机械二级齿轮传动设计
- 格式:docx
- 大小:37.27 KB
- 文档页数:7
二级齿轮传动比计算公式齿轮传动是一种常见的机械传动方式,通过齿轮的啮合来实现力的传递和转速的转换。
齿轮传动比是指输入轴和输出轴的转速之比,也是描述齿轮传动效果的重要参数。
在二级齿轮传动中,存在两个齿轮,分别称为驱动齿轮和从动齿轮。
二级齿轮传动比的计算公式如下:传动比 = 驱动齿轮的齿数 / 从动齿轮的齿数其中,齿轮的齿数是指齿轮上齿的数量。
齿轮的齿数决定了齿轮的尺寸和齿轮传动的效果。
一般情况下,驱动齿轮的齿数大于从动齿轮的齿数,这样可以实现转速的降低和扭矩的增大。
在实际应用中,通过计算二级齿轮传动比可以确定齿轮的选型和传动效果。
首先,需要确定输入轴和输出轴的转速要求,即驱动齿轮的转速和从动齿轮的转速。
然后,根据所给的驱动齿轮和从动齿轮的齿数,可以计算出二级齿轮传动比。
根据传动比和输入轴的转速,可以求得输出轴的转速。
在计算二级齿轮传动比时,需要注意以下几点:1. 需要确保输入轴和输出轴的转速单位一致,通常为转/分钟。
2. 齿轮的齿数必须是整数,不能是小数或负数。
3. 传动比可以为正数或负数,正数表示输出轴的转速与输入轴的转速同向,负数表示反向。
4. 传动比的大小取决于驱动齿轮和从动齿轮的齿数,齿数越大,传动比越大,转速降低的程度越大。
二级齿轮传动比的计算公式可以推广到多级齿轮传动中。
对于多级齿轮传动,传动比等于各级齿轮传动比的乘积。
因此,在实际应用中,可以通过计算每个级别的齿轮传动比,再将其相乘得到总的传动比。
总的来说,二级齿轮传动比的计算公式是通过驱动齿轮和从动齿轮的齿数来确定的,它是齿轮传动效果的重要参数。
在实际应用中,可以通过计算传动比来确定齿轮的选型和传动效果,从而满足转速和扭矩的要求。
同时,多级齿轮传动的传动比等于各级齿轮传动比的乘积,可以通过计算每个级别的传动比来得到总的传动比。
这些计算公式和方法对于齿轮传动的设计和分析具有重要的参考价值。
二级行星齿轮课程设计一、课程目标知识目标:1. 学生能理解并掌握二级行星齿轮的基本结构、工作原理及特点。
2. 学生能描述二级行星齿轮传动系统的设计方法及其在工程中的应用。
3. 学生能运用二级行星齿轮的传动比计算公式,进行相关计算。
技能目标:1. 学生具备运用二级行星齿轮进行简单机械设计的实际操作能力。
2. 学生能够分析二级行星齿轮在实际应用中可能出现的故障及其原因。
3. 学生能够运用所学知识,对二级行星齿轮传动系统进行优化设计。
情感态度价值观目标:1. 培养学生对齿轮传动系统的兴趣,激发学生探究机械原理的欲望。
2. 培养学生的团队协作意识,提高学生在实际操作中发现问题、解决问题的能力。
3. 增强学生对我国机械工程领域的自豪感,培养学生为我国机械行业发展贡献力量的使命感。
本课程针对高二年级学生,结合学科特点,注重理论与实践相结合,提高学生的动手操作能力和实际问题解决能力。
通过本课程的学习,使学生能够更好地理解和掌握二级行星齿轮的相关知识,为后续的机械设计课程打下坚实基础。
同时,注重培养学生的情感态度和价值观,激发学生的学习兴趣,提高学生的综合素质。
二、教学内容本章节教学内容主要包括以下几部分:1. 二级齿轮传动系统概述:介绍齿轮传动系统的基本概念、分类及二级行星齿轮传动系统的特点。
2. 二级行星齿轮的结构与原理:详细讲解二级行星齿轮的组成、工作原理及传动比计算。
3. 二级行星齿轮的设计方法:分析二级行星齿轮的设计步骤,包括参数选择、强度计算、校核等。
4. 二级行星齿轮的应用实例:介绍二级行星齿轮在实际工程中的应用案例,如汽车变速箱、风力发电机组等。
5. 二级行星齿轮的故障分析及优化设计:分析二级行星齿轮在实际应用中可能出现的故障及其原因,探讨优化设计方法。
教学内容按照以下进度安排:第一课时:二级齿轮传动系统概述,二级行星齿轮的结构与原理。
第二课时:二级行星齿轮的设计方法。
第三课时:二级行星齿轮的应用实例,故障分析及优化设计。
机械设计减速器设计说明书系别:专业:学生姓名:学号:指导教师:职称:目录第一部分设计任务书 (1)一、初始数据 (1)二. 设计步骤 (1)第二部分传动装置总体设计方案 (2)一、传动方案特点 (2)二、计算传动装置总效率 (2)第三部分电动机的选择 (2)3.1 电动机的选择 (2)3.2 确定传动装置的总传动比和分配传动比 (3)第四部分计算传动装置的运动和动力参数 (4)(1)各轴转速: (4)(2)各轴输入功率: (5)(3)各轴输入转矩: (5)第五部分 V带的设计 (6)5.1 V带的设计与计算 (6)5.2 带轮结构设计 (8)第六部分齿轮的设计 (10)6.1 高速级齿轮的设计计算 (10)6.2 低速级齿轮的设计计算 (18)第七部分传动轴和传动轴承及联轴器的设计 (26)7.1 输入轴的设计 (26)7.2 中间轴的设计 (31)7.3 输出轴的设计 (37)第八部分键联接的选择及校核计算 (43)8.1 输入轴键选择与校核 (43)8.2 中间轴键选择与校核 (44)8.3 输出轴键选择与校核 (44)第九部分轴承的选择及校核计算 (45)9.1 输入轴的轴承计算与校核 (45)9.2 中间轴的轴承计算与校核 (46)9.3 输出轴的轴承计算与校核 (46)第十部分联轴器的选择 (47)第十一部分减速器的润滑和密封 (47)11.1 减速器的润滑 (47)11.2 减速器的密封 (48)第十二部分减速器附件及箱体主要结构尺寸 (49)12.1 减速器附件的设计与选取 (49)12.2 减速器箱体主要结构尺寸 (54)设计小结 (55)参考文献 (55)第一部分设计任务书一、初始数据设计二级展开式斜齿圆柱齿轮减速器,初始数据T = 650Nm,V = 0.85m/s,D = 350mm,设计年限(寿命): 5年,每天工作班制(8小时/班):2班制,每年工作天数:300天,三相交流电源,电压380/220V。
.机械设计课程设计姓名:王纪武学号: 20100460110班级: 10机械本1指导教师:侯顺强完成日期: 2012.12.22第一章题目设计用于带式运输机的传动装置,图示如下,连续单向运转,载荷平稳,空载起动,使用期限十年,小批量生产,两班制工作,运输带允许误差±5%1.1 基本数据数据编号B11运输带工作拉力F/KN 0.6运输带工作速度v/(m/s) 1.5卷筒直径D/mm 250滚筒效率η0.96力F中已考虑。
)1.2 设计工作量:1、减速器装配图1张(A0或sA1);2、零件图1~3张;3、设计说明书一份。
1—电动机,2—弹性联轴器,3—两级圆柱齿轮减速器,4—高速级齿轮,5—低速级齿轮 6—刚性联轴器 7—卷筒第二章电动机选择,传动系统运动和动力参数计算2.1电动机的选择2.1.1确定电动机类型按工作要求和条件,选用Y系列三相交流异步电动机。
2.1.2.确定电动机的容量(1)工作机卷筒上所需功率Pw= Fv/1000η=2000 × 1.4/1000×0.96 =0.9375kwPw(2)电动机所需的输出功率为了计算电动机的所需的输出功率Pd ,先要确定从电动机到工作机之间的总功率η总。
设η1、η2、η3、η4、分别V 带、8级齿轮闭式齿轮传动、滚动轴承、弹性联轴器。
由[2]表2-2 P6查得η1 = 0.95,η2 = 0.97,η3 = 0.98,η 4 = 0.99,则传动装置的总效率为η总=η1η22η33η 4 = 0.95 x 0.972 x 0.983 x 0.99=0.833wd 总P P ==η0.9375/0.833=1.125kw 由表16-1选取电动机的额定功率为1.5kw 。
2.1.3选择电动机转速工作机转速 n w =60VπD=60x1000x1.5/3.14x250=114.6497r/min 总传动比 i= n m / n w ,其中n m 工作机的满载转速根据电动机所需功率和同步转速,查机械设计手册(软件版)R2.0-电器设备-常用电动机规格,符合这一范围的常用同步加速有3000、1500、1000m in r 。
机械设计课程设计原始资料一、设计题目热处理车间零件输送设备的传动装备二、运动简图图11—电动机 2—V带 3—齿轮减速器 4—联轴器 5—滚筒 6—输送带三、工作条件该装置单向传送,载荷平稳,空载起动,两班制工作,使用期限5年(每年按300天计算),输送带的速度容许误差为±5%.四、原始数据滚筒直径D(mm):320运输带速度V(m/s):滚筒轴转矩T(N·m):900五、设计工作量1减速器总装配图一张2齿轮、轴零件图各一张3设计说明书一份六、设计说明书内容1. 运动简图和原始数据2. 电动机选择3. 主要参数计算4. V带传动的设计计算5. 减速器斜齿圆柱齿轮传动的设计计算6. 机座结构尺寸计算7. 轴的设计计算8. 键、联轴器等的选择和校核9. 滚动轴承及密封的选择和校核10. 润滑材料及齿轮、轴承的润滑方法11. 齿轮、轴承配合的选择 12. 参考文献七、设计要求1. 各设计阶段完成后,需经指导老师审阅同意后方能进行下阶段的设计;2. 在指定的教室内进行设计.一. 电动机的选择一、电动机输入功率w P60600.75244.785/min 22 3.140.32w v n r Rn π⨯⨯===⨯⨯90044.785 4.21995509550w w Tn P kw ⨯===二、电动机输出功率d P其中总效率为32320.960.990.970.990.960.833v ηηηηηη=⨯⨯⨯⨯=⨯⨯⨯⨯=带轴承齿轮联轴滚筒4.2195.0830.833wd P P kw η=== 查表可得Y132S-4符合要求,故选用它。
Y132S-4(同步转速1440min r ,4极)的相关参数 表1二. 主要参数的计算一、确定总传动比和分配各级传动比传动装置的总传动比144032.1544.785m w n i n ===总 查表可得V 带传动单级传动比常用值2~4,圆柱齿轮传动单级传动比常用值为3~5,展开式二级圆柱齿轮减速器()121.3~1.5i i ≈。
二级圆锥齿轮减速器的设计二级圆锥齿轮减速器是一种常见而重要的机械传动装置。
在工业机械中广泛应用,可实现输出扭矩和转速的变换,具有结构紧凑、传动效率高、可靠性强等特点。
下面将从设计原理、设计步骤和注意事项等方面介绍二级圆锥齿轮减速器的设计。
设计原理:二级圆锥齿轮减速器由两个不同级数的直齿圆锥齿轮组成。
第一级圆锥齿轮由输入轴带动,通过啮合传递力矩和转速给第二级圆锥齿轮,最终输出给负载。
通过合理的模数、齿数和配合等参数的选择,可以实现所需的输出扭矩和转速变换。
设计步骤:1.确定设计参数:根据实际需求,确定传动比、输入转速、输出扭矩等设计参数。
2.计算第一级圆锥齿轮参数:根据输入转速和输出扭矩,通过动力学分析和强度校核计算第一级圆锥齿轮的模数和齿数。
3.计算第二级圆锥齿轮参数:根据第一级圆锥齿轮的输出转速和输出扭矩,同样进行动力学分析和强度校核计算第二级圆锥齿轮的模数和齿数。
4.选择轴承:根据设计参数和计算结果,选择合适的轴承类型和规格,用于支撑齿轮和传递负载。
5.安装布置:根据实际安装场景和传动方式,确定减速器的安装布置,设计支撑结构和连接方式。
6.强度校核:通过强度校核计算,检验设计参数和材料的强度安全性。
7.材料选择:根据传动功率和工作条件,选择合适的材料进行制造,以满足强度和耐磨性能的要求。
8.制造和装配:根据设计图纸和工艺要求,进行齿轮的加工制造和减速器的装配。
9.润滑和冷却:选择合适的润滑方式和冷却系统,保证减速器的正常运行。
10.检测和调试:进行减速器的试运行和静态检测,调整和优化传动性能。
注意事项:1.综合考虑强度和传动效率,根据实际应用需求选择合适的传动比。
2.根据操作环境和工作条件,选择耐磨性好的齿轮材料。
3.合理选择齿轮的配合间隙和啮合角,以确保传动平稳、低噪音和高效率。
4.注意减速器的装配精度和轴心偏差等几何误差,避免故障和性能下降。
5.对于大型减速器,需要考虑轴承和润滑系统的设计,确保其正常工作和寿命。
二级同轴圆柱齿轮减速器课程设计二级同轴圆柱齿轮减速器是一种常见的机械传动装置,广泛应用于工业领域中需要减速运动的设备中。
在机械设计与制造专业的课程中,学生需要通过课程设计来深入了解和掌握这种减速器的原理、结构和设计方法。
课程设计的目标是让学生通过自主学习和实践,掌握二级同轴圆柱齿轮减速器的工作原理和设计流程。
正文将介绍课程设计的内容和步骤,并拓展一些相关的知识点。
首先,课程设计的内容包括以下几个方面:1. 工作原理分析:学生需要分析二级同轴圆柱齿轮减速器的工作原理,了解其传动方式和传动比的计算方法。
2. 结构设计:学生需要根据给定的传动比和输入功率,设计减速器的整体结构和重要零部件的尺寸。
这个过程中需要考虑到齿轮的强度和耐久性。
3. 传动比的计算:学生需要根据输入轴和输出轴的转速,计算减速器的传动比。
这个计算过程需要考虑到齿轮的模数、齿数和齿轮的组合方式。
4. 传动效率的估算:学生需要根据减速器的结构和材料参数,估算减速器的传动效率。
这个过程中需要考虑到齿轮的摩擦损失和轴承的摩擦损失。
其次,拓展一些相关的知识点:1. 齿轮的设计原则:齿轮的设计需要考虑到齿轮的强度、齿面接触疲劳强度和齿轮的几何形状等因素。
学生可以学习齿轮的设计原则,了解齿轮的传动特性和设计要点。
2. 同轴齿轮的优缺点:同轴齿轮传动具有结构简单、传动平稳等优点,但也存在传动效率低、齿轮噪声大等缺点。
学生可以深入了解同轴齿轮传动的特点和适用范围。
3. 减速器的应用领域:减速器广泛应用于各种机械设备中,如机床、起重设备、输送设备等。
学生可以了解减速器在不同领域的应用特点和设计要求。
总之,二级同轴圆柱齿轮减速器课程设计旨在培养学生的机械设计和传动技术能力。
通过课程设计的学习和实践,学生能够掌握减速器的原理和设计方法,为将来的工程实践打下坚实的基础。
可编辑修改精选全文完整版机械设计课程设计计算说明书设计题目带式运输机传动装置设计目录一课程设计任务书 2 二设计要求2三设计步骤21. 传动装置总体设计方案 32. 电动机的选择 43. 确定传动装置的总传动比和分配传动比 54. 计算传动装置的运动和动力参数 65. 齿轮的设计97. 滚动轴承和传动轴的设计148. 键联接设计289. 箱体结构的设计2910.润滑密封设计3111.联轴器设计32四设计小结32 五参考资料32111一课程设计任务书课程设计题目:设计带式运输机传动装置(简图如下)1——二级展开式圆柱齿轮减速器2——运输带3——联轴器(输入轴用弹性联轴器,输出轴用的是齿式联轴器)4——电动机5——卷筒原始数据:数据编号 1 2 3 4 5 6 71500 2200 2300 2500 2600 2800 3300运送带工作拉力F/N数据编号8 93500 3800运送带工作拉力F/N运输带工作速度 1.1 1.1 1.1 1.1 1.1 1.4 1.22、电动机的选择1)选择电动机的类型2)选择电动机的容量3)确定电动机转速1)减速器为二级展开式圆柱齿轮减速器。
2)方案简图如下图3) 该方案的优缺点:二级展开式圆柱齿轮减速器具有传递功率大,轴具有较大刚性,制造简单,维修方便,使用寿命长等许多优点,在工业上得到广泛应用。
2、电动机的选择1)选择电动机的类型按工作要求和工作条件选用Y系列全封闭自扇冷式笼型三相异步电动机,电压380V。
2)选择电动机的功率工作机的有效功率为:kWFvPw96.310002.133001000=⨯==从电动机到工作机传送带间的总效率为:5423421ηηηηηη⋅⋅⋅⋅=∑由《机械设计课程设计手册》表1-7可知:1η:卷筒传动效率0.962η:滚动轴承效率0.99(深沟球轴承)3η:齿轮传动效率0.98 (7级精度一般齿轮传动)4η:联轴器传动效率0.99(弹性联轴器)kWPw96.3=87.0=∑ηkWPd55.4=6. 滚动轴承和传动轴的设计 (一).齿轮轴的设计Ⅰ.输出轴上的功率I P 、转速I n 和转矩I T由上可知kw P 45.12=I ,m in 1460r n =I ,mm N T ⋅⨯=I 41014.8 Ⅱ.求作用在齿轮上的力因已知高速小齿轮的分度圆直径mm mz d 5.62255.211=⨯==而 N d T F t 8.260421==IN F F t r 1.948cos tan ==βα0=a FⅢ.初步确定轴的最小直径材料为45钢,调质处理。
齿轮传动试选载荷系数K=1.3,小齿轮传递的转矩T1=9.27×104N·mm由表《圆柱齿轮的齿宽系数φd》选取φd=1.1由表《弹性影响系数Z E》知Z E=189.8MPa1/2按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa,大齿轮的接触疲劳强度极限σHlim2=550MPa计算应力循环次数N1=60n1jL h=60×480×1×(16×8×230)=8.4096×108N2= N1/u=8.4096×108/7.328=1.1476×108查取接触疲劳系数寿命系数K HN1=1.02,K HN2=1.13计算解除疲劳须用应力,取失效概率为1%,安全系数S=1[σH]1= K HN1σHlim1/s=1.02×600=612MPa[σH]2= K HN2σHlim2/s=1.13×550=621.5MPa取[σH]1和[σH]2中较小的作为齿轮副的接触疲劳许用应力,[σH]=[σH]1=612MPa计算小齿轮分度圆直径=2.32×612612328.718.1898.1891328.71000027.93.13⨯⨯⨯⨯⨯+⨯⨯⨯)(=54.8mm调整小齿轮分度圆直径圆周速度v=πd1t n1/(60×1000)=1000604808.54⨯⨯⨯π=1.377m/s齿宽b=φd d1t=1.1×54.8=60.28mm由表《使用系数K A》查得K A=1由v=1.377m/s,7级精度,查得动载系数K V=1.06齿轮的圆周力F t1=2T1/ d1t =2×9.27×104/54.8=3.383×103NK A F t1/b=1×3.383×103/60.28=56.12N/mm<100N/mm齿间载荷分配系数K Hα=1用插值法查得7级精度、小齿轮相对支承对称布置时,KHβ=1.312实际载荷系数K= K A K V K HαK Hβ=1×1.06×1×1.312=1.391按实际载荷算分度圆直径d1= d1tKtK3=54.8×1.31.3913=56.05mm相应的齿轮模数m= d1/ z1=56.05÷24=2.3354按齿根弯曲疲劳强度设计:小齿轮的弯曲疲劳强度极限σFE1=500MPa,大齿轮的弯曲疲劳强度TσσNN[[dv=b=dm=2.3354σ齿轮传动极限σFE2=380MPa,弯曲疲劳寿命系数K FN1=0.9,K FN2=0.95查取齿形系数Y Fa1=2.65,Y Fa2=2.11查取应力校正系数Y Sa1=1.58,系数Y Sa,2=1.87取弯曲疲劳安全系数S=1.4,弯曲疲劳许用应力[σF]1= K FN1σFE1/S=4.15009.0⨯=321.43MPa[σF]2= K FN2σFE2/S=4.138095.0⨯=257.86MPa计算载荷系数K= K A K V K FαK Fβ=1×1.06×1×1.26=1.336Y Fa1 Y Sa1/[σF]1=321.4358.165.2⨯=0.01303Y Fa2 Y Sa2/[σF]2=257.8687.111.2⨯=0.0153>0.01303所以取大齿轮的Y Fa Y Sa/[σF]=0.0153,模数为=1.815mm圆周速度计算d1=mz1=1.815×24=43.56mmv=πd1t n1/(60×1000)=10006048056.43⨯⨯⨯π=1.095m/s齿宽b=φd d1=1×43.56=43.56mmh=(2ha*+c*)m=(2×1+0.25)×1.815=4.08375mm宽高比hb=4.0837543.56=10.67根据v=1.095m/s,7级精度查得动载系数K v=1.08由F t1=2 T1/ d1=2×9.27×104/43.56=4.256×103NK A F t1/b=1×4.256×103÷43.56=97.7N/mm<100N/mm齿间载荷分配系数K Fα=1.2用插值法查得KHβ=1.417,结合hb=10.67得KFβ=1.34,则载荷系数为KF= K A K V K FαK Fβ=1×1.08×1.2×1.34=1.73664可得实际载荷系数算得的齿轮模数m实=m(KF/KFt)1/3=1.815×1.31.736643=1.998mm对比计算结果,由齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的模数,由于齿轮模数m的大小主要取决于弯曲疲劳强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径有关,可取由弯曲疲劳强度算得的模数1.998mm并就近圆整为标准值m=2mm,按接触疲劳强度算得的分度圆直径d1=56.05mm,算出小齿轮齿数z1= d1/ m=256.05≈28大齿轮齿数z2=u z1=7.328×28=205.184取z2=205,z1与z1互为质数这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到结构紧凑,避免浪费。