过氧化物酶同工酶的提取分离共35页
- 格式:ppt
- 大小:3.04 MB
- 文档页数:35
实验八 聚丙烯酰胺凝胶电泳分离过氧化物同工酶一、实验目的1 学习聚丙烯酰胺凝胶电泳原理。
2 掌握聚丙烯酰胺凝胶垂直板(及同盘)电泳的操作技术。
3 掌握同工酶定义、理化性质的差异,了解过氧化物酶的染色原理。
4 掌握过氧化物酶的活性的测定。
二 实验原理聚丙烯酰胺凝胶是由单体丙烯酰胺(Acr )和交联剂(即共聚体的N,N -甲叉双丙烯酰胺 Bis )在加速剂(N,N,N ’,N ’-四甲基乙二胺 TEMED )和催化剂(过硫酸胺 (NH 4)4S 2O 8 简称AP )的作用下聚合交联成三维网状结构的凝胶。
(一)聚丙烯酰胺凝胶聚合原理及相关特性1 聚合反应聚丙烯酰胺是由Acr 和Bis 在催化剂(AP )或核黄素(C 17H 20O 6N 4)和加速剂(TEMDA )的作用下聚合而成的三维网状结构。
催化剂和加速剂的种类很多,目前常用的有2种催化体系:① AP-TEMED 属化学聚合作用② 核黄素-TEMED 属光聚合作用2 凝胶孔径的可调性及其相关性质① 凝胶性能与总浓度及交联度的关系凝胶的孔径、机械性能、弹性、透明度、粘度和聚合程度取决于凝胶总浓度和Acr 与Bis 之比: 00100a b T m+=⨯ a:b<10 脆硬乳白交联度: 00100b c a b=⨯+ a:b>100糊状易断 ② 凝胶浓度与孔径的关系T (Acr 和Bis 总浓度)增加 孔径减小 移动颗粒穿过网孔阻力增加③ 凝胶浓度与被分离物分子量的关系分子量增加 阻力增加 移动速度减慢。
同时还与分子形状及分子电荷有关系。
在操作时,可以选用007.5凝胶。
因为生物体内大多数蛋白质在此范围内电泳均可取得满意的结果。
3 试剂对凝胶聚合的影响水中金属离子或其他成分对凝胶电泳的电泳速度、分离效果等有影响。
(二)聚丙烯酰胺凝胶电泳(PAGE )原理根据有无浓缩效应可分为:连续系统:电泳体系中由于缓冲液PH 值及凝胶浓度相同,带电颗粒在电场中主要靠电荷及分子筛效应。
过氧化物酶同工酶电泳分析实验原理(1)凝胶板由上、下两层胶组成,两层凝胶的孔径不同。
上层为大孔径的浓缩胶,下层为小孔径的分离胶。
(2)缓冲液离子组成及各层凝胶的pH不同。
本实验采用碱性系统。
电极缓冲液为pH8.3的Tris-甘氨酸缓冲液,浓缩胶为pH6.7的Tris-HCl缓冲液。
而分离胶为pH8.9的Tris-HCl缓冲液。
(3)在电场中形成不连续的电位梯度。
在这样一个不连续的系统里,存在三种物理效应,即电荷效应、分子筛效应和浓缩效应。
在这三种效应的共同作用下,待测物质被很好地分离开来。
下面以本实验要分离的小麦苗过氧化物酶同工酶为例,分别说明三种效应的作用:(1)电荷效应:各种酶蛋白按其所带电荷的种类及数量,在电场作用下向一定电极,以一定速度泳动。
(2)分子筛效应:分子量小,形状为球形的分子在电泳过程中受到阻力较小,移动较快;反之,分子量大、形状不规则的分子,电泳过程中受到的阻力较大,移动较慢。
这种效应与凝胶过滤过程中的情况不同。
(3)浓缩效应:待分离样品中的各组分在浓缩胶中会被压缩成层,而使原来很稀的样品得到高度浓缩。
其原因如下:①由于两层凝胶孔径不同,酶蛋白向下移动到两层凝胶界面时,阻力突然加大,速度变慢。
使得在该界面处的待分离酶蛋白区带变窄,浓度升高。
②在聚丙烯酰胺凝胶中,虽然浓缩胶和分离胶用的都是Tris-HCl缓冲液,但上层浓缩胶为pH 6.7,下层分离胶为pH 8.9。
HCl是强电解质,不管在哪层胶中,HCl几乎都全部电离,Cl-布满整个胶板。
待分离的酶蛋白样品加在样品槽中,浸在pH8.3和Tris-甘氨酸缓冲液中。
电泳一开始,有效泳动率最大的Cl-迅速跑到最前边,成为快离子(前导离子)。
在pH6.7条件下解离度仅有0.1~1%的甘氨酸(pI = 6.0 )有效泳动率最低,跑在最后边,成为慢离子(尾随离子)。
这样,快离子和慢离子之间就形成了一个不断移动的界面。
在pH6.7条件下带有负电荷的酶蛋白,其有效泳动率介于快慢离子之间,被夹持分布于界面附近,逐渐形成一个区带。
超氧化物歧化酶(SOD)的分离纯化及活⼒测定、同⼯酶电泳实验⼆猪⾎中超氧化物歧化酶(SOD)的分离纯化及活⼒测定、同⼯酶电泳⼀、实验原理超氧化物岐化酶SOD⼴泛存在于⽣物体内的含Cu、Zn、Mn、Fe的⾦属类酶。
它作为⽣物体内重要的⾃由基清除剂,可以清除体内多余的超氧阴离⼦,在防御⽣物体氧化损伤⽅⾯起着重要作⽤。
SOD是⼀种酸性蛋⽩,对热、pH和蛋⽩酶的⽔解较⼀般酶稳定。
根据⾦属辅基的不同,它可以分为四类,分别为Mn-SOD、Cu-Zn-SOD、Fe-SOD、Ni-SOD,其中最常见是(CuZn-SOD),主要存在于真核细胞的细胞质中。
CuZn-S0D酶蛋⽩的分⼦量约为3.2×104,每个酶分⼦由2个亚基通过⾮共价键的疏⽔基相互作⽤缔合成⼆聚体,每个亚基(肽链)含有铜、锌原⼦各⼀个,活性中⼼的核⼼是铜。
SOD作为机体内最重要的抗氧化酶体之⼀,可以直接清除过量的超氧⾃由基,阻⽌机体的过氧化,对机体有较⾼的防护作⽤及保健价值。
本实验采⽤有机溶剂沉淀法以新鲜猪⾎为原料,从中提取SOD硬进⾏纯化。
酶活⼒测定可⽤以下⽅法:黄嘌呤氧化酶法、细胞⾊素C法、肾上腺素⾃氧化法亚硝酸法、NBT光还原法、化学发光法以及邻苯三酚⾃氧化法等。
⽽该实验SOD酶活性采⽤邻苯三酚⾃氧化法测定。
酶活性单位定义为:在1ml的反应液中,每分钟抑制邻苯三酚⾃氧化速率达50%时的酶量定义为⼀个活⼒单位。
SOD同⼯酶奠定采⽤不连续聚丙烯酰胺-的作⽤,因此,电泳分离SOD后,凝凝胶电泳技术分离鉴定。
⽤“负”显⾊法显⽰。
由于SOD能够抑制O2胶上⽆SOD处显⽰为蓝⾊,⼜SOD处为⽆⾊透明,由此可以鉴定SOD同⼯酶酶谱。
⼆、实验试剂与器材ACD抗凝剂、0.9%Nacl、丙酮、95%⼄醇、氯仿、考马斯亮蓝G-250、50mmol/L pH8.3磷酸缓冲液、10mmol/L EDTA钠盐溶液、3mmol/L 邻苯三酚溶液等以及752分光光度计、分析天平、具塞试管、刻度吸管、离⼼机、烧杯、电泳装置、微量进样器、注射器等。
实验五聚丙烯酰胺凝胶电泳分离过氧化物同工酶一、目的同工酶是指能催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。
研究表明,植物在发育过程中,所含同工酶的种类和比例都不相同,它们与植物的遗传、生长发育、代谢调节及抗性等都有一定关系,因此作为基因表达的产物,测定同工酶谱是认识基因存在和表达的一种工具,在植物的种群、发育及杂交遗传的研究中有重要的意义。
过氧化物酶是植物体内普遍存在的、活性较高的一种酶。
它与呼吸作用、光合作用及生长素的氧化等都有关系。
在植物生长发育过程中它的活性不断发生变化,测定这种酶的活性或其同工酶,可以反映某一时期植物体内代谢的变化。
利用聚丙烯酰胺凝胶电泳测定同工酶,方法简便,灵敏度高,重现性强,测定结果便于观察、记录和保存。
本实验采用聚丙烯酰胺凝胶垂直板电泳技术,分离小麦幼苗过氧化物酶同工酶,根据酶的生物化学反应,通过染色方法显示出酶的不同区带,以鉴定小麦幼苗过氧化物酶同工酶。
通过本实验要掌握电泳技术的原理、方法、装置、凝胶配制等知识,熟悉主要的操作过程,同时对同工酶有一个感性的认识。
二、原理1.电泳带电粒子在电场中向与其自身带相反电荷的电极移动,这种现象称为电泳。
近几十年来,电泳作为一项有效的分析、分离和制备技术发展很快,在生产、科研和医疗工作中得到了广泛应用。
用电泳技术分离、分析蛋白质、酶、核酸等生物大分子,有较高的分辨率,目前已成为生物科学研究中必不可少的手段之一。
2.影响电泳的主要因素若将带净电荷q的粒子放入电场,则该粒子所受到的引力F引可用数学式表示如下:F引=E·q(1)式中E为电场强度,单位为“v/cm”,表示电场中单位距离上的电位差。
如果这种情况发生在真空中,则带电粒子会朝着电极加速前进并且最后与电极相撞。
但在溶液中,由于电场的牵引力F引与加速运动的粒子和溶液之间产生的阻力(即摩擦力)F阻相对抗。
故上述现象不会发生。
根据Stokes公式,阻力的大小取决于粒子的大小和形状以及所在介质的粘度:F阻=6πrηv (2)式中F阻是球形粒子所受的阻力,r是球形粒子的半径,η是溶液的粘度,v是粒子移动的速度。
实验五聚丙烯酰胺凝胶垂直板电泳分析⼩麦幼苗过氧化物酶同⼯酶(实验报告)⽣物化学实验报告实验五聚丙烯酰胺凝胶垂直板电泳分析⼩麦幼苗过氧化物酶同⼯酶⼀、研究背景及⽬的电泳现象就是带电粒⼦在电场中向与其⾃⾝带相反电荷的电极泳动。
电泳技术最初是由瑞典的著名科学家Tisellius所奠基,⾃此⽣物⼤分⼦的分离纯化便进⼊了电泳技术的新纪元。
电泳技术的发明是⼈们在分离纯化技术中的“差异转换”思路上⼜⼀次伟⼤的飞跃。
⼈们清楚地意识到,要想使⽬标物得到分离,⽬标物与杂质之间的性质差异必须⾜够⼤,这⼜与某些性质差异⼩的物质的分离相⽭盾,⽽⼈为放⼤这些差异⼩的性质必然会破坏⽬标物的原有结构,因此需要借助第三者进⾏差异转化,即以其⾃⾝的性质为基础,转化为其他⽅⾯差异⼤的性质。
电泳技术就是利⽤⼀些⽣物⼤分⼦的电性特点,在⼀定的条件下使被分离物之间很⼩的差异转化为⾃⾝所带电荷性质与数量的差异,在外加电场的作⽤下便会体现出迁移⽅向及速度上的差异,通过时间上的积累进⽽体现为迁移距离的差异。
最初的电泳技术是在溶液中进⾏的⾃由电泳,后来⼈们想到,由于待分离物的⼤⼩、形状也存在差异,那么它们在电场中泳动的过程中必然会受到不同的阻⼒,这种阻⼒的差异⼜转化为了电场中迁移速度的差异,所以⼈们便发明了各种⽤于电泳的载体(⽀持介质),使分⼦的⼤⼩及形状差异得以转化和体现,⼤⼤提⾼了分辨率。
⾄此,电泳技术的基本理论就建⽴了。
此后,在实际操作中,⼈们不断进⾏探索、改进与完善,发明了诸多的电泳新技术,使电泳成为⼀项⽣物⼤分⼦分离纯化中令⼈瞩⽬的研究技术。
本实验基于电泳的基本原理对⼩麦过氧化物酶同⼯酶进⾏分离,旨在学习并掌握电泳技术的发明历程以及操作过程中的相关细节,同时更为深刻地理解⼀项新技术在实际应⽤中不断修正与完善的过程,体会电泳和层析两⼤技术各⾃的特点和优势。
⼆、原理[1]1.过氧化物酶同⼯酶同⼯酶是催化同⼀种化学反应,但其酶蛋⽩本⾝的分⼦结构组成却有所不同的⼀组酶。