第二章 可靠性基本理论
- 格式:pdf
- 大小:287.97 KB
- 文档页数:47
可靠性理论基础知识可靠性理论基础知识1.可靠性定义我国军用标准GIB 451A-2005《可靠性维修性保障性术语》中,可靠性定义为:产品在规定的条件下,规定的时间内,完成规定功能的能力。
“规定条件”包括使用时的环境条件和工作条件。
“规定时间”是指产品规定了的任务时间。
“规定功能”是指产品规定了的必须具备的功能及其技术指标。
可靠性的评价可以使用概率指标或时间指标,这些指标有:可靠度、失效率、平均无故障工作时间、平均失效前时间、有效度等。
典型的失效率曲线是浴盆曲线,其分为三个阶段:早期失效期、偶然失效期、耗损失效期。
早期失效期的失效率为递减形式,即新产品失效率很高,但经过磨合期,失效率会迅速下降。
偶然失效期的失效率为一个平稳值,意味着产品进入了一个稳定的使用期。
耗损失效期的失效率为递增形式,即产品进入老年期,失效率呈递增状态,产品需要更新。
1.1可靠性参数1、失效概率密度和失效分布函数失效分布函数就是寿命的分布函数,也称为不可靠度,记为)(t F 。
它是产品或系统在规定的条件下和规定的时间内失效的概率,通常表示为)()(t T P t F ≤=失效概率密度是累积失效概率对时间t 的倒数,记为f(t)。
它是产品在包含t 的单位时间内发生失效的概率,可表示为)()()('t F dtt dF t f ==。
2、可靠度可靠度是指产品或系统在规定的条件下,规定的时间内,完成规定功能的概率。
可靠度是时间的函数,可靠度是可靠性的定量指标。
可靠度是时间的函数,记为)(t R 。
通常表示为?∞=-=>=t dt t f t F t T P t R )()(1)()(式中t 为规定的时间,T 表示产品寿命。
3、失效率已工作到时刻t 的产品,在时刻t 后单位时间内发生失效的概率成为该产品时刻t 的失效率函数,简称失效率,记为)(t λ。
)(1)()()()()()(''t F t F t R t F t R t f t -===λ。
可靠性工程基本理论1可靠性(Reliability)可靠性理论是从电子技术领域发展起来,近年发展到机械技术及现代工程管理领域,成为一门新兴的边缘学科。
可靠性与安全性有密切的关系,是系统的两大主要特性,它的很多理论已应用于安全管理。
可靠性的理论基础是概率论和数理统计,其任务是研究系统或产品的可靠程度,提高质量和经济效益,提高生产的安全性。
产品的可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。
产品可以是一个零件也可以是一个系统。
规定的条件包括使用条件、应力条件、环境条件和贮存条件。
可靠性与时间也有密切联系,随时间的延续,产品的可靠程度就会下降。
可靠性技术及其概念与系统工程、安全工程、质量管理、价值工程学、工程心理学、环境工程等都有十分密切的关系。
所以,可靠性工程学是一门综合性较强的工作技术。
2可靠度(Reliablity)是指产品在规定条件下,在规定时间内,完成规定功能的概率。
可靠度用字母R表示,它的取值范围为0≤R≤1。
因此,常用百分数表示。
若将产品在规定的条件下,在规定时间内丧失规定功能的概率记为F,则R=1-F。
其中F称为失效概率,亦称不可靠度。
设有N个产品,在规定的条件下,在规定的时间内,有n个产品失效,则F=n/NR=(N-n)/N=1-F可靠度与时间有关,如100个日光灯管,使用一年和使用两年,其损坏的数量是不同的,失效率和可靠度也都不同。
所以可靠度是时间的函数,记成R(t),称为可靠度函数。
图5-1是可靠度函数R(t)和失效概率F(t)变化曲线。
图5-1可靠度3失效率(Failurerate)失效率是指工作到某一时刻尚未失效的产品,在该时该后,单位时间内发生失效的概率。
在极值理论中,失效率称为“强度函数”;在经济学中,称它的倒数为“密尔(Mill)率”;在人寿保险事故中,称它为“死亡率强度”。
失效率是衡量产品在单位时间内失效次数的数量指标;它也是描述产品在单位时间内失效的可能性。
可靠性工程基本理论1可靠性(Reliability)可靠性理论是从电子技术领域发展起来,近年发展到机械技术及现代工程管理领域,成为一门新兴的边缘学科。
可靠性与安全性有密切的关系,是系统的两大主要特性,它的很多理论已应用于安全管理。
可靠性的理论基础是概率论和数理统计,其任务是研究系统或产品的可靠程度,提高质量和经济效益,提高生产的安全性。
产品的可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。
产品可以是一个零件也可以是一个系统。
规定的条件包括使用条件、应力条件、环境条件和贮存条件。
可靠性与时间也有密切联系,随时间的延续,产品的可靠程度就会下降。
可靠性技术及其概念与系统工程、安全工程、质量管理、价值工程学、工程心理学、环境工程等都有十分密切的关系。
所以,可靠性工程学是一门综合性较强的工作技术。
2可靠度(Reliablity)是指产品在规定条件下,在规定时间内,完成规定功能的概率。
可靠度用字母R表示,它的取值范围为0≤R≤1。
因此,常用百分数表示。
若将产品在规定的条件下,在规定时间内丧失规定功能的概率记为F,则R=1-F。
其中F称为失效概率,亦称不可靠度。
设有N个产品,在规定的条件下,在规定的时间内,有n个产品失效,则F=n/NR=(N-n)/N=1-F可靠度与时间有关,如100个日光灯管,使用一年和使用两年,其损坏的数量是不同的,失效率和可靠度也都不同。
所以可靠度是时间的函数,记成R(t),称为可靠度函数。
图5-1是可靠度函数R(t)和失效概率F(t)变化曲线。
图5-1可靠度3失效率(Failurerate)失效率是指工作到某一时刻尚未失效的产品,在该时该后,单位时间内发生失效的概率。
在极值理论中,失效率称为“强度函数”;在经济学中,称它的倒数为“密尔(Mill)率”;在人寿保险事故中,称它为“死亡率强度”。
失效率是衡量产品在单位时间内失效次数的数量指标;它也是描述产品在单位时间内失效的可能性。
可靠性工程基本理论可靠性工程是一种工程学科,主要涉及如何对产品和系统的可靠性进行评估、设计和管理等。
可靠性工程的基本理论包括可靠性的定义、可靠性的特征、可靠性的评估方法、可靠性的设计原则和可靠性预测方法等。
1. 可靠性的定义可靠性是指产品或系统在规定条件下保持正常运行的能力。
从概率学的角度来看,可靠性是指产品或系统在规定时间内不出现故障的概率。
具体来说,可靠性可以用以下公式来表示:可靠性= (正常运行时间)/(正常运行时间+故障时间)2. 可靠性的特征可靠性具有以下几个特征:(1)可度量性:可靠性可以通过概率和统计方法进行量化和评估。
(2)时效性:产品或系统的可靠性是随着时间变化的,需要及时进行检测和更新。
(3)风险性:可靠性与风险直接相关,风险越高,可靠性要求越高。
(4)系统性:可靠性需要从整个系统的角度考虑,而非单个组成部分的可靠性。
3. 可靠性的评估方法可靠性评估方法主要包括故障模式和效应分析(FMEA)、故障树分析(FTA)、可靠性增长法(RAM)和可靠性试验等。
(1)故障模式和效应分析(FMEA)是一种从设计阶段就开始进行的预防性可靠性评估方法。
其主要思想是通过对每个零部件的故障模式和故障后果进行识别、分类和评估,推断出产品或系统的可靠性并采取相应的预防措施。
(2)故障树分析(FTA)是一种基于逻辑的可靠性评估方法。
它将故障模式和事件之间的因果关系表示为一棵树状结构,通过逐层分析和推断出故障的原因,进而评估产品或系统的可靠性。
(3)可靠性增长法(RAM)是一种逐步提高产品或系统可靠性的方法。
通过在产品或系统的使用过程中收集和分析故障数据,以修正设计和制造过程中不足之处,最终提高产品或系统的可靠性。
(4)可靠性试验是通过对样品进行一系列可靠性测试,从而评估产品或系统的可靠性。
常见的可靠性试验方法包括加速寿命试验、高温试验、低温试验、振动试验、冲击试验等。
4.可靠性的设计原则可靠性的设计原则包括下列几个方面:(1)原则上应对可能引起故障的所有因素(如环境因素)进行评估和控制。
可靠性理论基础复习资料目录第一章绪论第二章可靠性特征量第三章简单不可修系统可靠性分析第四章复杂不可修系统可靠性分析第五章故障树分析法第六章三态系统可靠性分析第七章可靠性预计与分配第八章寿命试验及其数据分析第九章马尔可夫型可修系统的可靠性第一章:可靠性特征量2.1可靠度2.2失效特征量2.3可靠性寿命特征2.4失效率曲线2.5常用概率分布2.1可靠度一、系统的分类:可修系统与不可修系统;可修系统是指系统的组成单元发生故障后,经过维修能够使系统恢复到正常工作状态。
不可修系统是指系统或其组成单元一旦发生失效,不在修复,系统处于报废状态。
二、可靠性定义产品在规定条件下,规定时间内,完成规定功能的能力。
1. 产品:可以是一个小零件,也可以指一个大系统。
2. 规定条件:主要是指使用条件和环境条件。
3. 规定时间:包括产品的运行时间、飞机起落架的起飞着陆次数、循环次数或旋转次数等。
产品可靠性是非确定性的,并且具有概率性质和随机性质。
广义可靠性与狭义可靠性指可修复产品在使用中或者不发生故障(通过预防性维修),或者发生故障也易于维修,因而经常处于可用状态的能力。
广义可靠性=狭义可靠性+可维修性广义可靠性典型事例:赛车可靠性的分类:固有可靠性和使用可靠性固有可靠性:通过设计、制造、管理等所形成的可靠性(通常体现在产品的固有寿命上)使用可靠性:产品在使用条件影响下,保证固有可靠性的发挥与实现的功能。
(通常体现在产品的实际使用寿命上)使用条件:包括运输、保管、维修、操作和环境条件等。
例1:判断下面说法的正确性:所谓产品的失效,即产品丧失规定的功能。
对于可修复系统,失效也称为故障。
(V)例2:可靠度R(t)具备以下那些性质? ( BCD) A. R(t)为时间的递增函数B. o w R(t) < 1C. R(0)=1D. R()=0若受试验的样品数是N o个,到t时刻未失效的有Ns(t)个;失效的有N f(t)个。