一次函数二次函数反比例函数性质总结
- 格式:doc
- 大小:689.50 KB
- 文档页数:8
一次函数、二次函数、反比例函数性质总结1.一次函数一次函数)0(≠+=k b kx y ,当0=x 时,得到的y 的值也即b 叫做图象与坐标轴的纵截距,当0=y 时,得到的x 的值,叫做图象与坐标轴的横截距。
(1)当0=b 时,一次函数的解析式变为)0(≠=k kx y ,也称为正比例函数,此函数图象恒过原点)0,0(O ,且横,纵截距都为0。
且0>k 时,函数图象过一、三象限,0>k 时,图象过二、四象限。
② k (≠a )+∞(1)当0,0==c b 时,函数的解析式变为)0(2≠=a ax y ,则 ①0>a 时 ②0<a 时(2)b a ,决定二次函数的对称轴与开口方向②0,0,0=<>c b a 时③ 0,0,0=><c b a 时 ④ 0,0,0=<<c b a 时(3)c a ,决定开口方向与与y 轴的截距①0,0,0=>>b c a 时 ②a③0,0,0=>b c a 时 ④0,0,0=<<b c a 时y yOxx yOOyyOxxxxy y OOx xOOy(3)对于一般的二次函数,c b a ,,共同来决定其函数图像与性质,故通常采用配方的方法 )0(2≠++=a c bx ax y c aba b x a b x a c x a b x a +-++=++=))2()2(()(2222 c a b a b x a +-+=]4)2[(222=c a b a b x a +-+4)2(22 =ab ac a b x a 44)2(22-++ 我们称abx 2-=为二次函数的对称轴,坐标)44,2(2a b ac a b --为二次函数的顶点坐标,此时我们也称其解析式为二次函数的顶点式,并可设其解析式为)0()(2≠+-=a k h x a y 。
若知道二次函数与x 轴的两个交点坐标,可设其解析式为)0)()((21≠--=a x x x x a y 。
高中数学知识点归纳高中数学是一门重要的学科,知识点众多且相互关联。
以下是对高中数学主要知识点的归纳。
一、函数函数是高中数学的核心概念之一。
1、函数的定义:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
2、函数的性质:包括单调性、奇偶性、周期性等。
单调性:如果对于定义域 I 内某个区间 D 上的任意两个自变量的值x₁、x₂,当 x₁<x₂时,都有 f(x₁)<f(x₂)(或 f(x₁)>f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
奇偶性:如果对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),那么函数f(x)就叫做偶函数;如果对于函数f(x)的定义域内任意一个x,都有 f(x)= f(x),那么函数 f(x)就叫做奇函数。
周期性:对于函数 y=f(x),如果存在一个不为零的常数 T,使得当x 取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数 y=f(x)叫做周期函数,周期为 T。
3、常见函数:一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数等。
一次函数:y = kx + b(k、b 为常数,k≠0)。
二次函数:y = ax²+ bx + c(a≠0),其图象是一条抛物线。
反比例函数:y = k/x(k 为常数,k≠0)。
指数函数:y = a^x(a>0 且a≠1)。
对数函数:y =logₐx(a>0 且a≠1)。
幂函数:y =x^α (α 为常数)。
二、三角函数三角函数在解决几何和物理问题中有着广泛的应用。
1、角的概念:包括正角、负角、零角,以及角度制与弧度制的换算。
2、三角函数的定义:在平面直角坐标系中,设点 P(x,y)是角α 终边上的任意一点,r =|OP| =√(x²+ y²),则sinα = y/r,cosα = x/r,tanα = y/x。
一次函数(y=kx+b)1.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0, b)。
[1]2.当b=0时,一次函数变为正比例函数。
当然正比例函数为特殊的一次函数。
[1]3.对于正比例函数,y除以x的商是一定数(x≠0)。
对于反比例函数,x与y的积是一定数。
4.在两个一次函数表达式中:•当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;•当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;•当两个一次函数表达式中的k不相同,b也不相同时,则这两个一次函数的图像相交;•当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);•当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。
[1]5.直线y=kx+b的图象和性质与k、b的关系如下表所示:k>0,b>0经过第一、二、三象限k>0,b<0经过第一、三、四象限k>0,b=0经过第一、三象限【k>0时,图象从左到右上升,y随x的增大而增大】k<0b>0经过第一、二、四象限k<0,b<0经过第二、三、四象限K<0,b=0经过第二、四象限【k<0图象从左到右下降,y随x的增大而减小】一. 定义型例1.已知函数是一次函数,求其解析式。
解:由一次函数定义知,,,故一次函数的解析式为y=-6x+3。
注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。
如本例中应保证m-3≠0。
二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2,-1),求这个函数的解析式。
解: 一次函数的图像过点(2, -1),,即k=1。
故这个一次函数的解析式为y=x-3。
变式问法:已知一次函数y=kx-3,当x=2时,y=-1,求这个函数的解析式。
三. 两点型例3.已知某个一次函数的图像与x 轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。
一次函数二次函数反比例函数必记知识点1. 一次函数的解析式.正比例函数解析式.反比例函数解析式.2.一次函数的图象是一条. 正比例函数图象是一条经过点的. 反比例函数的图象是.3.确定以上函数的解析式通常用.这种方法首先要设出他们的.对于确定一次函数的解析式需条件, 确定正比例或反比例函数的解析式需条件, 确定二次函数的解析式需条件.4.画一次函数的图象通常取与的交点,他们的坐标是. 画正比例函数的图象通常取。
5. 一次函数的增减性取决于解析式中的,当时,y随x的增大而增大, 当时,y随x的增大而减小. 反比例函数的增减性取决于解析式中的,当时,在每个象限内,y随x的增大而增大, 当时, 在每个象限内y随x的增大而减小.6. 二次函数的解析式共有3种,其一般式是. 其顶点式是,其中顶点坐标为,对称轴是直线。
其两根式是,其中与x轴交点坐标表示为。
7.二次函数y=ax2+bx+c的图象是.它的基本特征是:有,其坐标可表示为;有轴,其解析式为.有方向,由来决定. 二次函数的图象与y轴的交点坐标为( , ).与x轴的交点决定于一元二次方程的,当时,有个交点, 当时,有个交点, 当时,有个交点.所以画图时要体现以上特征.7.二次函数y=ax2+bx+c的值恒大于0的条件为.二次函数y=ax2+bx+c的值恒小于0的条件为.8. 反比例函数的图象关于对称,它与x,y轴永无交点,原因是.判断一点是否在反比例函数的图象上的方法. 9. 二次函数的最值是其顶点的. 当时,它有最值.在x= 时, 最值为. 当时,它有最值.在x= 时, 最值为.10.两个量成正比例关系,则它们的是一个.设y与x成正比例关系,则有关系式. 两个量反成比例关系,则它们的是一个.设y与x成反比例关系,则有关系式.11.设二次函数y=ax2+bx+c与x轴有交点A(x1 , ),B(x2, ),则x1, x2是一元二次方程ax2+bx+c=0的.其中A,B两点关于轴是一对,且x1+ x2= . 两交点AB的距离可表示为.14.在下列坐标系内画出符合要求的一次函数的草图.k>0,b=0 k>0,b>0 k>0,b<0k<0,b=0 k<0,b>0 k<0,b<015.在下列坐标系内画出符合要求的反比例函数的草图.==三角形k>0 k<016.在下列坐标系内画出符合要求的二次函数的草图.y=ax2(a>0) y=ax2(a<0) y=x2与y=-x2 22222y=a(x-h)2(a<0,h>0) y=a(x-h)2(a<0,h<0) y=a(x-h)2+k (y>0)。
中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练函数及其图象1、坐标与象限定义1:我们把有顺序的两个数a与b所组成的数对,叫做有序数对,记作(a,b)。
定义2:平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴。
水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向。
两坐标轴的交点为平面直角坐标系的原点。
建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限。
2、函数与图象定义1:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量。
定义2:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
定义3:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
定义4:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。
这种式子叫做函数的解析式。
表示函数的方法:解析式法、列表法和图象法。
解析式法可以明显地表示对应规律;列表法直接给出部分函数值;图象法能直观地表示变化趋势。
画函数图象的方法——描点法:第1步,列表。
表中给出一些自变量的值及其对应的函数值;第2步,描点。
在直角坐标系中,以自变量的值为横坐标、相应的函数值为纵坐标,描出表格中数值对应的各点;第3步,连线。
按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来。
1、结合实例进一步体会用有序数对可以表示物体的位置。
2、理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。
初中函数集锦文献编辑-周俞江一. 一次函数:形如y=kx +b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数.如32+=x y ,32+-=x y 等等都是一次函数。
也可以理解成未知数x 的最高次方为1的函数. 1.画出下列函数图形(列表画图)1.62+=x y2.64-=x y3.62+-=x y4.64--=x y从上面的图像可以看得出来,所有一次函数都是直线,由于两点确定一条直线,画图时只需要找两个点(0,y )和点(x ,0)即可。
其中点(0,y )中的y 实际上是b . 2.用“两点作图法”画出下列函数图形1.62+=x y2.64-=x y3.62+-=x y4.64--=x y总结,通过”列表画图”,“两点作图”可以看出一次函数性质如下: 增减性:当 k>0时,y 随x 的增大而增大(从左到右上坡); 当k<0时,y 随x 的增大而减小(从左到右下坡). 函数图形与y 轴交于负半轴还是正半轴就取决于b kx y +=中的b当b >0时,函数图像与y 轴正半轴相交; 当b <0时,函数图像与y 轴负半轴相交.3.用上面总结的方法(一次函数性质)画下列函数图形1.62+=x y2.62-=x y3.62+-=x y4.62--=x y正比例函数:在一次函数b kx y +=中,当b=0时,kx y =,称y 是x 的正比例函数. 所以说正比例函数是一种特殊的一次函数.由于正比例函数是特殊的一次函数,所以 它也满足一次函数的性质:增减性:当 k>0时,y 随x 的增大而增大(从左到右上坡); 当k<0时,y 随x 的增大而减小(从左到右下坡). 由于在这里b=0,当0=x 时,0=y 时,所以正比例函数过原点。
1.画出下列正比例函数图形下列图形同样可以用列表画图法,麻烦;用两点作图法点(0,y )和点(x ,0)可得图形。
1.x y 3= 2.x y 4= 3.x y 2-= 4.x y 4-=2.用函数性质作图:(按增减性作图)以后都用函数性质作图,(快速,简单) 1.x y 3= 2.x y 4=3.x y 2-=4.x y 4-=一次函数图象及性质总结: 正比例函数k>0k<0一次函数图形画法:所有的函数图形刚开始都是通过描点列表法来画的,但是很多函数画图时都有规律可寻. 所以画图就有了专门的套路.为了画得快速,画得简约,以后画图都按套路进行。
一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
一次函数、二次函数和反比例函数是数学中常见的函数类型,它们在图像的增减性质上有着不同的特点。
本文将针对一次函数、二次函数和反比例函数的增区间进行详细分析和比较。
一、一次函数的增区间一次函数的一般形式为y=ax+b,其中a和b为常数且a不等于0。
一次函数的图像是一条直线,它具有以下特点:1. 如果a大于0,表示直线向上倾斜,那么函数的增区间为整个实数集(-∞,+∞);2. 如果a小于0,表示直线向下倾斜,那么函数的增区间为空集∅。
一次函数的增区间要么是整个实数集,要么是空集,取决于直线的斜率a的正负性。
二、二次函数的增区间二次函数的一般形式为y=ax²+bx+c,其中a、b和c为常数且a不等于0。
二次函数的图像是一条开口朝上或者朝下的抛物线,它具有以下特点:1. 如果a大于0,表示抛物线开口朝上,那么函数的增区间为实数集中与顶点的横坐标相等的点构成的单点集{x| x=x0}。
其中,顶点的横坐标x0=-b/2a;2. 如果a小于0,表示抛物线开口朝下,那么函数的增区间为整个实数集(-∞,+∞)。
二次函数的增区间要么是单点集,要么是整个实数集,取决于抛物线开口的方向和顶点的横坐标。
三、反比例函数的增区间反比例函数的一般形式为y=k/x,其中k为非零常数。
反比例函数的图像是一条对称于第一象限和第三象限的双曲线,它具有以下特点:1. 当k大于0时,函数的增区间为区间(0,+∞);2. 当k小于0时,函数的增区间为区间(-∞,0)。
反比例函数的增区间取决于常数k的正负性,当k为正时增区间在正半轴,当k为负时增区间在负半轴。
总结:一次函数、二次函数和反比例函数的增区间分别与直线的斜率、抛物线开口的方向和对称轴的正负相关。
对于一次函数和二次函数而言,其增区间可以通过其一般形式中的参数a的正负性来确定,而对于反比例函数,其增区间可以通过函数的常数k的正负性来确定。
通过本文的分析和比较,读者可以更加清晰地理解一次函数、二次函数和反比例函数在增区间上的不同特点。
初中数学函数知识点总结一、函数的定义及性质:1.函数的定义:函数是一个或多个自变量(输入)与一个因变量(输出)之间的对应关系。
2.函数的三要素:定义域、值域和对应关系。
3.函数的表示方法:函数表达式、函数图象和函数关系式。
4.函数的分类:一次函数、二次函数、反比例函数、指数函数、对数函数等。
5.确定函数的条件:给定函数的表达式、图象、关系式或特定点坐标等。
二、函数的运算法则:1.函数的和、差、积、商运算规则。
2.函数的复合运算规则。
3.函数的反函数及其性质。
4.函数的平移、翻折和伸缩等运算。
三、常见的函数类型及性质:1.一次函数(线性函数):(1)函数的定义:y = kx + b,k为斜率,b为截距。
(2)函数的图象:直线。
(3)性质:对称性、单调性、与坐标轴的交点。
2.二次函数:(1)函数的定义:y = ax^2 + bx + c,a不等于0。
(2)函数的图象:抛物线。
(3)性质:对称轴、顶点坐标、单调性、与坐标轴的交点、方程的根。
3.反比例函数:(1)函数的定义:y=k/x,k不等于0。
(2)函数的图象:双曲线的一支。
(3)性质:对称性、单调性、与坐标轴的交点。
4.指数函数:(1)函数的定义:y=a^x,a大于0且不等于1(2)函数的图象:以原点为中心对称的曲线。
(3)性质:单调性、与坐标轴的交点。
5.对数函数:(1)函数的定义:y = loga(x),a大于0且不等于1(2)函数的图象:一条斜率小于1的直线。
(3)性质:单调性、与坐标轴的交点。
四、函数的应用:1.函数在数学模型中的应用:解决实际问题时,可以建立函数模型进行分析和求解。
2.函数的最值问题:通过函数的图象或导数来确定函数的最大值、最小值。
3.函数的相关性分析:通过分析变量之间的函数关系,判断相关性并探究其影响因素。
4.函数的综合应用:如面积、体积、速度、加速度等问题的求解。
五、函数的图象与函数的性质:1.函数图象的绘制:根据函数的定义和性质,确定关键点,描绘出精确的函数图象。
一次函数、二次函数、反比例函数性质总结
1.一次函数
一次函数)0(≠+=k b kx y ,当0=x 时,得到的y 的值也即b 叫做图象与坐标轴的纵截距,当0=y 时,得到的x 的值,叫做图象与坐标轴的横截距。
(1)当0=b 时,一次函数的解析式变为)0(≠=k kx y ,也称为正比例函数,此函数图象恒过原点)0,0(O ,且横,纵截距都为0。
且0>k 时,函数图象过一、三象限,0>k 时,图象过二、四象限。
(2)当0≠b 时,)0(≠+=k b kx y 的图象及性质为
① ② k
象限
③ ④ <k 象限
2.二次函数
二次函数的一般形式为)0(2
≠++=a c bx ax y ,且a 决定开口方向和大小,当0
>a 时,抛物线开口向上,有最小值,值域为),44[
2
+∞-a b ac 当0<a ,抛物线开口向下,有最大值,值域为]44,
(2
a
b a
c --∞。
(1)当0,0==c b 时,函数的解析式变为)0(≠=a ax y ,则 ①0>a 时 ②0<a 时
(2)b a ,决定二次函数的对称轴和开口方向
②0,0,0=<>c b a 时
③ 0,0,0=><c b a 时 ④ 0,0,0=<<c b a 时
(3)c a ,决定开口方向和与y 轴的截距
①0,0,0=>>b c a 时 ②0,0,0=<>b c a 时
y
y
O
x
x
x
x
y y O
O
y
O
x
x
O
y O
③0,0,0=><b c a 时
(3)对于一般的二次函数,c b a ,,共同来决定其函数图像和性质,故通常采用配方的方法 )0(2
≠++=a c bx ax y c a
b
a b x a b x a c x a b x a +-++=++
=))2()2(()(2222 c a b a b x a +-+=]4)2[(222=c a b a b x a +-+4)2(2
2 =a
b a
c a b x a 44)2(22-++ 我们称a
b
x 2-=为二次函数的对称轴,坐标)44,2(2a b ac a b --为二次函数的顶点坐标,此时我们也称其解析式为二次函数的顶点式,并可设其解析式为)0()(2
≠+-=a k h x a y 。
若知道二次函数与x 轴的两个交点坐标,可设其解析式为)0)()((21≠--=a x x x x a y 。
故二次函数的解析式有三种形式 一般式:)0(2
≠++=a c bx ax y
顶点式:)0()(2
≠+-=a k h x a y ,顶点坐标),(k x 两点式: )0)()((21≠--=a x x x x a y
y y
O
O
x
x
x
x
y
O
O
y
3.反比例函数
反比例函数的一般形式为)0(≠=
k x
k
y ,当0>k 时,函数图象过一、三象限,当0<k 时,函数图象过二、四象限。
①0>k ②0<
O
O
y
y x
x
一.选择题
1.如果在一次函数中,当自变量x 的取值围是-1<x <3时,函数y 的取值围是-
2<y <6,那么此函数解析式为( )A.x y 2= B.42+-=x y C.x y 2=或42+-=x y D.x y 2-=或42-=x y
2.无论m 为何实数,直线m x y 2+=与直线4+-=x y 的交点不可能在( ) A .第三象限 B .第四象限 C .第一象限 D .第二象限
3.已知一次函数k kx y -=,若y 随着x 的增大而减小,则该函数的图象经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限
4.已知一次函数4)2(2-++=k x k y 的图象经过原点,则( ) A 、k=±2 B 、k=2 C 、k= -2 D 、无法确定
5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取值围是( )A .0x > B .0x < C .2x > D .2x <
6.(2007)已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值围是( ) A .1a > B .1a <
C .0a >
D .0a <
7.(2007市)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )
A.0k >,0b >
B.0k >,0b <
C.0k <,0b >
D.0k <,0b <
8.(2007)如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( ) A .2y x =-+ B .2y x =+
C .2y x =-
D .2y x =--
9.(2007)将直线y =2x 向右平移2
A.y =2x +2
B.y =
2x -2 C.y =2(x -2) D.y =2(x +2)
10.(2007)已知一次函数y kx b =+的图象如下图(6)所示,当1x <时,y 的取值围是( ) A.20y -<<
B.40y -<<
C.2y <-
D.4y <-
11.(2007)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )
第5题图
x
图1
A .0
B .1
C .2
D .3
12.〔2011•日照市〕在平面直角坐标系中,已知直线y =-
4
3
x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )
A.(0,43)
B.(0,3
4
) C.(0,3) D.(0,4)
13. (2011•市)如图,已知A 点坐标为(5,0),直线(0)y x b b =+>与y 轴交于点B ,
连接AB ,∠a =75°,则b 的值为( ) A .3 B
C .4 D
14. 1+=mx y 与12-=x y 的图象交于x 轴上一点,则m 为( )
A .2
B .2-
C .21
D .2
1
-
二、填空题
15.直线x y 2-=向上平移3个单位,再向左平移2个单位后的解析式为________. 16. 函数y=kx+2,经过点(1 , 3),则y=0时,x= .
17. 一次函数62-=x y 的图象与x 轴的交点坐标是____ __,与y 轴的交点坐标是 __
18. 若一次函数的图象经过点(2,-1),且与直线y=2x+1平行,则其表达式为 .
三.解答题
19.已知某一次函数的图象经过点(0, -3),且与正比例函数y= 1
2 x 的图象相交于
点(2,a),
求 :(1)a 的值. (2)k 、b 的值.
(3)这两个函数图象与x 轴所围成的三角形面积。
a b + 第11题
图(6)
20.如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;
(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接
写出点P 的坐标.
21已知抛物线)0(2
≠++=a c bx x y 与x 轴交于)0,1(-A 和)0,3(B 两点,交y 轴于点E. (1)求此抛物线的解析式.
(2)若直线1+=x y 与抛物线交于A 、D ,与y 轴交于点F ,连接DE ,,求△DEF 的面积.
22如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。
(1) 求抛物线的解析式;
(2) 设抛物线顶点为D ,求四边形AEDB 的面积;
(3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。
【045】如图,已知直线1
12
y x =
+与y 轴交于点A ,与x 轴交于点D ,抛物线2
12
y x bx c =
++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
⑴求该抛物线的解析式;
⑵动点P 在轴上移动,当△PAE 是直角三角形时,求点P 的坐标P 。
⑶在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标。