第七章磁介质
- 格式:ppt
- 大小:1.43 MB
- 文档页数:39
大学物理磁介质在大学物理的学习中,磁介质是一个重要且有趣的课题。
它不仅帮助我们更深入地理解磁场的本质和特性,还在许多实际应用中发挥着关键作用。
磁介质,简单来说,就是处于磁场中的物质,其会对磁场产生一定的影响。
为了更好地理解磁介质,我们首先需要回顾一下磁场的一些基本概念。
磁场是由电流或永磁体产生的,它可以用磁力线来形象地描述。
磁力线的疏密程度表示磁场的强弱,而磁力线的方向则表示磁场的方向。
当磁介质置于磁场中时,会发生磁化现象。
磁化的过程就像是磁介质内部的小磁矩被“排列整齐”。
不同的磁介质,其磁化的程度和方式是不同的。
这主要取决于磁介质的分子结构和组成。
磁介质可以分为三大类:顺磁质、抗磁质和铁磁质。
顺磁质中的分子具有固有磁矩,在没有外磁场时,这些磁矩的方向是杂乱无章的,对外不显示磁性。
但当有外磁场存在时,分子磁矩会沿着外磁场方向有一定的取向,从而使磁介质内部产生与外磁场方向相同的附加磁场,增强了原来的磁场。
常见的顺磁质有氧气、铝等。
抗磁质的分子没有固有磁矩。
在外磁场的作用下,电子的轨道运动发生变化,产生了与外磁场方向相反的附加磁矩,从而导致磁介质内部产生与外磁场方向相反的附加磁场,削弱了原来的磁场。
大多数有机化合物和生物组织都是抗磁质。
而铁磁质则具有非常特殊的性质。
它的磁化程度远远高于顺磁质和抗磁质,并且磁化后的磁性能够保持。
铁磁质内部存在着许多自发磁化的小区域,称为磁畴。
在没有外磁场时,磁畴的取向是随机的,整体不显示磁性。
但当有外磁场作用时,磁畴会发生转动和畴壁移动,使磁畴的方向逐渐趋于一致,从而产生很强的磁性。
常见的铁磁质有铁、钴、镍等。
磁介质的磁化程度可以用磁化强度来描述。
磁化强度是单位体积内分子磁矩的矢量和。
通过对磁化强度的研究,我们可以更深入地了解磁介质的磁化特性。
磁介质对磁场的影响可以通过引入一个物理量——磁导率来表示。
磁导率反映了磁介质传导磁场的能力。
对于真空,磁导率是一个常数。
而对于不同的磁介质,磁导率通常大于或小于真空磁导率。
第七章 有磁介质存在时的磁场上两章讨论了真空中磁场的规律,在实际应用中,常需要了解物质中磁场的规律。
由于物质的分子或原子中都存在着运动的电荷,所以当物质放到磁场中时,其中的运动电荷将受到磁力的作用而使物质处于一种特殊的状态中,处于这种特殊状态的物质也会反过来影响磁场的分布。
本章将以实物物质的电结构为基础,简单说明第一类磁介质磁化的微观机制,用类似于讨论电介质极化的方法研究磁介质对磁场的影响,并介绍有磁介质时的磁场场量和场所遵循的普遍规律,简单介绍磁路的概念和磁路的计算。
§1 磁介质存在时静磁场的基本规律一、磁介质在考虑物质受磁场的影响或它对磁场的影响时,物质统称为磁介质。
与电场中的电介质相似,放在磁场中的磁介质也要和磁场发生相互作用,彼此影响而被磁化,处于磁化状态的磁介质也要激发一个附加磁场使磁介质中的磁场不同于真空中的磁场。
设某一电流分布在真空中激发的磁感应强度为0B ,那么在同一电流分布下,当磁场中放进了某种磁介质后,磁化了的磁介质激发附加磁感应强度B ' ,这时磁场中任一点的磁感应强度B 等于0B 和B ' 的矢量和,即B B B '+= 0如果用实验分别测出真空和有磁介质时的磁感应强度0B 和B,则它们之间应满足一定的比例关系,设可以用下式表示0B B r μ= 式中r μ叫磁介质的相对磁导率,它随磁介质的种类或状态的不同而不同。
由于磁介质有不同的磁化特性,它们磁化后所激发的附加磁场会有所不同。
一些磁介质磁化后使磁介质中的磁感应强度B 稍小于0B ,即0B B <,这时r μ略小于1,这类磁介质称为抗磁质,例如水银、铜、铋、硫、氯、氢、银、金、锌、铅等都属于抗磁质。
另一些磁介质磁化后使磁介质中的磁感应强度B 稍大于0B ,即0B B >,这时r μ略大于1,这类磁介质称为顺磁质,例如锰、铬铂氮等都属于顺磁性物质。
一切抗磁质和大多数顺磁质有一个共同点,就是它们所激发的附加磁场极其微弱,B和0B 相差很小,一般技术中常不考虑它们的影响。