第11章 电子控制动力转向系统
- 格式:ppt
- 大小:14.10 MB
- 文档页数:53
项目电子控制动力转向系统随着汽车的高速化,对汽车操纵的轻便性及灵活性要求越来越高。
现今广泛应用的液压式助力转向系,因存在着结构复杂、价格高、维修保养困难等缺陷,应用范围受到一定的影响,故常用于中、重型汽车及高级轿车上,而电子控制动力转向系可广泛应用于轻型汽车及普通型轿车上,并可提高汽车的操纵灵活性。
本项目知识目标:1.了解电子控制动力转向系统的基本组成。
2.熟悉电子控制动力转向系统基本的工作原理。
本项目能力目标:1、熟悉汽车电子动力转向系统的发展现状及趋势。
2、了解电动式电子控制动力转向系统的工作原理。
电动式电子控制动力转向系统活动一机械转向系统是依靠驾驶员操纵转向盘的转向力来实现车轮转向,在一定程度上增加了驾驶员的劳动强度;电动式电子控制动力转向系统则是在驾驶员的控制下,借助于电控系统的电动机驱动力来实现车轮转向。
1、电动式电子控制动力转向系统基本结构组成?2、电动式电子控制动力转向系统控制原理?一、电动式电子控制动力转向系统结构(一)电动式电子控制动力转向系统的优点1、电动机、减速机、转向桥和转向齿轮箱可以制成一个整体,管道、油泵等不需单独占据空间,易于装车。
2、基本上只增加电动机和减速机,没有了液压管道等部件,使整个系统趋于小型轻量化。
3、油泵仅在必要时用来使电动机运转,故可以节能。
4、因为零件数目少,不需要加油和抽空气,所以在生产线上的装配性好。
虽然动力比不上液压式。
该系统已广泛应用于日本日产、三菱、大发、铃木等汽车公司的许多车型。
(二)电动式电子控制转向系统的组成以大众速腾汽车为例,电控动力转向系统在车上的实际安装位置。
该系统由方向盘、带方向盘转角传感器G85的转向柱控制单元J527、转向柱、转向力矩传感器G269、转向齿轮、电子机械助力转向电机V187、转向助力辅助控制单元J500等机构或元件组成。
(三)电动式电子控制转向系统基本的工作原理上图为基本的控制原理图,在进行原理分析的时候,可以结合下图中的动力转向图进行分析。
电控动力转向系统(EHPS )介绍汽车转向系统可按转向的能源不同分为机械转向系统和动力转向系统两类。
机械转向系统是依靠驾驶员操纵转向盘的转向力来实现车轮转向;动力转向系统则是在驾驶员的控制下,借助于汽车发动机产生的液体压力或电动机驱动力来实现车轮转向,所以动力转向系统也称为转向动力放大装置。
随着道路条件的不断改善,汽车速度的不断提高,对转向系统操纵的安全性与舒适性提出了更高的要求。
动力转向系统由于具有使转向操纵灵活、轻便,设计汽车时对转向器结构形式的选择灵活性大,能吸收路面对前轮产生的冲击等优点,因此已在各国的汽车制造中普遍采用。
但是,从易于驾驶和安全性方面考虑,理想的操纵状态是低速时转向始终应当轻快,而在高速时要有适当的手感并且运行平稳,因此,对于传统的液压动力转向器,其固定的放大倍率成为动力转向系统的主要缺点,往往是满足了低速转向轻便的要求便无法满足高速转向时要求的手感,或者满足了高速转向时有良好的手感但低速时又不免转向沉重。
人满意的程度。
电子控制动力转向系统(向系统(液压式EPS,又作EHPS)和电动式电子控制动力转向系统(电动式EPS)。
EHPS是在传统的液压动力转向系统的基础上增设了控制液体流量的电磁阀、车速传感器和电子控制单元等装置构成的,电子控制单元根据检测到的车速信号,控制电磁阀的开度,使转向动力放大倍率实现连续可调,从而满足高、低速时的转向助力要求。
电动式EPS则是利用直流电动机作为动力源,电子控制单元根据转向参数和车速信号,控制电机输出扭矩。
电动机的输出扭矩经由电磁离合器通过减速机构减速增扭后,加在汽车的转向机构上,使之得到一个与工况相适应的转向作用力。
EHPS从控制方式可以分为以下几种类型:中,第(1)种和第(2)种类型是EHPS发展初期的控制方式,主要的控制目标都是将系统中的动力泄荷掉一部分以实现高速时减小助力,但这样做的弊病就是浪费了动力,不利于车辆省油,而且,还有急转弯反应迟钝的缺点,需要安装特别装置才能解决,现在已很少采用。
电子控制转向系统的结构与工作原理摘要:为了使汽车在低速行驶时能轻松的操作方向盘,使方向改变,提高使用性能。
现在汽车都装有电子控制转向系统。
因此,对其电子控制转向系统的结构以及工作原理变得至关重要。
文章对其结构和工作原理作了论述。
关键词:结构,工作原理。
前言:随着人们的生活水平提高和汽车工业的不断发展,人们对汽车的操作稳定和舒适性的要求越来越高。
电子控制转向系统的诞生使得在驾驶时更加稳定和舒适,得到了广大群众的好评。
随它在汽车上的广泛应用,也为汽车修理行业带来了无限商机。
本文从结构和工作原理入手作了详细地介绍。
正文:1. 电子控制转向系统1.1 概述1.2 电子控制转向系统的结构与工作原理1.1 概述汽车转向系同可按转向的能源不同分为机械转向系统和动力转向系统两类。
机械转向系统是依靠驾驶员操作转向盘的转向力来实现车轮转向;动力转向系统则是在驾驶员元的控制下,借助于汽车发动机产生的液体压力或电机驱动力来实现车转向。
所以动力转向系统也称为转向动力放大器装置。
但是,具有固定放大倍率的动力转向系统的缺点是:如果所设计的固定放大倍率的动力转向系统是为了减小汽车在停车或低速行驶时状态下转动转向盘的力,则当汽车在高速行驶时,这一固定放大倍率的动力转向系统会使转动转向盘的力显得太小,不利于对高速行驶的汽车进行方向控制;反之,如果所设计的固定方的倍率的动力转向系统是为了增加汽车在高速行驶时的转向力,则当汽车停驶或低速行驶时,转动方向盘就会显得非常吃力。
电子控制技术在汽车动力转向系统的应用,使汽车驾驶性能达到令人满意的程度。
电子控制动力转向系统在低速行驶时刻是转向轻便,灵活;当汽车在高速区域行驶时,又能保证提供最优的放大倍率和稳定的转向手感,从而提高了高速行驶的稳定性。
液压动力转向系统,存在制造工艺复杂,易漏油,对密封要求严格,维修保养困难等缺点。
同时随着人们对轿车的经济性,环保,主动安全新的日益重视,以及低排放汽车(LEV),混合动力汽车(HEV),燃料电池汽车(FCEV)电动汽车(EV)四大“EV”的长足发展,电子控制技术在汽车上得到广泛应用。
电动式电子控制动力转向系统引言:液压动力转向系统结构复杂、消耗功率大、易产生泄漏、转向力不易有效控制等。
随着电子控制技术在汽车上的广泛应用,出现了电动式电子控制动力转向系统,简称电动式EPS。
1.电动式EPS的组成、原理与特点1.1 组成:电动式EPS通常由转矩传感器、车速传感器、电子控制单元(ECU)、电动机和电磁离合器等组成。
1.2 工作原理:电动式EPS是利用直流电动机作为助力源,根据车速和转向参数等,由ECU完成助力控制。
当操纵转向盘时,装在转向盘轴上的转矩传感器不断地测出转向轴上的转矩信号,该信号与车速信号同时输入到ECU。
ECU根据这些输入信号,确定助力转矩的大小和方向,即选定电动机的电流和转向,调整转向辅助动力的大小。
电动机的转矩由电磁离合器通过减速机构减速增扭后,加在汽车的转向机构上,得到一个与汽车工况相适应的转向作用力。
2.电动式EPS主要部件的结构及工作原理2.1 转矩传感器:转矩传感器的作用是测量转向盘与转向器之间的相对转矩,以作为电动助力的依据之一。
(a) (b)图1 无触点式转矩传感器的结构及工作原理图在输出轴的极靴上分别绕有A、B、C、D四个线圈,转向盘处于中间位置(直驶)时,扭力杆的纵向对称面正好处于图示输出轴极靴AC、BD的对称面上。
当在U、T两端加上连续的输入脉冲电压信号Ui时由于通过每个极靴的磁通量相等,所以在V、W两端检测到的输出电压信号U0=0。
转向时,由于扭力杆和输出轴极靴之间发生相对扭转变形,极靴A、D之间的磁阻增加,B、C之间的磁阻减少,各个极靴的磁通量发生变化,于是在V、W之间就出现了电位差。
其电位差与扭力杆的扭转角和输入电压Ui成正比。
即将力矩引起的扭力杆角位移转换为电位差的变化。
2.2 电动机。
电动式EPS用电动机一般是在永磁式直流电动机的基础上改进而来,以期改善操纵感、降低噪声、减少振动。
其最大电流一般为30A,电压为DC 12V,额定转矩为10N·m左右。
电子控制电动式动力转向系统一、电动式电子控制动力转向系统的组成与原理电动式EPS在机械转向机构的基础上,增加电动式助力机构、转向助力控制系统而成。
电动式EPS如图3-4-6所示。
电动式EPS的基本控制原理如下。
当操纵转向盘时,装在转向盘轴上的转向力矩传感器不断地测出转向轴上的转向力矩信号,该信号与车速信号同时输入到电子控制单元。
电控单元根据这些输入信号,确定助力转矩的大小和方向,即选定电动机的电流大小和方向,调整转向辅助动力的大小。
电动机的转矩由电磁离合器通过减速机构减速增矩后,加在汽车的转向机构上,使之得到一个与汽车工况相适应的转向作用力。
a3-4-6电动式动力气IM系统的组成l-WΛft∙2•,人和电子控制暮I4-助力电动机,5•电・之令叁,6漫府的轮I7横效杆Iβ-ftK;Mt出*,KMi力IB汗,n∙较羯传感U,12转向斓轮1.电动式EPS的特点与液压EPS相比电动式EPS具有如下优点。
1)能耗降低。
电动式EPS只有转向时系统才工作,消耗较少的能量。
因而与液压式动力转向系统相比,在各种行驶工况下均可节能80%~90%o2)轻量化显著。
电动式EPS无液压式EPS必须具有的液压缸、油泵、转阀、液压管道等部件,因此其结构紧凑、重量减轻、无油渗漏问题、系统易于布置。
3)优化助力控制特性。
液压助力的增减有一定的滞后性,反应敏感性较差,随动性不够。
电动式EPS,可以使转向系统的转向性能得到优化,增强随动性。
4)系统安全可靠。
当电动式EPS出现故障时,可立即切断电动机与助力齿轮机构的动力传送,迅速转为人工机械转向状态。
2.电动式EPS的类型电动式EPS转向助力机构有转向轴助力式、转向器小齿轮助力式和齿条助力式3种。
1)转向轴助力式。
转向助力机构安装在转向轴上(图3・4・6),电动机的动力经离合器、电动机齿轮传给转向轴的齿轮,然后经万向节及中间轴传给转向器。
2)转向器小齿轮助力式。
如图3-4-7所示,转向助力机构安装在转向器小齿轮处。
电控动力转向系统的组成
电控动力转向系统(Electronic Power Steering,EPS)是一种利
用电子控制技术来辅助驾驶员操纵转向的系统。
它主要由以下几个部
分组成:
1. 转向传感器:用于检测驾驶员的转向意图和转向角度。
常见的
转向传感器包括扭矩传感器、转角传感器和车速传感器等。
2. 电子控制单元(ECU):是整个电控动力转向系统的核心部分,负责接收和处理来自转向传感器、车辆传感器和其他输入信号,并根
据预设的控制策略计算所需的转向助力。
3. 电机和减速器:电机是提供转向助力的动力源,它通过减速器
将电机的旋转运动转换为转向柱的线性运动。
常见的电机类型包括直
流电机和交流电机。
4. 转向柱和转向机构:转向柱连接着方向盘和转向机构,将驾驶
员的转向操作传递给车轮。
转向机构包括齿条-齿轮式、循环球式等不
同类型。
5. 助力控制算法:ECU 中的助力控制算法根据驾驶员的转向操作和车辆状态,计算出所需的转向助力大小和方向,并向电机发送控制信号,以实现对转向助力的精确控制。
6. 故障诊断功能:电控动力转向系统还具备故障诊断功能,能够检测系统中的故障,并通过故障码的形式向驾驶员或维修人员提供故障信息。
7. 电源和线束:系统需要电源供应,通常由车辆的蓄电池提供。
线束将各个组件连接在一起,传输信号和电力。
通过以上组成部分的协同工作,电控动力转向系统可以根据驾驶员的转向需求和车辆状态,提供适当的转向助力,提高转向的轻便性和精准性,同时减少驾驶员的操纵负担。
电控动力转向系统工作原理在现代汽车中,电控动力转向系统是一个重要的辅助系统,它通过电子控制单元(ECU)来实现车辆的转向功能。
相比传统的机械液压转向系统,电控动力转向系统更加智能化和高效,能够提高车辆的驾驶性能和安全性。
下面我们就来详细了解一下电控动力转向系统的工作原理。
电控动力转向系统的核心部件是电动助力转向器。
电动助力转向器主要由电机、传感器、控制器以及转向机构组成。
当驾驶员转动方向盘时,转向传感器会感知到方向盘的转向角度和转速,并将这些信息传输给ECU。
ECU根据传感器的信号和车辆的速度、路况等信息,计算出最佳的转向助力输出,并通过控制电机来实现转向助力的调节。
电控动力转向系统采用了电动助力技术,可以根据不同的驾驶情况和需求来调节转向助力的大小。
在低速行驶时,系统会提供更大的转向助力,使驾驶员更容易转动方向盘,提高车辆的操控性。
而在高速行驶时,系统则会减小转向助力,增加驾驶的稳定性和舒适性。
这种智能化的调节能力使得驾驶更加轻松和安全。
电控动力转向系统还具有一些智能化的功能,比如车道保持辅助、自动泊车等。
通过识别车道标线和前方车辆,系统可以主动辅助驾驶员保持车辆在车道内行驶,减少疲劳驾驶和意外事故的发生。
而在泊车时,系统可以通过控制方向盘和车辆转向,帮助驾驶员完成停车操作,提高停车的精准度和效率。
总的来说,电控动力转向系统通过电子控制单元、电动助力转向器等部件的协作,实现了车辆转向助力的智能化调节和辅助功能。
这不仅提高了车辆的操控性和安全性,还提升了驾驶的舒适性和便利性。
随着科技的不断发展,电控动力转向系统将会越来越智能化和高效化,为驾驶员带来更好的驾驶体验。
希望本文的介绍能够帮助大家更好地了解电控动力转向系统的工作原理和优势。
电子行业电子控制动力转向系统1. 引言在电子行业中,电子控制动力转向系统是一种非常重要的技术。
该系统主要用于控制和调节车辆的转向动力,以提供更好的驾驶体验和安全性能。
本文将对电子行业电子控制动力转向系统进行介绍和分析。
2. 系统概述电子控制动力转向系统由多个组件组成,包括传感器、控制器和执行器。
传感器用于采集车辆的动态信息,如转向角度、车速和加速度等。
控制器根据传感器数据进行处理和逻辑判断,然后发送控制信号给执行器。
执行器根据控制信号产生适当的动力转向效果。
3. 设计原理电子控制动力转向系统的设计基于几个关键原理:3.1 传感器技术传感器是电子控制动力转向系统的重要组成部分。
常用的传感器包括转向角度传感器、速度传感器和加速度传感器等。
这些传感器能够准确地测量车辆的动态信息,并将其转化为电信号传输给控制器。
3.2 控制算法控制算法是电子控制动力转向系统的核心。
控制器根据传感器采集到的数据进行处理,并通过确定的算法进行逻辑判断和决策。
常见的控制算法包括PID控制算法和模糊控制算法等。
3.3 执行器控制执行器负责根据控制信号产生动力转向效果。
常见的执行器有电动助力转向系统和电动转向系统等。
这些执行器利用电机或液压系统产生力矩,从而实现动力转向控制。
4. 应用领域电子控制动力转向系统广泛应用于汽车行业。
它可以提供更好的转向操控性能,增强驾驶的稳定性和舒适性。
此外,电子控制动力转向系统还可以应用于其他车辆类型,如电动自行车和电动滑板车等。
5. 优势和挑战电子控制动力转向系统具有许多优势,包括:•提高转向灵活性和精确性•增强驾驶操控性和稳定性•降低驾驶难度和疲劳度•适应不同驾驶环境和路况然而,同时也存在一些挑战:•系统可靠性和稳定性要求高•安全性问题需要考虑•制造和成本方面的挑战6. 发展趋势电子控制动力转向系统在不断发展和改进中。
未来的发展趋势包括:•基于和机器学习的控制算法•增加传感器的种类和数量•提高系统的智能化和自适应性•融合其他先进技术,如激光雷达和摄像头等7. 总结电子行业中的电子控制动力转向系统是一项重要的技术。