先进控制理论及其应用
- 格式:ppt
- 大小:615.00 KB
- 文档页数:6
先进控制技术综述1 引言在实际的工业控制过程中,很多系统具有高度的非线性、多变量耦合性、不确定性、信息不完全性和大滞后等特性。
对于这种系统很难获得精确的数学模型,并且常规的控制无法获得满意的控制效果。
面对这些复杂的工业控制产生了新的控制策略,即先进控制技术。
先进控制技术包括:自适应控制,预测控制,推理控制,鲁棒控制以及包括模糊控制与神经网络在内的智能控制方法。
本文详细介绍了自适应控制、预测控制以及这两种先进控制的应用领域和优缺点[1]。
2 自适应控制自适应控制的思想是对于系统中的不确定性,以及控制任务的艰巨性,对于部分未建模的动态特性、变化的被控对象和干扰信号,及时地测得它们的信息,并根据此信息按一定的设计方法,自动地做出控制决策、修改控制器结构和参数,使其控制信号能够适应对象和扰动的动态变化,在某种意义上达到控制效果最优或次优。
2.1 自适应控制介绍目前自适应控制的种类很多,从总体上可以分为三大类:自校正控制、模型参考自适应控制和其他类型的自适应控制。
自校正控制的主要问题是用递推辨识算法辨识系统参数,根据系统运行指标来确定调节器或控制器的参数。
其原理简单、容易实现,现已广泛地用在参数变化、有迟滞和时变过程特性,以及具有随机扰动的复杂系统。
自校正控制系统的一般结构图如图1所示。
自校正控制适用于离散随机控制系统[2]。
图1 自校正控制结构图模型参考自适应控制,利用可调系统的各种信息,度量或测出各种性能指标,把模型参考自适应控制与参考模型期望的性能指标相比较;用性能指标偏差通过非线性反馈的自适应机构产生自适应律来调节可调系统,以抵消可调系统因“不确定性”所造成的性能指标的偏差,最后达到使被控的可调系统获得较好的性能指标的目的。
模型参考自适应控制可以处理缓慢变化的不确定性对象的控制问题。
由于模型参考自适应控制可以不必经过系统辨识而度量性能指标,因而有可能获得快速跟踪控制。
模型参考自适应控制结构框图如图2所示,模型参考自适应控制一般用于确定性连续控制系统。
先进控制技术及其应用随着工业生产过程控制系统日趋复杂化和大型化,以及对生产过程的产品质量、生产效率、安全性等的控制要求越来越严格,常规的PID控制已经很难解决这些具有多变量、强非线性、高耦合性、时变和大时滞等特性的复杂生产过程的控制问题[]。
自上世纪50年代逐渐发展起来的先进控制技术解决了常规PID控制效果不佳或无法控制的复杂工业过程的控制问题。
它的设计思想是以多变量预估为核心,采用过程模型预测未来时刻的输出,用实际对象输出与模型预测输出的差值来修正过程模型,从而把若干个控制变量控制在期望的工控点上,使系统达到最佳运行状态。
目前先进控制技术不但在理论上不断创新,在实际生产中也取得了令人瞩目的成就。
下面就软测量技术、内模控制和预测控制做简要阐述。
1.软测量技术在生产过程中,为了确保生产装置安全、高效的运行,需要对与系统的稳定及产品质量密切相关的重要过程变量进行实时控制。
然而在许多生产过程中,出于技术或经济上的原因,存在着很多无法通过传感器测量的变量,如石油产品中的组分、聚合反应中分子量和熔融指数、化学反应器反应物浓度以及结晶过程中晶体粒直径等。
在实际生产过程中,为了对这类变了进行实施监控,通常运用两种方法:1).质量指标控制方法:对与质量变量相关的其他可测的变量进行控制,以达到间接控制质量的目的,但是控制精度很难保证。
2).直接测量法:利用在线分析仪表直接测量所需要的参数并对其进行控制。
缺点是在线仪表价格昂贵,维护成本高,测量延迟大,从而使得调节品质不理想。
软测量的提出正是为了解决上述矛盾。
软测量技术的理论根源是20世纪70年代Brosilow提出的推断控制,其基本思想是采集过程中比较容易测量的辅助变量(也称二次变量),通过构造推断器来估计并克服扰动和测量噪声对主导过程主导变量的影响。
因此,推断估计器的设计是设计整个控制系统的关键。
软测量器的设计主要包括以下几个方面:1)机理分析和辅助变量的选择。
先进的控制理论及其应用控制理论作为工业自动化的关键技术和工程实践的重要支撑,一直是自动化学科的热点和难点。
本文将从控制理论的发展历程、主要应用领域以及前沿研究进行探讨,为读者呈现一幅现代控制理论的全貌。
一、控制理论的发展历程20世纪初期,自动控制理论主要以传统的反馈控制为主,其特点是线性、时不变和基于电气传递函数。
20世纪40年代末到50年代初期,随着计算机、数字信号处理和许多实际控制问题的发展,出现了现代控制理论。
现代控制理论在传统控制基础上采用了新的数学工具如矩阵论、状态空间分析、最优控制等,可以处理非线性、时变和多输入多输出(MIMO)系统,并且可以针对复杂问题进行解决。
此外,现代控制理论还弥补了传统控制理论的不足,例如可以处理多约束问题、较高的鲁棒性、可扩展性和实时可变控制等。
二、控制理论的主要应用领域目前,控制理论已成为现代工业制造的必然选择,被广泛应用于工业过程自动化、交通运输、生态环境、飞行器和航空飞行行业等领域。
以下将介绍控制理论在几个典型应用领域的应用。
1、工业过程自动化领域在工业生产过程中,通过自动化系统进行生产线的控制,在保证生产能力的基础上,大大提高了生产质量和效率。
现代工业生产线上的控制系统不仅可以实现直接控制,还要通过传感器,进行过程反馈,对生产环境进行监控和测量。
特别是在石化、电力、水泥等能源行业领域,控制系统更是必不可少,这些领域的独特特点和复杂性要求自动化控制系统在生产工艺技术,传感器监控以及计算和通讯等方面达到较高的水平。
2、交通运输领域控制理论在交通运输领域的应用也十分广泛。
例如,在自动驾驶汽车领域中,现代控制理论被用于驾驶员辅助系统、车辆跟随控制等。
而且,现代控制理论还能够应用于交通信号灯的控制,使其按时或按需进行开关,优化城市交通流量,以及提高交通管理效率。
3、生态环境领域生态环境保护是当今全球性的发展趋势,而现代的控制理论在此领域也有很大的应用前景。
在水质监测领域,控制理论被应用于提高水质检测的准确性和响应速度。
先进控制理论及其应用院系:班级:姓名:学号:前言20世纪70年代以来,随着计算机即使的广泛应用,自动控制技术有了很大的发展,先进过程控制(advanced process control,pac)应运而生。
先进过程控制也称先进控制。
它是具有比常规控制更好的控制效果的控制策略的系统,是提高过程控制质量、解决复杂赴欧成问题的理论和技术。
先进控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在先进控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
先进控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
先进控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
先进控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。
在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。
他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。
几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。
其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。
先进控制技术及其在典型化工过程中的应用随着科学技术的不断发展,控制技术在各个领域都得到了广泛应用。
在化工领域中,先进控制技术的应用对于提高生产效率、降低能耗、改善产品质量等方面都起到了重要作用。
本文将介绍先进控制技术的概念、发展现状,以及在典型化工过程中的应用。
一、先进控制技术的概念和发展现状先进控制技术是指利用先进的自动控制理论和技术手段,对复杂大规模系统进行优化控制的技术。
先进控制技术主要包括模型预测控制(MPC)、多变量控制(MVC)、智能控制、优化控制等。
这些技术能够充分考虑系统的非线性、时变性和大规模性,通过建立系统模型、预测系统未来的变化趋势,从而实现对系统的优化控制。
在化工领域中,先进控制技术的应用已经比较广泛。
随着计算机技术的不断进步和控制理论的不断完善,先进控制技术已经成为现代化工生产过程中不可或缺的一部分。
在许多化工生产过程中,特别是高温、高压、易燃易爆的工艺过程中,采用先进控制技术能够有效地提高生产效率、降低成本、减少事故风险,对于提高企业的竞争力和可持续发展具有重要意义。
1. 炼油过程中的模型预测控制炼油是化工行业中非常重要的一个环节,而炼油过程本身运行的复杂性和非线性使得传统的控制手段无法满足需求。
采用模型预测控制技术能够较好地解决这一难题。
模型预测控制技术通过构建系统的动态数学模型,预测未来一段时间内的系统行为,并基于这些预测进行优化控制。
在炼油过程中,利用模型预测控制技术能够实现对精细化工艺的精确控制,提高产品质量,降低能耗,增加生产效率。
2. 化工生产过程中的多变量控制在许多化工生产过程中,往往存在多个相互关联的变量,传统的PID控制往往不能满足对这些变量复杂关系的控制要求。
多变量控制技术能够同时考虑多个变量之间的相互影响,通过建立系统的数学模型,运用现代优化算法对系统进行优化控制。
在化工生产过程中,利用多变量控制技术能够实现对多个关键参数的协调控制,提高产品质量,降低原料消耗,降低排放量,达到节能减排的目的。