第三章 磁场复习案
- 格式:doc
- 大小:301.00 KB
- 文档页数:3
第三章磁场教案3.1 磁现象和磁场第一节、磁现象和磁场1.磁现象磁性:能吸引铁质物体的性质叫磁性。
磁体:具有磁性的物体叫磁体。
磁极:磁体中磁性最强的区域叫磁极。
2.电流的磁效应磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引。
(与电荷类比)电流的磁效应:电流通过导体时导体周围存在磁场的现象(奥斯特实验)。
3.磁场磁场的概念:磁体周围存在的一种特殊物质(看不见摸不着,是物质存在的一种特殊形式)。
磁场的基本性质:对处于其中的磁极和电流有力的作用。
磁场是媒介物:磁极间、电流间、磁极与电流间的相互作用是通过磁场发生的。
磁场对电流的作用,电流与电流的作用,类比于库仑力和电场,形成磁场的概念,磁场虽然看不见、摸不着,但是和电场一样都是客观存在的一种物质,我们可以通过磁场对磁体或电流的作用而认识磁场。
4.磁性的地球地球是一个巨大的磁体,地球周围存在磁场-—-地磁场.地球的地理两极与地磁两极不重合(地磁的N极在地理的南极附近,地磁的S极在地理的北极附近),其间存在磁偏角。
地磁体周围的磁场分布情况和条形磁铁周围的磁场分布情况相似。
宇宙中的许多天体都有磁场。
月球也有磁场.例1、以下说法中,正确的是()A、磁极与磁极间的相互作用是通过磁场产生的B、电流与电流的相互作用是通过电场产生的C、磁极与电流间的相互作用是通过电场与磁场而共同产生的D、磁场和电场是同一种物质例2、如图表示一个通电螺线管的纵截面,ABCDE在此纵截面内5个位置上的小磁针是该螺线管通电前的指向,当螺线管通入如图所示的电流时,5个小磁针将怎样转动?例3、有一矩形线圈,线圈平面与磁场方向成 角,如图所示。
设磁感应强度为B,线圈面积为S,则穿过线圈的磁通量为多大?例4、如图所示,两块软铁放在螺线管轴线上,当螺线管通电后,两软铁将(填“吸引”、“排斥”或“无作用力”),A端将感应出极。
3.2 磁感应强度第二节、磁感应强度1.磁感应强度的方向:小磁针静止时N极所指的方向规定为该点的磁感应强度方向思考:能不能用很小一段通电导体来检验磁场的强弱呢?2.磁感应强度的大小匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。
《磁场》复习一、磁场的基本概念一、知识点疏理1.磁场:(1)磁场是存在 磁极 、 电流 和 运动电荷 周围空间的一种特殊形态的物质。
(2)磁场的基本性质:磁场对放入其中的磁极和电流有磁场力的作用 (对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
这一点应该跟电场的基本性质相比较。
最早揭示磁现象电本质的假设是 安培分子电流假说 假说。
认为磁极的磁场和电流的磁场都是由电荷的运动产生的。
(不等于说所有磁场都是由运动电荷产生的。
)(3)磁场是有方向的,我们规定在磁场中任一点小磁针N 极受力方向(或者小磁针静止时N 极的指向)就是那一点的磁场方向。
2.磁感应强度B(1)定义:在磁场中垂直于磁场方向的通电导线,受到的磁场力F 跟电流I 和导线长度L 的乘积IL 的比值,叫做通电导线所在处的 磁感应强度,用B 表示,即Il F B(2)单位: 特斯拉 符号为T ,1T=1N/(A ∙m)=1kg/(A ∙s 2)(3)磁感应强度是 矢量,其方向是 小磁针静止时N 极所指的方向 ,不是电流所受磁场力的方向。
(4)注意:① B 是表征 磁场强弱 的物理量,与I 、L 和F 无关,与某点放不放通电导线无关,由磁场本身决定。
② B 的方向不是和F 相同,而是垂直于F 。
3.磁感线(1)在磁场中画出一系列有方向的曲线,在这些曲线上,每一点的切线方向都跟该点磁场方向相同,这些曲线称为磁感线。
磁感线的疏密表示磁场强弱。
(2)磁感线不相交,不中断是闭合曲线....,在磁体外部从N 极出来指向S 极,在磁体内部,由S 极指向N 极。
与电场线比较。
(3)磁感线是为了形象描述磁场而假想的物理模型,在磁场中并不真实的存在,不可认为有磁感线的地方才有磁场,没有磁感线的地方没有磁场。
(4)安培定则(右手螺旋定则):①直线电流的磁场:右手握住直导线, 伸直的拇指 方向与电流的方向一致, 弯曲的四指 方向就是直线电流在周围激发的磁场方向;②环形电流的磁场:弯曲的四指 方向与环形电流方向一致,伸直的拇指指中心轴线上的磁感线方向; ③通电螺线管的磁场:通电螺线管可看成多匝环形电流 串联而成,弯曲的四指 方向与电流方向一致,拇指指向螺线管内部的磁场方向。
《磁场复习教案》一、教学目标1. 知识与技能:(1)掌握磁场的基本概念,如磁感线、磁场强度、磁感应强度等;(2)了解磁场的分布规律,如巴申定律、安培环路定律等;(3)能够运用磁场知识分析解决实际问题,如电磁铁、电机、变压器等。
2. 过程与方法:(1)通过观察实验现象,培养学生的观察能力和动手能力;(2)运用数学方法计算磁场强度和磁感应强度,提高学生的数学建模能力;(3)分析实际设备中的磁场分布,提高学生的工程实践能力。
3. 情感态度价值观:(1)培养学生对科学探究的热情,激发学生对物理学的兴趣;(2)培养学生团结协作、积极进取的精神风貌;(3)使学生认识到磁场在现代科技领域的重要地位,提高学生的社会责任感和使命感。
二、教学内容1. 磁场的基本概念:磁感线、磁场强度、磁感应强度等;2. 磁场的分布规律:巴申定律、安培环路定律等;3. 磁场计算方法:磁场强度和磁感应强度的计算;4. 磁场在实际中的应用:电磁铁、电机、变压器等。
三、教学重点与难点1. 教学重点:磁场的基本概念、磁场的分布规律、磁场计算方法、磁场在实际中的应用;2. 教学难点:磁场强度和磁感应强度的计算,磁场分布规律的应用。
四、教学方法1. 讲授法:讲解磁场的基本概念、磁场的分布规律、磁场计算方法等;2. 实验法:观察实验现象,培养学生的观察能力和动手能力;3. 案例分析法:分析实际设备中的磁场分布,提高学生的工程实践能力;4. 讨论法:引导学生分组讨论,培养学生的团队协作能力。
五、教学过程1. 引入:通过讲解磁场在现代科技领域的重要地位,激发学生的学习兴趣;2. 讲解磁场的基本概念,如磁感线、磁场强度、磁感应强度等;3. 演示实验,让学生观察磁场现象,培养学生的观察能力和动手能力;4. 讲解磁场的分布规律,如巴申定律、安培环路定律等;5. 讲解磁场计算方法,如磁场强度和磁感应强度的计算;6. 分析实际设备中的磁场分布,提高学生的工程实践能力;7. 总结本节课的主要内容,布置课后作业。
磁场单元复习教案一、教学目标:1.理解什么是磁场以及磁场的特性;2.掌握如何计算磁场强度和磁场能量;3.能够解决与磁场有关的问题。
二、教学重点:1.理解磁场的概念;2.掌握磁场强度和磁场能量的计算方法;3.理解磁场与电流和磁性物质的关系。
三、教学难点:1.理解磁场的作用和应用;2.掌握通过磁场解决实际问题的方法。
四、教学过程:1.复习磁场的概念及其特性:a.引导学生回顾磁场的定义,即物质周围存在着力场,能使具有磁性的物质受力;b.讲解磁场的特性,如磁场的方向、形状、大小等。
2.复习磁场强度和磁场能量的计算方法:a.提示学生回忆磁场强度的定义和计算方法;b.教授磁场能量的计算方法,提供相关实例进行讲解。
3.复习磁场与电流的关系:a.引导学生回忆安培定律,即电流周围存在着磁场;b.讲解电流产生的磁场的特性,如方向、大小等。
4.复习磁场与磁性物质的关系:a.提示学生回忆磁性物质受力的特点,即在磁场中可以受到力的作用;b.讲解磁性物质的磁化过程和磁场对磁性物质的作用;5.复习磁场的作用和应用:a.教授磁场对电流的作用,如电磁感应和磁力;b.讲解磁场在实际生活中的应用,如电磁铁、电动机等。
6.解决与磁场有关的问题:a.给学生提供一些与磁场有关的问题,让他们应用所学知识解决;b.引导学生思考如何利用磁场解决实际问题,鼓励他们展开讨论。
五、课堂实践:1.在黑板上绘制磁场的示意图,让学生根据图形判断磁场的方向;2.提供几个实例,让学生计算磁场强度和磁场能量;3.指导学生进行实验,探究电流对磁场的影响;4.给学生提供一些与磁场有关的问题,让他们分组讨论并给出解决方案。
六、教学反思:本节课通过复习磁场的概念和特性,加深学生对基本概念的理解;通过教授磁场的计算方法,提高学生的计算能力;通过讲解磁场与电流和磁性物质的关系,引导学生探索磁场的作用和应用。
通过此次复习教案,学生对磁场的理解能力得到了提升,对磁场的应用能力有了进一步的掌握。
第三章磁场复习课(两课时)一、磁场1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.二、磁感线为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线.1.疏密表示磁场的强弱.2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向.3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。
4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·*熟记常用的几种磁场的磁感线:【例1】根据安培假说的物理思想:磁场来源于运动电荷.如果用这种思想解释地球磁场的形成,根据地球上空并无相对地球定向移动的电荷的事实.那么由此推断,地球总体上应该是:A.带负电;B.带正电;C.不带电;D.不能确定三、磁感应强度1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。
2.在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度l的乘积Il的比值,叫做通电导线所在处的磁感应强度.①表示磁场强弱的物理量.是矢量.②大小:B=F/Il(电流方向与磁感线垂直时的公式).③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.④单位:牛/安米,也叫特斯拉,国际单位制单位符号T.⑤B定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.⑥匀强磁场的磁感应强度处处相等.⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.【例2】如图所示,正四棱柱abed一a'b'c'd'的中心轴线00'处有一无限长的载流直导线,对该电流的磁场,下列说法中正确的是A.同一条侧棱上各点的磁感应强度都相等B.四条侧棱上的磁感应强度都相同C.在直线ab上,从a到b,磁感应强度是先增大后减小D.棱柱内任一点的磁感应强度比棱柱侧面上所有点都大【例3】如图所示,两根导线a、b中电流强度相同.方向如图所示,则离两导线等距离的P点,磁场方向如何?【例4】六根导线互相绝缘,所通电流都是I,排成如图10一5所示的形状,区域A、B、C、D均为相等的正方形,则平均磁感应强度最大的区域是哪些区域?该区域的磁场方向如何?【例5】一小段通电直导线长1cm,电流强度为5A,把它放入磁场中某点时所受磁场力大小为0.1N,则该点的磁感强度为()A.B=2T;B.B≥2T;C、B≤2T ;D.以上三种情况均有可能【例6】如图所示,一根通电直导线放在磁感应强度B=1T的匀强磁场中,在以导线为圆心,半径为r的圆周上有a,b,c,d四个点,若a点的实际磁感应强度为0,则下列说法中正确的是A.直导线中电流方向是垂直纸面向里的B.C点的实际磁感应强度也为0C. d,方向斜向下,与B夹角为450D.以上均不正确四、磁通量与磁通密度1.磁通量Φ:穿过某一面积磁力线条数,是标量.2.磁通密度B:垂直磁场方向穿过单位面积磁力线条数,即磁感应强度,是矢量.3.二者关系:B=Φ/S(当B与面垂直时),Φ=BScosθ,Scosθ为面积垂直于B 方向上的投影,θ是B与S法线的夹角.【例7】如图所示,A为通电线圈,电流方向如图所示,B、C为与A在同一平面内的两同心圆,φB、φC分别为通过两圆面的磁通量的大小,下述判断中正确的是()A.穿过两圆面的磁通方向是垂直纸面向外B.穿过两圆面的磁通方向是垂直纸面向里B>φC D.φB<φC1.磁场基本性质的应用【例8】从太阳或其他星体上放射出的宇宙射线中含有高能带电粒子,若到达地球,对地球上的生命将带来危害.对于地磁场对宇宙射线有无阻挡作用的下列说法中,正确的是A.地磁场对直射地球的宇宙射线的阻挡作用在南北两极最强,赤道附近最弱B.地磁场对直射地球的宇宙射线的阻挡作用在赤道附近最强,南北两极最弱C.地磁场对宇宙射线的阻挡作用各处相同D.地磁场对宇宙射线无阻挡作用【例9】超导是当今高科技的热点之一,当一块磁体靠近超导体时,超导体中会产生强大的电流,对磁体有排斥作用,这种排斥力可使磁体悬浮在空中,磁悬浮列车就采用了这项技术,磁体悬浮的原理是①超导体电流的磁场方向与磁体的磁场方向相同.②超导体电流的磁场方向与磁体的磁场方向相反.③超导体使磁体处于失重状态.B④超导体对磁体的磁力与磁体的重力相平衡.A.①③B.①④C.②③D.②④【例10】磁场具有能量,磁场中单位体积所具有的能量叫做能量密度,其值为B2/2μ,式中B是感应强度,μ是磁导率,在空气中μ为一已知常数.为了近似测得条形磁铁磁极端面附近的磁感应强度B,一学生用一根端面面积为A的条形磁铁吸住一相同面积的铁片P,再用力将铁片与磁铁拉开一段微小距离△L,并测出拉力F,如图所示.因为F所做的功等于间隙中磁场的能量,所以由此可得磁感应强度B与F、A之间的关系为B=磁场对电流的作用一、安培力1.安培力:通电导线在磁场中受到的作用力叫做安培力.说明:磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力.2.安培力的计算公式:F=BILsinθ(θ是I与B的夹角);通电导线与磁场方向垂直时,即θ=900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F=0N;00<B<900时,安培力F介于0和最大值之间.3.安培力公式的适用条件:①公式F=BIL一般适用于匀强磁场中I⊥B的情况,对于非匀强磁场只是近似适用(如对电流元),但对某些特殊情况仍适用.如图所示,电流I1//I2,如I1在I2处磁场的磁感应强度为B,则I1对I2的安培力F=BI2L,方向向左,同理I2对I1,安培力向右,即同向电流相吸,异向电流相斥.②根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力.两根通电导线间的磁场力也遵循牛顿第三定律.二、左手定则1.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.2.安培力F的方向既与磁场方向垂直,又与通电导线垂直,即F跟BI所在的面垂直.但B与I的方向不一定垂直.3.安培力F、磁感应强度B、电流1三者的关系①已知I,B的方向,可惟一确定F的方向;②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向;③已知F,1的方向时,磁感应强度B的方向不能惟一确定.4.由于B,I,F的方向关系常是在三维的立体空间,所以求解本部分问题时,应具有较好的空间想象力,要善于把立体图画变成易于分析的平面图,即画成俯视图,剖视图,侧视图等.【例1】如图所示,一条形磁铁放在水平桌面上在其左上方固定一根与磁铁垂直的长直导线,当导线通以如图所示方向电流时()A.磁铁对桌面的压力减小,且受到向左的摩擦力作用B.磁铁对桌面的压力减小,且受到向右的摩擦力作用C.磁铁对桌面的压力增大,且受到向左的摩擦力作用D.磁铁对桌面的压力增大,且受到向右的摩擦力作用I1I2【例2】.如图在条形磁铁N极处悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?【例3】电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。
课题:《磁场》章末复习【学习目标】:1、掌握本章知识的内涵和外延。
2、把握全章知识脉络,能就用所学知识解决问题。
【学习重点】:基本知识的梳理。
【学习难点】:易混概念的区别与联系。
【合作探究】:探究活动一:师生共同梳理本章知识网络产生基本性质描述磁场作用典例:探究活动二:易混、易错知识点的区别与联系1、磁感应强度B与电场强度E的比较3、洛伦兹力与电场力的比较有界匀强磁场指在局部空间存在着匀强磁场,带电粒子从磁场区域外垂直于磁场方向射入磁场区域,在磁场区域内经历一段匀速圆周运动,也就是通过一段圆弧后离开磁场区域.由于带电粒子的运动方向与磁场方向垂直,从磁场边界进入磁场的方向不同,或磁场区域边界不同.造成它在磁场中运动的圆弧轨道各有不同,可以从图3-6-5中看出.例题:(2011·安徽,23)如图3所示,在以坐标原点O 为圆心、半径为R 的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B ,磁场方向垂直于xOy 平面向里.一带正电的粒子(不计重力)从O 点沿y 轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t0时间从P 点射出. (1)求电场强度的大小和方向;(2)若仅撤去磁场,带电粒子仍从O 点以相同的速度射入,经t02时间恰从半圆形区域的边界射出.求粒子运动加速度的大小;(3)若仅撤去电场,带电粒子仍从O 点射入,且速度为原来的4倍,求粒子在磁场中运动的时间.【课堂小结】:【达标测评】:1.下列关于电场和磁场的说法中正确的是 ( ). A .电场线和磁感线都是封闭曲线 B .电场线和磁感线都是不封闭曲线C .通电导线在磁场中一定受到磁场力的作用D .电荷在电场中一定受到电场力的作用2.速率相同的电子垂直磁场方向进入四个不同的磁场,其轨迹如下图所示,则磁场最强的是( )图3-6-5图33、(2010·山东潍坊模拟)如图7所示,有界匀强磁场的磁感应强度B=2×10-3T;磁场右边是宽度L=0.2 m、场强E=40 V/m、方向向左的匀强电场.一带电粒子电荷量q=-3.2×10-19C,质量m=6.4×10-27kg,以v=4×104m/s的速度沿OO′垂直射入磁场,在磁场中偏转后进入右侧的电场,最后从电场右边界射出.求:(1)大致画出带电粒子的运动轨迹;(画在题图上)(2)带电粒子在磁场中运动的轨道半径;(3)带电粒子飞出电场时的动能.。
通电直导线周围磁场通电环行导线周围磁场第三章磁场复习案一、基本概念1.磁场的产生磁体、电流、变化的电场周围有磁场。
安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。
(但这并不等于说所有磁场都是由运动电荷产生的,因为麦克斯韦发现变化的电场也能产生磁场。
)2.磁场的基本性质:磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
这一点应该跟电场的基本性质相比较。
3.磁场方向:七种表述是等效的①磁场的方向②小磁针静止时N极指向③N极的受力方向④磁感线某点的切线方向⑤磁感应强度的方向⑥小磁针静止时S极指向⑦S极的受力方向4.磁感线⑴用来形象地描述磁场中各点的磁场强弱和方向的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线: (4)假想的⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
5.磁感应强度:ILFB (条件是匀强磁场中,或ΔL很小,并且L⊥B )。
磁感应强度是矢量。
单位是特斯拉,符号为T。
由磁场本身决定,和放不放入电流无关。
6.磁通量如果在磁感应强度为B的匀强磁场中有一个与磁场方向垂直的平面,其面积为S,则定义B与S的乘积为穿过这个面的磁通量,用Φ表示。
Φ是标量,但有正负,原因是S有方向(进该面或出该面)。
单位为韦伯,符号为W b。
1Wb=1T∙m2=1V∙s=1kg∙m2/(A∙s2)。
可以认为磁通量就是穿过某个面的磁感线条数。
在匀强磁场磁感线垂直于平面的情况下,B=Φ/S,所以磁感应强度又叫磁通密度。
在匀强磁场中,当B与S的夹角为α时,有Φ=BS sinα。
当斜面和垂直面之间的二面角为时ɑ,则Φ=BS cosɑ二、安培力(磁场对电流的作用力)1、安培力方向的判定⑴用左手定则。
⑵用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
⑶用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。
可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。
例1. 如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?例1 例2 例3 例4解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。
分析的关键是画出相关的磁感线。
例2. 条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会___(增大、减小还是不变?)。
水平面对磁铁的摩擦力大小为___。
解:本题有多种分析方法。
⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。
磁铁对水平面的压力减小,但不受摩擦力。
⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。
⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
例3. 电视机显象管的偏转线圈示意图如上,即时电流方向如图。
该时刻由里向外射出的电子流将向哪个方向偏转?解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。
电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。
(本题用其它方法判断也行,但不如这个方法简洁)。
例4.如图在条形磁铁N极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等效螺线管的电流在正面是向下的,与x线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。
(本题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况。
) 2、安培力大小的计算F =BLI sin α(α为B 、L 间的夹角)高中只要求会计算α=0(不受安培力)和α=90°两种情况。
如图所示,光滑导轨与水平面成α角,导轨宽L 。
匀强磁场磁感应强度为B 。
金属杆长也为L ,质量为m ,水平放在导轨上。
当回路总电流为I 1时,金属杆正好能静止。
求:⑴B 至少多大?这时B 的方向如何?⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止?例5.解:画出金属杆的截面图。
由三角形定则得,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小。
根据左手定则,这时B 应垂直于导轨平面向上,大小满足:BI 1L =mg sin α, B =mg sin α/I 1L 。
当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI 2L cos α=mg sin α,I 2=I 1/cos α。
(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。
三.洛伦兹力 1、洛伦兹力运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的 微观解释 。
公式F= qvB 。
条件是v 与B 垂直。
计算公式的推导:如图所示,整个导线受到的磁场力(安培力)为F 安=BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。
由以上四式可得F=qvB 。
条件是v 与B 垂直。
当v 与B 成θ角时,F=qvB sin θ。
2、洛伦兹力方向的判定:在用左手定则时,四指必须指电流方向(不是速度方向),即 正电荷 定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。
例6. 磁流体发电机原理图如右。
等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。
该发电机哪个极板为正极?两板间最大电压为多少?解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。
所以上极板为正。
正、负极板间会产生电场。
当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv 。
当外电路断开时,这也就是电动势E 。
当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。
这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。
在定性分析时特别需要注意的是:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。
⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。
)⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。
在外电路断开时最终将达到平衡态。
3、洛伦兹力大小的计算带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式:R = mv/qB T = 2πm/qB例7. 如图直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30°角的同样速度v射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?(提示:关键是找圆心、找半径和用对称。
)解:由公式知,它们的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距2r ,由图还可看出,经历时间相差2T /3。
答案为射出点相距。
关键是找圆心、找半径和用对称。
例6 例7 例8例8.一个质量为m 电荷量为q 的带电粒子从x 轴上的P (a ,0)点以速度v ,沿与x 正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限。
求匀强磁场的磁感应强度B 和射出点的坐标。
解:由射入、射出点的半径可找到圆心O /,并得出半径为0。
4.带电粒子在匀强磁场中的偏转⑴穿过矩形磁场区。
一定要先画好辅助线(半径、速度及延长线)。
偏转角由sin θ=L /R 求出。
侧移由R 2=L 2-(R-y )2解出。
经历时间由Bqm t θ=得出。
注意,这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同!MN⑵穿过圆形磁场区。
画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
偏角可由Rr =2tanθ求出。
经历时间由Bqm t θ=得出。
注意:由对称性,射出线的反向延长线必过磁场圆的圆心。
例九 5.带电粒子在混合场中的运动1.速度选择器正交的匀强磁场和匀强电场组成速度选择器。
带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。
否则将发生偏转。
这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,BE v=。
在本图中,速度方向必须向右。
⑴这个结论与离子带何种电荷、电荷多少都无关。
⑵若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。
例9.某带电粒子从图中速度选择器左端由中点O 以速度v 0向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B ,该粒子将打到a 点上方的c 点,且有ac =ab ,则该粒子带 电;第二次射出时的速度为 。
解:B 增大后向上偏,说明洛伦兹力向上,所以为带正电。
由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同。
2.带电微粒在重力、电场力、磁场力共同作用下的运动带电微粒在三个场共同作用下做匀速圆周运动。
必然是电场力和重力平衡,而洛伦兹力充当向心力。
例10. 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。
则该带电微粒必然带_____,旋转方向为_____。
若已知圆半径为r ,电场强度为E 磁感应强度为B ,则线速度为_____。
3.回旋加速器与质谱仪O。