第三章 第四节 电磁法原理
- 格式:ppt
- 大小:768.50 KB
- 文档页数:39
课题※第三章磁场及电磁感应※第一节磁场课型新课授课班级授课时数 1 教学目标1.了解磁场及电流的磁场。
2.了解安培力的大小及方向。
教学重点1.磁场。
2.安培力的大小及方向。
教学难点安培力的大小及方向。
学情分析教学效果教后记新授课A、新授课※第一节磁场一、磁场1.磁体某些物体具有吸引铁、钴、镍等物质的性质叫磁性。
具有磁性的物体叫磁体。
磁体分为天然磁体和人造磁体。
常见的条形磁铁、马蹄形磁铁和针形磁铁等都是人造磁体,如下图所示。
3-2 常见人造磁铁2.磁极磁体两端磁性最强,磁性最强的地方叫磁极。
任何磁体都有一对磁极,一个叫南极,用S表示;另一个叫北极,用N表示,如右图所示。
N极和S极总是成对出现并且强度相等,不存在独立的N极和S极。
当用一个条形磁铁靠近一个悬挂的小磁针(或条形磁铁)时,如下图所示。
我们发现:当条形磁铁的N极靠近小磁针的N极时,小磁针N极一端马上被排斥;当条形磁铁的N极靠近小磁针的S极时,小磁针S极一端立刻被条形磁铁吸引。
说明磁极之间存在相互作用力,同名磁极互相排斥,异名磁极互相吸引。
3.磁场力是物质之间相互作用的结果。
用手推门,门就会转动打开,这是因为力直接作用于门。
上述实验中,磁极之间存在的作用力并没有直接作用,到底是什么神密的物质使得它们之间有力的作用呢?这种神密的物质就是磁场。
磁极之间相互作用的磁力就是通过磁场传递的。
磁场是磁体周围存在的特殊物质。
磁极在自己周围的空间里产生磁场,磁场对它里面的磁极有磁场力的作用。
4.磁场方向把小磁针放在磁场中的任一点,可以看到小磁针受磁场力的作用。
静止时它的两极不再指向南北方向,而指向一个别的方向。
在磁场中的不同点,小磁针静止时指的方向一般并不相同。
这个现象说明,磁场是有方向性的。
一般规定,在磁场中某点放一个能自由转动的(展示磁铁)(对照实物形进行说明)(演示)(讲解)小磁针,小磁针静止时N极所指的方向,就是该点磁场的方向。
在磁场中可以利用磁感线(也称为磁力线)来形象地表示各点的磁场方向。
电磁法电磁法是以地壳中岩、矿石的导电性、导磁性和介电性差异为基础,通过观测和研究人工的或天然的交变电磁场的分布来寻找矿产资源或解决其它地质问题的一类电法勘探方法。
电磁法所依据的是电磁感应现象。
以低频电磁法(f<10-4Hz)为例,如图1供入发射线圈时,就在该线圈周围建立了频率和所示,当发射机以交变电流I1相位都相同的交变磁场H1,H1称为一次场。
若这个交变磁场穿过地下良导电体,则由于电磁感应,可使导体内产生二次感应电流I2(这是一种涡旋电流)。
这个电流又在周围空间建立了交变磁场H2,H2称为二次场或异常场。
利用接收线圈接收二次场或总场(一次场与二次场的合成),在接收机上记录或读出相应的场强或相位值,并分析它们的分布规律,就可以达到寻找有用矿产或解决其它地质问题之目的。
图1 电磁法原理示意图电磁法的种类较多,按场源的形式可分为人工场源(又称主动场源)和天然场源(又称被动场源)两大类。
按发射场性质不同,又分为连续谱变(频率域)电磁法和阶跃瞬变(时间域)电磁法两类。
按工作环境,又可以将电磁法分为地面、航空和井中电磁法三类。
与传导类电法相比,电磁法具有如下特点:(1)它的发射和接收装置都可以不采用接地电极,而是以感应方式建立和观测电磁场,因此航空电法才成为可能;(2)采用多种频率测量,可以扩大方法的应用范围;(3)观测电磁场的多种量值,如振幅(实分量、虚分量)、相位等,可以提高地质效果。
一、频率域和时间域电磁场基本特征1.频率域电磁场的基本特征在频率域电磁场中常用的电磁场是谐变场,其中场强、电流密度以及其他量均按余弦或正弦规律变化,如:借助于交流电的发射装置,如振荡器、发电机等,在地中及空气中建立谐变场。
激发方式一般有接地式的和感应式两种。
第一种方式与直流电法一样利用 A、B 供电电极,将交流电直接供入大地。
由于供电导线和大地不仅具有电阻而且还有电感。
所以由A、B电极直接传入地中的一次电流场在相位上与电源相位发生位移。
大学物理电磁学的基本原理电磁学是物理学的一个分支,研究电荷和电流之间相互作用的规律以及电磁场的性质和行为。
在大学物理学习的过程中,掌握电磁学的基本原理是非常重要的。
本文将介绍大学物理电磁学的基本原理,帮助读者理解电磁学的核心概念。
一、库仑定律库仑定律是电磁学的基石之一,描述了两个电荷之间的相互作用力。
库仑定律可以表示为:F = k * |q1 * q2| / r^2其中,F为两个电荷之间的相互作用力,q1和q2为电荷的大小,r为两个电荷之间的距离,k为一个常数。
库仑定律说明了电荷之间的相互作用力与电荷大小成正比,与距离的平方成反比。
这个定律在许多电磁现象的解释中起着重要作用。
二、电场电场是电荷周围的一种物理量,用向量表示,表示电荷对其他电荷施加的作用力。
电场可以用库仑定律来定义:E =F / q其中,E为电场强度,F为电荷所受的力,q为测试电荷。
电场可以通过电场线来可视化,电场线表示了电场的方向和强度。
电场线由正电荷指向负电荷,线的密度表示电场强度的大小。
三、电势电势是描述电场能量的物理量,也是描述电荷周围电场性质的一种方式。
电势可以理解为单位正电荷在电场中所具有的能量。
电势可以通过电势差来定义:V = W / q其中,V为电势,W为单位正电荷所具有的能量,q为测试电荷。
电势差表示了两个位置之间的电势差异。
电荷会沿着电势差的方向移动,从高电势到低电势。
四、安培定律和法拉第电磁感应定律安培定律描述了电流对磁场的产生作用。
安培定律可以表示为:B = μ * I / (2πr)其中,B为磁场强度,μ为真空磁导率,I为电流强度,r为距离电流的距离。
法拉第电磁感应定律描述了磁场对电荷运动所产生的电动势。
根据法拉第电磁感应定律,当磁场穿过一个闭合电路时,电路中会产生电动势。
五、麦克斯韦方程组麦克斯韦方程组是描述电磁学的基本方程。
麦克斯韦方程组包括四个方程:1. 麦克斯韦第一方程:∇·E = ρ / ε₀2. 麦克斯韦第二方程:∇×E = -∂B / ∂t3. 麦克斯韦第三方程:∇·B = 04. 麦克斯韦第四方程:∇×B = μ₀J + μ₀ε₀∂E / ∂t其中,E为电场强度,B为磁场强度,ρ为电荷密度,J为电流密度,ε₀和μ₀分别为真空电常数和真空磁导率。
《电磁场与电磁波》课程教学大纲一、课程基本信息课程代码:课程名称:电磁场与电磁波英文名称:Electromagnetic Fields and Electromagnetic Waves课程类别:专业基础课学时:63学分:3适用对象: 电子信息专业考核方式:考试先修课程:大学物理、高等数学与工程数学(包括矢量分析,场论和数理方程等)二、课程简介电磁场与电磁波是通信技术的理论基础,是电子信息专业本科学生的知识结构中重要组成部分。
本课程使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。
使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。
培养学生正确的思维方法和分析问题的能力,使学生学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。
为后续课程打下坚实的理论基础。
Electromagnetic Field and Electromagnetic Wave is the theoretical foundation of communication technology, it is one of the most important components of the knowledge structerue for undergraduate students who major in information and electronic. Electromagnetic Field and Electromagnetic Wave make students grasp the theorem and the physical meaning of the Maxwell equations and mathematical expressions. It also make students grasp building method and analyzing method of some important mathematical model (such as wave equation,Laplace equation). This course trains students on the proper ways of thinking and ability to analyze issues, It also provides a solid theoretical foundation for following courses.三、课程性质与教学目的一切电现象,都会产生电磁场,而电磁波的辐射与传播规律,更是一切无线电活动的基础。
电磁学的工作原理电磁学是物理学中的一个重要分支,研究电荷和电荷之间相互作用的规律以及电磁场的产生和传播。
电磁学的工作原理可以分为两个方面,即电荷之间的相互作用和电磁场的产生与传播。
一、电荷之间的相互作用在电磁学中,电荷是基本的物质属性之一。
电荷分为正电荷和负电荷,它们之间存在相互排斥的力。
根据库仑定律,两个电荷之间的相互作用力正比于它们的电荷量,反比于它们之间的距离的平方。
即电荷之间的相互作用力 F 可以表示为:F = k * |q1 * q2| / r^2其中,k 是库仑常量,|q1 * q2| 是电荷的乘积,r 是电荷之间的距离。
根据库仑定律可以看出,电磁学中的电荷之间的相互作用力是一种作用力,它的作用依赖于电荷之间的距离和电荷量的大小。
当电荷之间的距离增大时,作用力减小;当电荷量增大时,作用力增大。
二、电磁场的产生与传播除了电荷之间的相互作用,电磁学还研究了电磁场的产生与传播。
当电荷发生运动时,就会产生磁场。
根据安培定律,电流元素产生的磁场与电流元素所在点的距离呈反比关系。
电流元素产生的磁场线形成闭合环路,即电流元素周围构成一个磁场环。
另外,根据法拉第电磁感应定律,当磁场的强度变化时,会在磁场中产生感应电动势。
这就是电磁感应的基本原理。
电磁感应是电磁学中非常重要的现象,广泛应用于发电机、变压器等电气设备中。
电磁场的传播是通过电磁波实现的。
电磁波是一种垂直于传播方向的电场和磁场的振动波动。
电磁波在真空中传播的速度为光速,即约为3×10^8米/秒。
电磁波的频率和波长之间有着确定的关系,即c = λ * f,其中 c 是光速,λ 是波长,f 是频率。
电磁波的产生可以通过振荡电荷或加速电荷实现。
振荡电荷产生的电磁波称为天线辐射,是通信领域中常用的一种传播方式。
总结起来,电磁学的工作原理包括电荷之间的相互作用和电磁场的产生与传播。
电荷之间的相互作用力满足库仑定律,与电荷量和距离相关;电磁场的产生与传播涉及电流元素产生的磁场和电磁感应定律。