讲解气压控制阀的功能及应用第五章:气压系统设计5.1 气压系统设计原则讲解气压系统设计的基本原则分析气压系统设计的要求及注意事项5.2 气压执行元件设计介绍气压缸与气压马达的设计方法讲解气压缸与气压马达的性能参数计算5.3 气压控制元件选择讲解气压控制阀的选择依据分析气压控制阀的性能参数第六章:液压系统的故障诊断与维护6.1 液压系统故障诊断的基本方法介绍液压系统故障诊断的常用方法讲解液压系统故障诊断的步骤与流程分析液压系统故障诊断的注意事项6.2 液压系统常见故障分析列举液压系统的常见故障案例分析故障原因及解决方法6.3 液压系统的维护与保养讲解液压系统维护与保养的基本要求介绍液压系统维护与保养的注意事项分析液压系统维护与保养的重要性第七章:气压系统的故障诊断与维护7.1 气压系统故障诊断的基本方法介绍气压系统故障诊断的常用方法讲解气压系统故障诊断的步骤与流程分析气压系统故障诊断的注意事项7.2 气压系统常见故障分析列举气压系统的常见故障案例分析故障原因及解决方法7.3 气压系统的维护与保养讲解气压系统维护与保养的基本要求介绍气压系统维护与保养的注意事项分析气压系统维护与保养的重要性第八章:液压与气压传动系统的应用案例8.1 液压系统的应用案例分析分析液压系统在不同行业中的应用案例讲解液压系统在实际应用中的优势与局限性8.2 气压系统的应用案例分析分析气压系统在不同行业中的应用案例讲解气压系统在实际应用中的优势与局限性8.3 液压与气压传动系统在现代工业中的地位与展望探讨液压与气压传动系统在现代工业中的重要性展望液压与气压传动系统的发展趋势及未来挑战第九章:液压与气压传动系统的安全操作与防护9.1 液压与气压传动系统的安全操作讲解液压与气压传动系统安全操作的基本原则分析液压与气压传动系统安全操作的注意事项9.2 液压与气压传动系统的防护措施介绍液压与气压传动系统的防护设备及功能讲解液压与气压传动系统防护措施的实施方法9.3 液压与气压传动系统的事故案例分析分析液压与气压传动系统事故案例的原因及后果总结事故案例给液压与气压传动系统操作带来的启示第十章:液压与气压传动技术的创新与发展10.1 液压与气压传动技术的创新探讨液压与气压传动技术在创新方面的成果分析液压与气压传动技术创新的意义及影响10.2 液压与气压传动技术的发展趋势展望液压与气压传动技术的未来发展方向分析液压与气压传动技术在可持续发展方面的贡献10.3 液压与气压传动技术在新能源领域的应用讲解液压与气压传动技术在新能源领域的作用及优势分析液压与气压传动技术在新能源领域的发展前景重点解析教案中的重点内容主要包括液压与气压传动的基本原理、系统组成、元件功能、设计方法、故障诊断与维护、安全操作以及技术创新与发展等。
第一章1.液压与气压传动定义:液压与气压传动是研究以有压流体(压力油或压缩空气)为能源介质,以实现各种机械的传动和自动控制的科学。
液压与气压传动都是利用各种控制元件组成所需要的各种控制回路,再由若干回路组合成能完成一定控制功能的传动系统来进行能量的传递、转换、与控制。
2. 液压与气压传动系统组成:能源装置、执行装置、控制调节装置、辅助装置、传动介质3. 液压与气压传动的优缺点:4.液压传动的工作原理和两个重要概念:第二章1.液压油的密度:单位体积液压油的质量。
传动介质:液压油、乳化性传动液、合成型传动液液体粘度:是指它在单位速度梯度下流动时单位面积上产生的内摩擦。
它是衡量液体粘性的指标。
(10)压力增大时,粘度增大(范围小可忽略);温度升高,粘度下降(其变化率直接影响液压传动工作介质的使用,其重要性不亚于粘度本身)。
2.流体静压力基本方程:压力表示方法:绝对压力=相对压力+大气压力真空度=大气压力-绝对压力液体静压力的两个重要特性:1)液体静压力的方向总是作用面的内法线方向;2)静止也体内任意一点的液体静压力在各个方向上都相等。
3.连续性方程:是质量守恒定律在流体力学中的一种表达形式。
伯努利方程:是能量守恒定律在流动液体中的一种表达形式。
4. 沿程压力损失:油液沿等直径直管流动时所产生的压力损失(由液体流动时的内、外摩擦力所引起)局部压力损失:油液流经局部障碍(弯管、接头、管道截面突然变化以及阀口等处)时,由于液流方向和速度的突然变化,在局部产生漩涡引起油液质点间,以及质点与固体壁面间相互碰撞和剧烈摩擦而造成的压力损失液压冲击:在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。
原因:1)管道中的液体因突然停止运动而导致动能向压力能的瞬间转变2)液压系统中运动着的工作部件突然制动或换向时,由你工作部件的动能将引起液压执行元件的回油腔和管路内的油液产生液压激振,导致液压冲击3)液压系统中某些元件的动作不够灵敏,也会产生液压冲击。
液压与气压传动课教案第一章:液压与气压传动概述1.1 液压与气压传动的概念讲解液压与气压传动的定义分析液压与气压传动的特点和应用范围1.2 液压与气压传动的工作原理介绍液压与气压传动的基本原理通过示意图展示液压与气压传动的工作过程第二章:液压元件2.1 液压泵讲解液压泵的分类和工作原理分析各种液压泵的特点和应用范围2.2 液压缸介绍液压缸的分类和工作原理讲解液压缸的结构和性能要求第三章:液压系统的设计与维护3.1 液压系统的设计原则分析液压系统设计的基本原则讲解液压系统设计的方法和步骤3.2 液压系统的维护与管理介绍液压系统的维护内容和注意事项分析液压系统故障的原因和排除方法第四章:气压传动基础4.1 气压传动的概念和工作原理讲解气压传动的特点和应用范围通过示意图展示气压传动的工作过程4.2 气压元件介绍气压泵、气缸等气压元件的结构和工作原理分析各种气压元件的特点和应用范围第五章:气压系统的应用实例5.1 气压控制系统讲解气压控制系统的组成和工作原理分析气压控制系统的应用实例5.2 气压动力系统介绍气压动力系统的组成和工作原理讲解气压动力系统的应用实例第六章:液压系统的应用实例6.1 液压机械控制系统讲解液压机械控制系统的组成和工作原理分析液压机械控制系统的应用实例6.2 液压伺服系统介绍液压伺服系统的组成和工作原理讲解液压伺服系统的应用实例第七章:气压传动系统的设计与维护7.1 气压系统的设计原则分析气压系统设计的基本原则讲解气压系统设计的方法和步骤7.2 气压系统的维护与管理介绍气压系统的维护内容和注意事项分析气压系统故障的原因和排除方法第八章:液压与气压传动的节能与环保8.1 液压与气压传动的节能技术讲解液压与气压传动节能的技术和方法分析节能技术在液压与气压传动中的应用实例8.2 液压与气压传动的环保问题介绍液压与气压传动对环境的影响讲解液压与气压传动环保问题的解决方法第九章:液压与气压传动的技术发展9.1 新型液压与气压传动技术讲解新型液压与气压传动技术的研究和发展分析新型技术在液压与气压传动中的应用实例9.2 液压与气压传动技术的未来发展趋势介绍液压与气压传动技术的未来发展趋势分析未来技术对液压与气压传动行业的影响第十章:实验与实训10.1 液压与气压传动实验安排液压与气压传动的基本实验项目,如液压泵性能实验、液压缸动作实验等讲解实验目的、实验设备和实验步骤10.2 液压与气压传动实训安排液压与气压传动的实训项目,如液压控制系统安装与调试、气压系统设计等讲解实训目的、实训设备和实训步骤第十一章:液压与气压传动的仿真与优化11.1 液压与气压传动仿真技术介绍液压与气压传动仿真技术的基本概念和作用讲解仿真软件的选择和使用方法11.2 液压与气压传动系统的优化分析液压与气压传动系统优化的目的和方法介绍常见的液压与气压传动系统优化技术第十二章:液压与气压传动的故障诊断与维修12.1 液压与气压传动故障诊断技术讲解液压与气压传动故障诊断的方法和流程分析常见故障的原因和解决方法12.2 液压与气压传动设备的维修与保养介绍液压与气压传动设备维修保养的基本知识讲解维修保养的注意事项和常规操作第十三章:案例分析与讨论13.1 液压与气压传动案例分析提供液压与气压传动领域的实际案例,进行分析和讨论引导学生从案例中学习液压与气压传动的设计与应用经验13.2 液压与气压传动技术讨论组织学生对液压与气压传动技术的发展进行讨论引导学生关注液压与气压传动技术的创新与应用第十四章:课程设计与实践14.1 液压与气压传动课程设计安排学生进行液压与气压传动系统的课程设计指导学生完成设计任务,包括系统选型、参数计算、图纸绘制等14.2 液压与气压传动实践项目安排学生参与液压与气压传动实践项目指导学生将理论知识应用于实践,提高实际操作能力第十五章:总结与展望15.1 课程总结回顾整个液压与气压传动课程的主要内容和知识点强调重点和难点,帮助学生巩固所学知识15.2 液压与气压传动技术展望展望液压与气压传动技术的未来发展趋势激发学生对液压与气压传动技术的兴趣和热情重点和难点解析。
T=52.5N.m ,转速 n=30r/min 。
设液压马达排量Mm=0.9,求所需要的流量和压力各为多少?解:理论转矩:T t -PV2 机械效率:Mm 鱼T tT M 2 52.5* 2* P —— ° 9*[2 5* 10 6 =29.3MPa( 1MPa=1000000Pa)q M Vn/ MV 12.5* 10 *30 =6.9*10 6 m 3/s (单位是秒,最后计算时除以60)0.9*603-2某液压马达排量 V=70cm 3/r,供油压力p=10MPa,输入流量q=100L/min ,容积效率门MV =0.92,机 械效率门Mm=0.94,液压马达回油腔背压 0.2MPa,求马达的输出转矩与转速。
(10 0.2)*106* 70* 10 6 * 0.94TMTt* Mm102.68N ,m2(流量:m 3 /s 转速:r/min 压力:Pa 转矩:N.m 排量:m 3/r )第三章液压马达与液压缸3-1某一减速机要求液压马达的实际输出转矩 V=12.5cm 3/r ,容积效率门MV =0.9,机械效率门解:实际输出转矩为:q t q M MV转速为:nV V3 _100*10 *0.9260* 70*10 21.8r/s=1314r/min,3、(1m =1000L)解:对两缸进行受力分析P"1P2A1 F1得出p2=2MPa, p1=3MPaP 2A 2 F 2根据液压缸流量计算公式:q=v*a/10,可得:速度:v1=10q/A1=30* 10 3/50*10-4=6m /min =0.1m/sv 〔A 1 v 2A 2V2=0.25 m/s或 v2=10q/A2=30*10 3/20*10-4=15m /min =0.25m/sp 2 = F 2 / A 2 =4000/20*10-4=2MPa p 1=(p 2A 1 F 1) / A 1 = (2*10 6*50*10-4+5000) /50*10-4=15*10 3/50*10-4=3MPa3-6如图所示,液压缸活塞直径 D=100mm ,活塞杆直径d=70mm ,进入液压缸的流量 q=25L/min ,压力p1=2MPa,回油背压p2=0.2MPa ,试计算三种情况下运动速度与方向及最大推力(实际计算其中一 种。
液压与气压传动课程复习重难点第1章绪论1.液压与气压传动的工作原理2.液压与气压传动系统的组成3.液压与气压传动的主要优缺点第2章液压流体力学基础1.液压油的性质(粘度、可压缩性)2.液体静压力的概念及表示方法(绝对压力、表压力、真空度)3.连续性方程4.液压系统中压力及流量损失产生的原因第3章液压泵和液压马达1.液压泵、液压马达的工作原理2.液压泵、液压马达的主要参数及计算3.掌握齿轮泵和齿轮马达的构造、工作原理及应用(外啮合齿轮泵的问题:泄漏、径向力不平衡、困油现象。
)4.理解叶片泵和叶片马达的构造、工作原理及应用5.理解柱塞泵和柱塞马达的构造、工作原理及应用第4章液压缸1.液压缸的类型和特点2.活塞式液压缸的推力和速度计算方法第5章液压控制阀1.换向阀的功能、工作原理、结构、操纵方式和常用滑阀中位机能特点2.单向阀、液控单向阀结构、工作原理及应用。
3.溢流阀、减压阀、顺序阀、压力继电器的结构、工作原理及应用4.节流阀与调速阀的结构、工作原理及应用第6章辅助装置液压辅助元件(滤油器、蓄能器、油箱、油管、密封装置)的作用和图形符号第7章液压基本回路调压回路、卸荷回路、减压回路、增压回路、调速回路、增速回路、速度换接回路、换向回路、多缸动作回路的工作原理、功能及回路中各元件的作用和相互关系。
第8章液压系统实例根据液压系统原理图和系统动作循环表,分析液压系统工作原理与性能特点的方法。
第9章气压基础及元件1.气源装置的组成原理及性能特点2.气缸结构原理及应用第10章气动基本回路及气动系统常用气动基本回路的组成及应用特点液压与气压传动课程考试题型一、判断题(每题3分,共30分)二、单项选择题(每题3分,共30分)三、计算选择题(8分)四、分析选择题(32分)模拟试题一判断题1.液压传动不易获得很大的力和转矩。
(×)2.液体的体积压缩系数越大,表明该液体抗压缩的能力越强。
(√)3.真空度是以绝对真空为基准来测量的压力。
第一章绪论一、主要概念1.液压传动的定义,液压传动的两个工作特性【答】液压传动的定义:以液体为介质,依靠流动着液体的压力能来传递动力的传动称为液压传动。
液压传动的两个工作特性是:①液压系统的压力(简称系统压力,下同)大小(在有效承压面积一定的前提下)决定于外界负载。
②执行元件的速度(在有效承压面积一定的前提下)决定于系统的流量。
这两个特性有时也简称为:压力决定于负载;速度决定于流量。
2.液压系统的四大组成部分及其作用【答】五大组成部分为:①能源装置它是将电机输入的回转式机械能转换为油液的压力能(压力和流量)输出的能量转换装置,一般最常见的形式是液压泵。
②执行元件它是将油液的压力能转换成直线式或回转式机械能输出的能量转换装置,一般情况下,它可以是做直线运动的液压缸,也可以是做回转运动的液压马达。
③调节控制元件它是控制液压系统中油液的流量、压力和流动方向的装置,即控制液体流量的流量阀(如节流阀等)、控制液体压力的压力阀(如溢流阀等)及控制液体流④辅助元件这是指除上述三项以外的其他装置,如油箱、滤油器、油管、管接头、热交换器、蓄能器等。
这些元件对保证系统可靠、稳定、持久的工作有重大作用。
⑤工作介质液体、压缩空气。
3.液压传动的主要优缺点【答】和机械、电力等传动相比,液压传动有如下优点:①能方便地进行无级调速,且调速范围大。
②功率质量比大。
一方面在相同的输出功率前提下,液压传动设备的体积小、质量轻、惯性小、动作灵敏(这对于液压自动控制系统具有重要意义);另一方面,在体积或质量相近的情况下,液压传动的输出功率大,能传递较大的转矩或推力(如万吨水压机等)。
③调节、控制简单,方便,省力,易实现自动化控制和过载保护。
④可实现无间隙传动,运动平稳。
⑤因传动介质为油液,故液压元件有自我润滑作用,使用寿命长。
⑥可采用大推力的液压缸和大转矩的液压马达直接带动负载,从而省去了中间的减速装置,使传动简化。
⑦液压元件实现了标准化、系列化,便于设计、制造和推广使用。
第三章 液 压 缸液压缸与液压马达一样,也是一种执行元件。
它是将液压能转换成机械能进行直线往复运动的机械能的一种能量转换装置,输出的通常为推力(或拉力)与直线运动速度。
而液压马达是将液压能转换成连续回转的机械能,输出的通常为转矩与转速。
第一节 液压缸的类型及其特点根据结构特点,液压缸可分为活塞式、柱塞式两种类型。
一、活塞式液压缸活塞式液压缸又可分为双活塞杆液压缸和单活塞杆液压缸两种结构,其安装方式有活塞杆固定(空心双杆液压缸)和缸体固定(实心双杆液压缸)两种。
(一).双活塞杆液压缸1. 实心双杆液压缸1)组成:图3-1所示为一台平面磨床的实心双杆液压缸的结构图。
l-压盖2-密封圈 3-导向套4-纸垫 5-活塞 6-缸体 7-活塞杆 8-端盖 9-支架 10-螺母。
缸体固定在床身上不动,活塞杆和工作台靠支架9和螺母10连接在一起。
2)工作原理:当压力油通过油道a(或b)分别进入液压缸两腔时,就推动活塞带动工作台作往复运动。
3)推力和速度计算:由于活塞两端有效面积相等,如果供油压力和流量不变,那么活塞往返运动时两个方向的作用力和速度均相等,即 )(422d D q A q V -==π 4)(..22d D p A p F -==π 式中,v 为活塞运动速度 ; q 为供油流量;F 为活塞(或缸体)上的作用力;p 为供油压力;A 为活塞有效面积;D 为活塞直径;d 为活塞杆直径。
4)占地面积:如图3-2所示,实心双杆液压缸驱动工作台的运动范围大,约等于液压缸有效行程的3倍,因而其占地面积较大,它一般只适用于小型机床。
2. 空心双杆液压缸1)组成:图3-3所示为一台外圆磨床的空心双杆液压缸的结构图。
主要组成:缸体、活塞、活塞杆、端盖、托架等,活塞杆固定在床身上,缸体和工作台连接在一起。
2)工作原理:当压力油通过活塞杆2的中心孔和径向孔b(或a)分别进入液压缸两腔时,就推动缸体带动工作台作往复运动。
3)推力和速度计算:缸体11所受到的作用力和运动速度的计算与实心双杆液压缸类同。
绪论一、三大关系液压千斤顶示意图通过分析液压千斤顶的工作原理从而得出一下三大关系①、力比例关系:P=F/A即压力取决于负载,与液体多少无关。
②、运动关系:q=av即速度取决于流量,与压力大小无关。
③、功率关系:P=pq即液压传动和气压传动是以流体的压力能来传递动力的。
二、液压/气压传动系统的组成及各部分的作用机床工作台液压系统工作原理示意图能源装置:把机械能转换为流体的压力能的装置,常见的有液压泵、空气压缩机执行元件:把流体的压力能转换为机械能的装置,有液压缸液压马达等控制元件:是对系统中流体压力、流量和流动方向进行控制和调节的装置,如溢流阀、节流阀、换向阀等辅助元件:除以上三种以外的其他装置,如油箱、过滤器、空气过滤器、油雾器、储能器等。
第一篇 液压传动第一章 液压流体力学基础1.1. 液压油特点:可压缩性≤7%,温度升高和压力减小时粘度下降。
1.2. 液体静力学1. 液体静压力的定义:F p A= 特性:①、液体静压力的方向总是作用面的内法线方向②、静止液体内任一点的液体静压力在各个方向上都相等。
2. 液体静压力基本方程式:0p p gh ρ=+(P 0 是液体表面压力)3. 压力的表示方法及其单位:绝对压力>大气压时:表(相对)压力=绝对压力-大气压力绝对压力<大气压时:真空度=大气压力-绝对压力压力的单位:1MPa=10^6 Pa(N/m 2)1.3. 液体动力学1.理想液体:既不可压缩又无粘性的液体2.流动液体的三大方程①、连续性方程:q=av=常数(流体界的质量守恒方程) ②、伯努利方程:(流体界的能量守恒方程) ④ ③、动量方程:∑F=d (mv )/dt (流体界的动量守恒定律)1.4.管道中液流的特性1.液流状态:层、紊流,对各流动状态起主导作用的因素 流态判据:雷诺数 Re dv υ=临界雷诺数:Re 2320cr =(光滑金属管)Re 1600~2000cr =(橡胶软管)2.压力损失与流态有关(λ、ξ):沿程压力损失:22l p d λρυλ∆= (金属管:λ=75/Re ;橡胶管:λ=80/Re)局部压力损失:22p ξρυξ∆=1.5. 液压冲击和气穴现象1、液压冲击的概念、危害、产生原因及减小措施(P45)2、气穴概念、原因、危害;气蚀概念和减少措施。
液压与气压传动(第4版)第三章液压执行元件⏹第一节液压马达⏹第二节液压缸第一节液压马达液压执行元件是将液压泵提供的液压能转变为机械能的能量转换装置,它包括液压缸和液压马达。
液压马达习惯上是指输出旋转运动的液压执行元件,而把输出直线运动(其中包括输出摆动运动)的液压执行元件称为液压缸。
一液压马达的特点及分类从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。
因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。
但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。
首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。
因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。
由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。
液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。
按液压马达的额定转速分为高速和低速两大类。
额定转速高于500r /min 的属于高速液压马达,额定转速低于500r /min 的属于低速液压马达。
高速液压马达的基本型式有齿轮式、螺杆式、叶片式 和轴向柱塞式等。
它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。
通常高速液压马达输出转矩不大(仅几十N ·m 到几百N ·m)所以又称为高速小转矩液压马达。
低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千N ·m 到几万N ·m),所以又称为低速大转矩液压马达。
液压与气压传动课教案(非常好)第一章:液压与气压传动概述1.1 课程介绍了解液压与气压传动的基本概念、原理和应用领域。
掌握液压与气压传动系统的组成和分类。
1.2 教学目标了解液压与气压传动的基本概念及其在工程中的应用。
掌握液压与气压传动系统的组成和分类。
1.3 教学内容液压与气压传动的定义、原理和特点。
液压与气压传动系统的组成:液压系统与气压系统的组成。
液压与气压传动的应用领域:工业、农业、交通运输等。
1.4 教学方法采用讲授、案例分析和互动讨论相结合的方式进行教学。
1.5 教学评估通过课堂提问、小组讨论和课后作业等方式进行评估。
第二章:液压与气压元件2.1 课程介绍熟悉液压与气压传动系统中的各种元件及其功能。
掌握液压与气压元件的工作原理和性能特点。
2.2 教学目标熟悉液压与气压传动系统中的各种元件及其功能。
掌握液压与气压元件的工作原理和性能特点。
2.3 教学内容液压元件:液压泵、液压缸、液压马达、液压阀等。
气压元件:气压泵、气压缸、气压马达、气压阀等。
液压与气压元件的性能特点和工作原理。
2.4 教学方法采用讲授、实验演示和互动讨论相结合的方式进行教学。
2.5 教学评估通过实验操作、课堂提问和课后作业等方式进行评估。
第三章:液压与气压传动系统的设计与维护3.1 课程介绍学习液压与气压传动系统的设计方法,提高系统性能。
了解液压与气压传动系统的维护保养知识,确保系统安全运行。
3.2 教学目标学习液压与气压传动系统的设计方法,提高系统性能。
了解液压与气压传动系统的维护保养知识,确保系统安全运行。
3.3 教学内容液压与气压传动系统的设计方法:系统分析、元件选型、管路设计等。
液压与气压传动系统的维护保养:日常检查、故障排除、更换元件等。
3.4 教学方法采用讲授、案例分析和实验演示相结合的方式进行教学。
3.5 教学评估通过实验操作、课堂提问和课后作业等方式进行评估。
第四章:液压与气压传动在工程中的应用4.1 课程介绍了解液压与气压传动技术在工程领域的应用实例。
第3章液压与气压传动动力元件思考题和习题3.1 容积式液压泵的工作原理是什么?答:其原理是:必须有一个密封容积;并且密封容积是变化的;还要有一个配油装置;油箱与大气相通。
3.2 液压泵装于液压系统中之后,它的工作压力是否就是液压泵标牌上的压力?为什么?答:不一定。
因为系统中压力是由负载来决定的。
3.3 液压泵在工作过程中产生哪些能量损失?产生损失的原因?答:产生两种损失:容积损失和机械损失。
容积损失产生的原因是泵中存在间隙,在压力作用下油液从高压区向低压区泄漏;另外由于油的粘性,转速高阻力大,使油液没充满密封空间。
机械损失是泵零件间,轴承,零件与液体间存在摩擦而产生的损失。
3.4 外啮合齿轮泵为什么有较大的流量脉动?流量脉动大会产生什么危害?答:外啮合齿轮泵在工作过程中,压油腔的工作容积变化率不均匀,齿数越少,其脉动率越大,所以外啮合齿轮泵的瞬时流量脉动大。
流量脉动大引起齿轮泵输出压力脉动大,产生较大的噪声。
3.5 什么是齿轮泵的困油现象?产生困油现象有何危害?如何消除困油现象?其它类型的液压泵是否有困油现象?解:齿轮泵要平稳工作,齿轮啮合的重叠系数必须大于或等于1,即总有两对轮齿同时啮合。
这样一部分油液被围困在两对轮齿所形成的封闭腔之内。
这个封闭容积先随齿轮转动逐渐减少,以后又逐渐增大。
当封闭容积减少时会使被困油液受挤压而产生高压,并从缝隙中流出,导致油液温升增加,轴承等机件也受到附加径向不平衡负载作用。
封闭容积增大时又会造成局部真空,使溶于油中气体分离出来,产生空穴,引起噪声、振动和气蚀,这就是齿轮泵的困油现象。
消除困油现象的方法,通常在齿轮泵的两端盖板上开卸荷槽,使封闭容积减少时通过卸荷槽与压油腔相通,封闭容积增大时通过卸荷槽与吸油腔相通。
其它类型的液压泵也有困油现象,双作用叶片泵在设计合理,安装准确时,在理论上没有困油现象。
3.6 齿轮泵压力的提高主要受哪些因素的影响?可以采取哪些措施来提高齿轮泵的压力?答:影响齿轮泵压力提高主要是端面间隙的泄漏及径向力不平衡。
第二部分《液压与气压传动》习题解答第1章液压传动概述1、何谓液压传动?液压传动有哪两个工作特性?答:液压传动是以液体为工作介质,把原动机的机械能转化为液体的压力能,通过控制元件将具有压力能的液体送到执行机构,由执行机构驱动负载实现所需的运动和动力,把液体的压力能再转变为工作机构所需的机械能,也就是说利用受压液体来传递运动和动力。
液压传动的工作特性是液压系统的工作压力取决于负载,液压缸的运动速度取决于流量。
2、液压传动系统有哪些主要组成部分?各部分的功用是什么?答:⑴动力装置:泵,将机械能转换成液体压力能的装置。
⑵执行装置:缸或马达,将液体压力能转换成机械能的装置。
⑶控制装置:阀,对液体的压力、流量和流动方向进行控制和调节的装置。
⑷辅助装置:对工作介质起到容纳、净化、润滑、消声和实现元件间连接等作用的装置。
⑸传动介质:液压油,传递能量。
3、液压传动与机械传动、电气传动相比有哪些优缺点?答:液压传动的优点:⑴输出力大,定位精度高、传动平稳,使用寿命长。
⑵容易实现无级调速,调速方便且调速范围大。
⑶容易实现过载保护和自动控制。
⑷机构简化和操作简单。
液压传动的缺点:⑴传动效率低,对温度变化敏感,实现定比传动困难。
⑵出现故障不易诊断。
⑶液压元件制造精度高,⑷油液易泄漏。
第2章液压传动的基础知识1、选用液压油有哪些基本要求?为保证液压系统正常运行,选用液压油要考虑哪些方面?答:选用液压油的基本要求:⑴粘温特性好,压缩性要小。
⑵润滑性能好,防锈、耐腐蚀性能好。
⑶抗泡沫、抗乳化性好。
⑷抗燃性能好。
选用液压油时考虑以下几个方面,⑴按工作机的类型选用。
⑵按液压泵的类型选用。
⑶按液压系统工作压力选用。
⑷考虑液压系统的环境温度。
⑸考虑液压系统的运动速度。
⑹选择合适的液压油品种。
2、油液污染有何危害?应采取哪些措施防止油液污染?答:液压系统中污染物主要有固体颗粒、水、空气、化学物质、微生物等杂物。
其中固体颗粒性污垢是引起污染危害的主要原因。