电介质和磁介质的比较
- 格式:doc
- 大小:189.50 KB
- 文档页数:3
电介质分类
电介质是指电子元件中用来传导电流的物质,它可以是固体、液体或气体。
电介质的分类可以根据其物理性质和电学性质来划分。
一、根据物理性质分类
1、固体介质:固体介质是指以固体形式存在的电介质,它们的电阻率比液体和气体要高,常见的固体介质有金属、石英、玻璃、石墨等。
2、液体介质:液体介质是指以液体形式存在的电介质,它们的电阻率比固体要低,常见的液体介质有水、油、醇类等。
3、气体介质:气体介质是指以气体形式存在的电介质,它们的电阻率比液体和固体要低,常见的气体介质有氧气、氢气、氩气等。
二、根据电学性质分类
1、导体:导体是指具有良好的电导性的电介质,它们的电阻率比绝缘体要低,常见的导体有金属、水、油等。
2、绝缘体:绝缘体是指具有良好的绝缘性的电介质,它们的电阻率比导体要高,常见的绝缘体有石英、玻璃、石墨等。
三、根据电介质的用途分类
1、电气介质:电气介质是指用于传导电流的电介质,它们的电阻率比绝缘体要低,常见的电气介质有金属、水、油等。
2、电磁介质:电磁介质是指用于传导电磁波的电介质,它们的电阻率比电气介质要高,常见的电磁介质有空气、石英、玻璃等。
四、根据电介质的结构分类
1、单相介质:单相介质是指由一种电介质组成的电路,它们的电阻率比多相介质要低,常见的单相介质有金属、水、油等。
2、多相介质:多相介质是指由多种电介质组成的电路,它们的电阻率比单相介质要高,常见的多相介质有空气、石英、玻璃等。
电介质是电子元件中不可缺少的重要组成部分,它们的特性决定了电子元件的性能。
根据电介质的物理性质、电学性质、用途和结构,可以将电介质分为固体介质、液体介质、气体介质、导体、绝。
电磁学中的介质的电磁性质研究电磁学是研究电场和磁场相互作用的学科,而介质是电磁场的重要组成部分。
介质是指在电磁场中具有电磁性质的物质,包括固体、液体和气体。
在电磁学中,研究介质的电磁性质对于理解电磁场的传播和相互作用机制至关重要。
介质的电磁性质主要包括电介质和磁介质两个方面。
电介质是指能够在电场中产生极化现象的物质,而磁介质则是能够在磁场中产生磁化现象的物质。
介质的电磁性质研究涉及到介质的极化和磁化过程,以及介质对电磁场的响应和传播特性。
在电磁学中,介质的极化是一种重要的现象。
当介质处于外加电场中时,介质中的正负电荷会发生分离,形成电偶极矩,从而导致介质的极化。
介质的极化可以分为电子极化、离子极化和定向极化等不同形式。
电子极化是指介质中的电子在外加电场作用下发生位移,从而形成电偶极矩;离子极化是指介质中的离子在外加电场作用下发生位移,形成电偶极矩;定向极化是指介质中的分子或原子在外加电场作用下发生取向变化,形成电偶极矩。
介质的极化现象不仅与介质的物理性质有关,还与外加电场的强度和频率等因素密切相关。
介质的极化现象对于电磁场的传播和相互作用具有重要影响。
在电磁波传播过程中,电磁波与介质相互作用,会引起介质中的电子、离子或分子发生极化现象,从而改变电磁波的传播速度和传播方向。
这种现象被称为介质对电磁波的吸收和散射。
介质对电磁波的吸收是指介质吸收电磁波的能量,而散射是指介质将电磁波的能量以不同的方向重新分布。
介质的吸收和散射对于电磁波的传播和应用有着重要的影响,例如在无线通信和雷达系统中,介质的吸收和散射会导致信号的衰减和传播路径的变化。
除了电介质,磁介质也是电磁学中的重要研究对象。
磁介质是指能够在磁场中发生磁化现象的物质。
当磁介质处于外加磁场中时,磁介质中的磁性微观磁偶极子会发生取向变化,形成磁化强度。
磁介质的磁化现象与电介质的极化现象类似,都是介质对外加场的响应。
磁介质的磁化现象对磁场的传播和相互作用具有重要影响,例如在电感器和变压器等电磁器件中,磁介质的磁化会导致磁场的集中和传输。
电介质和磁介质的边界条件
在电磁学中,边界条件是指在两个不同介质之间的边界上,电场和磁场需要满
足的特定条件。
这些条件确保了电磁场的连续性和相容性。
对于电介质和磁介质的边界条件,下面将分别进行描述。
电介质的边界条件:
1. 边界面上的法向电场分量相等:
在电介质的边界上,两个相邻介质的法向电场分量相等。
这意味着电场线在两
个介质之间的边界上是连续的。
2. 边界面上的切向电场分量满足电场平行条件:
切向电场分量在边界上不连续。
而是满足电场平行条件,即两个介质中的切向
电场分量与介质的电导率和电场强度成正比。
磁介质的边界条件:
1. 边界面上的法向磁场分量相等:
在磁介质的边界上,两个相邻介质的法向磁场分量相等。
这确保了磁场线在两
个介质之间的边界上是连续的。
2. 边界面上的切向磁场分量满足磁场平行条件:
切向磁场分量在边界上不连续。
与电介质不同,切向磁场分量满足磁场平行条件,即两个介质中的切向磁场分量与介质的磁导率和磁场强度成正比。
总结起来,电介质和磁介质的边界条件要求法向分量连续,而切向分量则满足
平行条件。
这些条件保证了电场和磁场在不同介质之间的边界上的相容性和连续性。
对于电磁问题的求解和分析,理解和应用这些边界条件是非常重要的。
学苑首页动学堂在线考场电磁课堂科教影院诺贝尔奖科技图库论文集粹物理趣史社区论坛|论坛精华|网络课堂|课堂讨论|科学影院|课件园地|科普之窗首页生命科学概论普物实验精品第一章第二章第三章第四章第五章第六章现在位置电磁学苑->电磁课堂 -> 第七章 -> 第七章学习指南ffdsfdsafdsaffffffsafsafdsaffffffdsafffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd第七章教学指南一、教学目标1.掌握基本概念:(电流观点与磁荷观点对照理解)磁介质(顺、抗、铁磁质),分子环流,磁荷;束缚电流,体磁荷;面磁化电流密度,磁荷面密度;分子磁矩,磁偶极矩;磁化强度,磁极化强度;磁化强度环量,磁极化强度通量;真空磁导率、相对磁导率、绝对磁导率、磁化率(磁极化率);磁化场,磁极化场;退磁化场,退磁化场。
2.理解介质的磁化规律,并与电介质的极化对照3.掌握介质中的高斯定理、安培环路定理,并与电介质的对照4.理解铁磁质的磁化规律及磁滞回线,并与一般介质的磁化规律对照5.掌握简单磁路的串、并联计算,并与电路计算对照6.掌握磁场的能量和能量密度二、本章重点介质的磁化规律、介质中的高斯定理和安培环路定理、铁磁质的磁化规律及磁滞回线、简单磁路计算、磁场的能量和能量密度三、本章内容1.磁介质(1).磁介质的一般分类磁介质:电介质:(2).超导体的抗磁性:在外磁场中B内→0,,,成完全抗磁体。
2.介质的磁化规律(1).磁介质与电介质中两组场量关系的对照电场:磁场:(2).磁介质理论的两种观点及其与电介质理论的对照物理量及规律分子电流观点磁荷观点电介质微观模型分子环流i分子磁矩磁荷磁偶极矩电荷电偶极矩磁化、极化的程度磁化极化后的关系及相关公式宏观效果与平行的界面上出现束缚电流与垂直的界面上出现非自由磁荷与垂直的界面上出现束缚电荷基本场量磁感应强度用电流元受力来定义磁场强应用点磁荷受力来定义(模拟)电场强度用点电荷受力来定义辅助场量磁场强应磁感应强度电位移矢量两种场量间的关系介质对场的影响磁化电流产生附加场磁荷产生附加场极化电荷产生附加场高斯定理环路定理讨算结果殊途同归—————联系磁荷观点公式→→电流观点公式磁荷观点的理论与电荷电场的理论更具有对称性3.铁磁质的磁化规律(1).铁磁质的18个基本概念铁磁质、磁化曲线、起始磁化曲线、-H曲线、磁滞效应、磁滞回线、磁饱和、剩磁、矫顽力、完全退磁曲线、磁畴、居里点、硬磁材料、软磁材料、矩磁材料、永磁体、铁电体、电畴。
第15章磁介质一、物质的磁化1、磁介质中的磁场设真空中的磁感应强度为的磁场中,放进了某种磁介质,在磁场和磁介质的相互作用下,磁介质产生了附加磁场,这时磁场中任意一点处的磁感应强度2、磁导率由于磁介质产生了附加磁场磁介质中的磁场不再等于原来真空中的磁场,定义和的比值为相对磁导率:介质中的磁导率:式中为真空中的磁导率3、三种磁介质(1)顺磁质:顺磁质产生的与方向相同,且。
略大于1(2)抗磁质:抗磁质产生的与方向相反,且。
略小于1(3)铁磁质:铁磁质产生的与方向相同,且。
远大于1二、磁化强度1、磁化强度定义为单位体积中分子磁矩的矢量和即:2、磁化强度与分子面电流密度的关系:式中为磁介质外法线方向上的单位矢量。
3、磁化强度的环流即磁化强度对闭合回路的线积分等于通过回路所包围面积内的总分子电流三、磁介质中的安培环路定律1、安培环流定律在有磁介质条件下的应用即:2、磁场强度定义为:3、磁介质中的安培环路定律:4、应用磁介质中的安培环路定律的注意点:(1)的环流只与传导电流有关,与介质(或分子电流)无关。
(2)的本身()既有传导电流也与分子电流有关。
既描写了传导电流磁场的性质也描写了介质对磁场的影响。
(3)要应用磁介质中的安培环路定律来计算磁场强度时,传导电流和磁介质的分布都必须具有特殊的对称性。
5、磁介质中的几个参量间的关系:(1)磁化率(2)与的关系(3)与等之间的关系四、磁场的边界条件(界面上无传导电流)ေ、壁介蔨分界面伤边磁感应强度的法向分量连廭,即Ҩ2、磁介谨分界面两龹的磁场强嚦纄切向分量连续,即:Ƞ3 磃感应线的折射定律ā*怎义如图15-1所示)五、铁磁物贩q、磁畴:电子ꇪ旋磁矩取向相同的對区域。
2、磁化曲线(图55-2中曲线)ေ磁导率曲线(图15-2中??曲线)4、磁滞回线ေ图17耩3)图中乺矫끽嚛㠂5、铁磁质与非铁㳁质的主要区别:铁磁物质产生的附加磁场错误!未定义书签。
的比原来真空中的磁场大得多。
一、电介质和磁介质的定义
电介质
定义:能够被电极化的介质。
在特定的频带内,时变电场在其内给定方向产生的传导电流密度分矢量值远小于在此方向的位移电流密度的分矢量值。
在正弦条件下,各向同性的电介质满足下列关系式:式中是电导率,是电常数,是角频率,是实相对电常数。
各向异性介质可能仅在某些方向是介电的。
电介质包括气态、液态和固态等范围广泛的物质。
固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。
凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。
电介质的电阻率一般都很高,被称为绝缘体。
有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。
通常情形下电介质中的正、负电荷互相抵消,宏观上不表现出电性,但在外电场作用下可产生如下3种类型的变化:
①原子核外的电子云分布产生畸变,从而产生不等于零的电偶极矩,称为畸变极化;
②原来正、负电中心重合的分子,在外电场作用下正、负电中心彼此分离,称为位移
极化;
③具有固有电偶极矩的分子原来的取向是混乱的,宏观上电偶极矩总和等于零,在外电
场作用下,各个电偶极子趋向于一致的排列,从而宏观电偶极矩不等于零,称为转向极化。
磁介质
定义:由于磁场和事物之间的相互作用,使实物物质处于一种特殊状态,从而改变原来磁场的分布。
这种在磁场作用下,其内部状态发生变化,并反过来影响磁场存在或分布的物质,称为磁介质引。
磁介质在磁场作用下内部状态的变化叫做磁化。
真空也是一种磁介质。
磁场强度与磁通密度间的关系决定于所在之处磁介质的性质。
这种性质来源于物质内分子、原子和电子的性状及其相互作用,有关理论属于固体物理学的重要内容。
在磁场作用下表现出磁性的物质。
物质在外磁场作用下表现出磁性的现象称为磁化。
所有物质都能磁化,故都是磁介质。
按磁化机构的不同,磁介质可分为抗磁体、顺磁体、铁磁体、反铁磁体和亚铁磁体五大类。
在无外磁场时抗磁体分子的固有磁矩为零,外加磁场后,由于电磁感应每个分子感应出与外磁场方向相反的磁矩,所产生的附加磁场在介质内部与外磁场方向相反,此性质称为抗磁性。
顺磁体分子的固有磁矩不为零,在无外磁场时,由于热运动而使分子磁矩的取向作无规分布,宏观上不显示磁性。
在外磁场作用下,分子磁矩趋向于与外磁场方向一致的排列,所产生的附加磁场在介质内部与外磁场方向一致,此性质称为顺磁性。
介质磁化后的特点是在宏观体积中总磁矩不为零,单位体积中的总磁矩称为磁化强度。
实验表明,磁化强度与磁场强度成正比,比例系数χm称为磁化率。
抗磁体和顺磁体的磁性都很弱,即cm很小,属弱磁性物质。
抗磁体的cm为负值,与磁场强度无关,也不依赖于温度。
顺磁体的cm为正值,也与磁场强度无关,但与温度成反比,即cm =C/T,C 称为居里常数,T为热力学温度,此关系称为居里定律。
二、混淆的各物理概念
电磁学中的一些概念之间存在着相似之处,正因为此容易忽略各物理量之间的本质差别。
比如三个电矢量(电场强度E、电位移矢量D、电极化强度P)与三个磁矢量(磁感应强度B、磁场强度H、磁化强度M)之间会因为名称相似或公式相近而发生混淆。
要深刻地认识这些物理概念的实质,并能够加以区分。
电场强度E 与磁感应强度B 对应,电位移矢量D 与磁场强度H 对应,电极化强度P 与磁化强度M对应;通过对三个电矢量的通量的比较,弄清楚它们不同的源;通过对三个磁矢量环流的比较,弄清楚B、H、M三种矢量线所包围的电流分别是全电流、传导电流(稳恒情况下)、磁化电流。
三、引入磁介质的磁化现象
在电介质中,首先由电介质的微观电结构提出其分子模型为电偶极子,然后考虑在无外场情况下电介质中的不同类型分子(有极分子和无极分子)的电偶极矩表现,然后再考虑在有外场作用下的无极分子的位移极化和有极分子的取向极化。
如图①
引入磁介质的磁化现象的过程,与电介质中引入极化现象的过程类似,都是首先确定分子模型,然后通过观察介质在无外场情况下的表现来将介质进行分类,最终在外场的作用下,根据介质分子的表现提出了极化和磁化的概念。
然而对于电介质和磁介质两种不同的介质,其顺磁质的磁矩表现与有极分子电介质的电偶极矩的表现类似;抗磁质的磁矩表现与无极分子的电偶极矩的表现类似。
四、认识各物理规律
电介质中的物理规律与磁介质中的物理规律也具有对称性。
注意到种对称性并加以较,如图所示②。