行列式的计算与应用1
- 格式:ppt
- 大小:278.00 KB
- 文档页数:19
Science &Technology Vision 科技视界行列式是线性代数的一个基本工具,无论是高等数学领域里的高深理论,还是现实生活中的实际问题,都或多或少与行列式有着直接或间接的联系。
行列式的计算有一定的规律性和技巧性,针对各种行列式的结构特点有不同的计算方法。
本文着重探讨各种不同的行列式的计算方法,以求更进一步加深对行列式这一数学命题的理解与掌握。
1行列式的计算方法举要1.1利用n 阶行列式的定义来计算行列式利用n 阶行列式的定义来计算行列式的方法只适用于较简单的行列式,如对角线行列式、三角形行列式等。
例1:计算行列式D=a 00b0c d 00e f 0g 00h解:由定义1可知,D 是一个4!=24项的代数和。
然而在这个行列式里,除了acfh ,adeh ,bdeg ,bcfg 这四项外,其余的项都至少含有一个因子0,因而等于0。
与上面四项对应列标的排列依次是1234,1324,4321,4231,而τ(1234)=0,τ(1324)=1,τ(4321)=6,τ(4231)=5。
因此,D =acfh-adef+bdeg-bcfg 。
1.2利用行列式的性质化成三角形行列式法行列式在计算的过程中,可以充分利用行列式的性质:例2:计算D=31-12-513-4201-11-53-31.3利用行列式按某一行(列)展开定理计算行列式定理1:行列式等于它的任一行(列)的各元素与它对应的代数余子式乘积之和D =a i 1A i 1+a i 2A i 2+……+a in A in (i =1,2,……,n )或D =a 1j A 1j +a 2j A 2j +……+a nj A nj (j =1,2,……,n )。
利用行列式展开式在计算行列式的过程中几乎都要用的到.值得注意的是,计算行列式往往先利用行列式的性质,先将某一行(列)的元素尽可能多的消成零,然后再利用定理计算,可称为“化零运算展开降阶法”。
本科生毕业论文(设计)题目: 行列式的计算技巧及应用学生姓名:谢芳学号: 201210010133专业班级:数学与应用数学12101班指导教师:颜亮完成时间: 2016 年 5 月目录摘要.。
.。
....。
.。
....。
.。
.。
.。
.。
.。
.。
.。
...。
..。
....。
.。
.。
..。
.。
.。
1 关键词.。
....。
.。
..。
.。
..。
..。
.。
.。
...。
....。
..。
..。
...。
..。
...。
1 0、前言。
..。
.。
.。
.。
....。
...。
.。
....。
.。
.。
..。
.。
....。
..。
.。
..。
1 1、基础知识及预备引理.。
....。
..。
.。
.。
.....。
....。
..。
..。
.。
.。
.。
.。
.。
2 1.1行列式的由来及定义。
..。
..。
...。
.。
..。
...。
.。
...。
....。
..。
....。
....。
..2 1.2行列式的性质。
.。
..。
.。
...。
..。
..。
...。
..。
.。
.。
....。
.。
.。
...。
.。
.。
.。
3 1。
3拉普拉斯定理及范德蒙德行列式的定义....。
.。
.。
..。
.。
.....。
.。
..。
4 2、行列式的计算方法。
.。
.。
...。
..。
...。
.。
..。
.。
...。
..。
..。
.....。
..。
.。
..。
.4 2。
1定义法。
.。
.。
...。
.。
...。
.。
...。
........。
.。
...。
.。
.。
.。
..。
..。
..4 2.2利用行列式的性质(化三角型)计算.。
.。
..。
..。
.。
.。
.。
.。
.。
..。
..。
..。
5 2.3拆行(列)法...。
..。
.。
..。
..。
.。
....。
.。
.。
...。
..。
.。
.。
..。
6 2。
4加边法(升阶法)。
..。
.。
....。
.。
..。
..。
...。
.。
.。
.。
..。
..。
..。
..。
.6 2。
5范德蒙德行列式的应用。
..。
...。
.。
.。
..。
.。
.。
.。
.。
.。
...。
.。
.。
..。
...。
.。
.7 3、n阶行列式的计算。
行列式的计算方法及应用行列式是线性代数中一个重要的概念,它是一个正方形矩阵的特殊的函数,用于描述线性方程组的解的唯一性、可解性以及一些几何性质。
本文将介绍行列式的计算方法及其应用。
一、行列式的计算方法1.二阶行列式的计算方法对于一个二阶的矩阵A=[[a,b],[c,d]],其行列式的计算方法为:det(A) = ad - bc。
2.三阶行列式的计算方法对于一个三阶的矩阵A=[[a,b,c],[d,e,f],[g,h,i]],其行列式的计算方法为:det(A) = aei + bfg + cdh - ceg - afh - bdi。
3.一般的行列式计算方法对于一个n阶的矩阵A,其行列式的计算方法可以通过展开定理进行计算。
展开定理的思想是通过将行列式展开为更小规模的行列式的和来计算。
假设A为n阶矩阵,其元素为a[i][j],行列式记为det(A),则行列式的计算方法为:det(A) = a[1][1] * A[1][1] + (-1)^(1+2) * a[1][2] * A[1][2] + ... + (-1)^(1+n) * a[1][n] * A[1][n]其中,A[1][k]为将矩阵A的第1行和第k列删去后的(n-1)阶矩阵,det(A)为其中的行列式。
二、行列式的应用1.线性方程组的解的唯一性和可解性判断对于一个线性方程组Ax=b,其中A为系数矩阵,x为未知数向量,b 为常数向量。
若A的行列式不为0,则方程组有唯一解;若A的行列式为0,则方程组可能有无穷多个解或无解。
2.矩阵的可逆性判断一个矩阵A为可逆矩阵的充分必要条件是其行列式不为0。
可逆矩阵在数值计算和理论推导中有着重要的应用,例如求解线性方程组的解、求逆矩阵以及解线性变换等。
3.几何性质的判断行列式可以用来判断空间中向量的线性相关性和共面性。
对于一个n 维空间中的n个向量,若这些向量的行列式为0,则说明这些向量线性相关,存在一些向量可以由其他向量线性表示;若行列式不为0,则说明这些向量线性无关,对应n维空间中的一个n维平行体。
毕业论文文献综述信息与计算科学行列式的计算方法和应用一. 前言部分(说明写作的目的,介绍有关概念、综述范围,扼要说明有关主题争论焦点)行列式的概念最初是伴随着方程组的求解而发展起来的。
行列式的应用早已超出了代数的范围,成为解析几何、数学分析、微分方程、概率统计等数学分支的基本工具,因此对许多人来说,掌握行列式的计算是重要的。
而对行列式进行计算不是唯一目的,我们还需要利用行列式去解决一些实际问题,使复杂问题简单化。
在了解行列式的概念、性质的基础上,讨论行列式的求解方法,其中包括化三角法,利用范德蒙行列式求解以及利用拉普拉斯定理的解法。
通过对行列式的求解方法的研究,探讨行列式在求解线性方程组中的应用。
二. 主题部分(阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述)我们知道,行列式的计算灵活多变,需要有较强的技巧。
当然,任何一个n 阶行列式都可以由它的定义去计算其值。
但由定义可知,n 阶行列式的展开式有!n 项,计算量很大,一般情况下不用此法,但如果行列式中有许多零元素,可考虑此法。
值的注意的是:在应用定义法求非零元素乘积项时,不一定从第1行开始,哪行非零元素最少就从哪行开始。
以下给出了行列式的概念及性质和行列式的计算方法包括:化三角法,利用范德蒙行列式求解行列式以及利用拉普拉斯定理的解法等等,涵盖了行列式解法的许多方面。
从这些解法中我们看到了计算行列式的巧妙之处。
2.1行列式的概念及性质2.1.1行列式的概念[9]n 级行列式nnn n nna a a a a a a a a (212222111211)等于所有取自不同行不同列的个元素的乘积n nj j j a a a ...2121的代数和,这里n j j j ...21是1,2,...,n 的一个排列,每一项都按下列规则带有符号:当n j j j ...21是偶排列时,带有正号;当n j j j ...21是奇排列时,带有负号。
行列式的几种计算方法7篇第1篇示例:行列式是线性代数中的一个重要概念,它是一个方阵中的一个数值,可以帮助我们判断矩阵的性质,计算行列式的值是线性代数中的基础技能之一。
下面我们将介绍几种行列式的计算方法以及其应用。
一、直接展开法计算行列式最基本的方法就是直接展开法。
以3阶行列式为例,一个3阶方阵的行列式可以表示为:\[\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix}\]通过公式展开,可以得到:\[\begin{aligned}\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix} & = aei + bfg + cdh - ceg - bdi - afh \\& = a(ei - fh) - b(di - fg) + c(dh - eg)\end{aligned}\]这样就可以直接计算出行列式的值。
但是这种方法比较繁琐,不适用于高阶行列式的计算。
二、拉普拉斯展开法\[\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{vmatrix}\]以第一行为例,可以按照以下公式展开:\[ \text{det}(A) = a_{11}C_{11} + a_{12}C_{12} + \cdots +a_{1n}C_{1n} \]C_{ij}表示元素a_{ij}的代数余子式,通过递归计算代数余子式,最终可以得到行列式的值。
行列式的计算方法及其应用行列式是线性代数中一种非常重要的概念,出现在许多领域中,如数学、物理、工程等。
它是一个方阵中各个元素的代数和,具有非常重要的几何和代数特征,因此也是线性代数学习的基础之一。
一、行列式的定义设有n阶行列式,写成如下形式:$$\Delta_n = \begin{vmatrix}a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\\vdots &\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & a_{n3} &\cdots & a_{nn}\\\end{vmatrix}$$其中,$a_{ij}$代表矩阵中第i行第j列的元素。
行列式的定义是这样的:设$A$为$n$阶方阵,$a_{i,j}$是$A$的元素,那么行列式$\Delta(A)$定义为:$$\Delta(A) =\sum_{\sigma}{(-1)^\sigma\cdot{a_{1,{\sigma(1)}}}\cdot{a_{2,{\sigma(2)}}}\cdots{a_ {n,{\sigma(n)}}}}$$其中,$\sum_{\sigma}$代表对所有$n$个元素的所有排列求和,$\sigma$是一个排列,并且$\sigma(k)$表示k在$\sigma$中的位置。
二、行列式的计算方法计算行列式有三种方法:直接定义法、代数余子式法和高斯消元法。
直接定义法随着矩阵维度的增加,计算量呈指数级增长,因此较少使用。
代数余子式法和高斯消元法可以将计算行列式的时间复杂度降低到$O(n^3)$,被广泛应用于实际问题中。
1. 直接定义法直接定义法是按照定义计算行列式的方法。
一类行列式的计算及应用行列式是数学中常见的术语,既它的定义又其应用场景非常广泛,它主要适用于表示和解决线性方程组、矩阵、运算及几何变换等问题。
什么是行列式?行列式是一种由n个未知数组成的矩阵形式的数学表达式,使用符号|A|表示,其中A是n×n矩阵。
它由n行n列的数字或变量组成,且每一行或列给定一个数字或变量。
行列式计算:行列式分解为元素乘积:|A| = a11a22...ann |A| = a11 ∙ a22 ∙ ... ∙ ann行列式计算的基本原理是分解行列式为元素乘积,即将行列式拆分成若干元素乘积的形式,然后进行乘法计算。
例如,当行列式为| A | =\begin{pmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\cdots & \cdots & \cdots & \cdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{pmatrix}时,则可写成| A | = a_{11} \cdot a_{22} \cdot \cdots \cdot a_{nn}行列式的应用:1、解线性方程组:利用Cramer公式可以根据行列式计算线性方程组的解。
2、求解投影:行列式可以用来计算投影的实际长度,也可以求出在投影之间的夹角。
3、矩阵运算:行列式可以用来计算矩阵乘积、矩阵转置以及其他矩阵运算。
4、几何变换:行列式可以用来计算几何变换的表示,例如平移、缩放和旋转等。
5、求多边形的面积:可以利用行列式的特性来直接计算多边形的面积,而不需要求多边形的内部角度就可以求出一个准确的面积值。
6、求解边界和平面上的距离:行列式可以用来计算两个平面之间的距离,也可以用来计算边界上点到平面的距离。
行列式计算方法解析1.化三角形法此种方法是利用行列式的性质把给定的行列式表示为一个非零数与一个三角形行列式之积,所谓三角形行列式是位于对角线一侧的所有元素全部等于零的行列式。
三角形行列式的值容易求得,涉及主对角线的三角形行列式等于主对角线上元素之积,涉及次对角线的N 阶三角形行列式等于次对角线上元素之积且带符号。
例1计算N 阶行列式ab bb a b b b aD n=解()[]abb a bb b n a Dn1111-+=()[]ba b a b b b n a ---+=0011()()11n a n b a b -=+-⎡⎤⎣⎦-2.利用递推关系法所谓利用递推关系法,就是先建立同类型n 阶与n-1阶(或更低阶)行列式之间的关系——递推关系式,再利用递推关系求出原行列式的值。
例2 计算n 阶行列式n ab b ca b ccaD =,其中0,≠≠bc c b解 将n D 的第一列视为(a-c )+c,0+c,……,0+c,据行列式的性质,得0000n a c c b b a c b b c b b c a b a b c a b cca ca ccaD -+-+==++()()11n n n a c c a bD D --∴=-+- (1)由b 与c 的对称性,不难得到()()11n n n a b b a c D D --=-+- (2)联立(1),(2)解之,得()()()1n nn b c b c a c a b D -⎡⎤=-⎢⎥⎣⎦---例3 计算n 阶行列式00010001000000n a b ab a b ab a b a b ab a bD +++=++解 将n D 按第一行展开,得()11000000001n n ab a b a b ab a bab a bD D -+=+-++于是得到一个递推关系式 ()12n n n a b ab D D D --=+-,变形得()112n n n n b a b D D D D ----=- ,易知()()2312334n n n n n n b b b D D D D DD aa------=-=-()()()22212n n n b ab b a b a b D D aaa --⎡⎤==-==⎢⎥⎣⎦--++所以 1nn n b D D a -=+,据此关系式再递推,有()11222nn n n n n n bb b ba aa a D D D ----=++=++1122111n n n n n n n n b b a a a a b b a a b b D -----==++++=++++如果我们将 n D 的第一列元素看作a+b,1+0,……0+0,按第一列拆成两个行列式的和,那么可直接得到递推关系式1nn n b D D a -=+,同样可n D 的值。
行列式教程行列式是数据管理中的一种形式,它以行和列的方式呈现出数据,常用于Excel、CSV等电子表格软件中。
本文将为大家介绍行列式的基本概念、操作技巧以及应用场景,帮助大家更好地掌握行列式。
一、行列式的基本概念在数据管理中,行列式是一种非常实用的表达方式。
它是由若干行和若干列组成的矩形结构,每个单元格都对应矩阵中的一个元素。
矩阵中的元素可以是数字、文本或者日期等,而行列式可以用来表示数据的分布和变化趋势。
在Excel和CSV等电子表格软件中,我们可以通过设置单元格的格式来改变单元格的数据类型、显示内容和排列方式,从而创建出不同类型的行列式。
二、行列式的操作技巧行列式可以通过一些操作技巧来改变其样式和内容。
下面列举几个常用的操作技巧:1.行高斯函数:行高斯函数是一种计算行列式值的方法。
它的作用是将某一列中的所有值求和,然后再乘以对应行的高度。
列高斯函数与行高斯函数类似,只是计算列的元素值。
2.列高斯函数:列高斯函数的作用与行高斯函数相反,它是将某一列中的所有值求和,然后再乘以对应列的高度。
3.数字格式:通过设置单元格的数字格式,我们可以改变单元格中数字的显示方式。
比如,可以将数字显示为科学计数法、百分比、千分比等格式。
4.自定义公式:在Excel中,我们可以使用自定义公式来计算行列式值。
这可以让我们更加灵活地管理数据。
需要注意的是,在自定义公式时,要避免使用特定的函数函数,以免影响行列式的计算结果。
三、行列式的应用场景行列式在数据管理中有着广泛的应用场景,下面列举几个常见的场景:1.数据筛选:当我们需要对数据进行筛选时,可以使用行列式来实现。
比如,在Excel中,我们可以使用行高斯函数或列高斯函数来计算某一列中所有值的求和,然后将求和的结果作为新的列。
2.数据统计:当我们需要对数据进行统计时,也可以使用行列式。
比如,在Excel中,我们可以使用行高斯函数或列高斯函数来计算某一列中所有值的求和,然后将求和的结果作为新的列。