控制理论的发展及应用
- 格式:ppt
- 大小:3.38 MB
- 文档页数:54
谈控制理论与控制工程的发展与应用科学技术的不断发展,为控制理论与控制工程技术的发展提供了新的机遇。
随着控制理论研究的不断加强,控制工程技术在生产生活中所发挥的作用也日趋显著。
本文主要是就控制理论与控制工程的发展和应用进行了分析与探讨。
标签:控制理论;控制工程;发展;应用引言科学技术的不断发展为控制理论的研究和应用奠定了良好的基础。
而控制理论与控制工程研究工作的不断深入,不仅丰富了控制理论和控制工程技术的内容,同时与之相关的研究领域也不断的拓展。
随着各个高校已经将控制理论与控制工程课程作为高校专业课程,不仅为控制理论的研究奠定了良好的基础,同时也促进了控制工程技术应用效率的稳步提升。
1、控制理论与控制工程的产生控制理论控制理论与控制工程技术在人类社会发展过程中发挥着极为重要的作用,其在社会经济发展过程中的重要性不言而喻。
就控制理论的应用环境而言,由于现阶段的信息与科学技术仍然处于不断发展和变化的阶段,因此,控制理论与控制工程所涉及到的内容也随着信息与科学家是的发展和变化而不断的完善,在这一过程中以原有控制理论为基础衍生而来的智能控制理论、基础性技术理论等,在控制理论研究的过程中也发挥着极为重要的作用。
2、控制理论与控制工程的发展第一阶段:上世纪40-60年代,针对这一时期的开展理论与开展工程研究,主要以古典控制理论为主,就控制理论与控制工程的研究而言,读点控制理论时期所研究的内容主要涉及到单输入以及单输出等几方面的内容。
在解决这几方面的问题时,主要采用传递函数、根轨迹、频率特性等方法。
由于在这一极端大多数针对控制理论与控制工程的研究都采取的是线性定常系统,因此这一阶段的研究一般所使用的相平面法变量都不会超过两个。
也就是说,这一阶段的研究最终的目的是为了解决输入与输出等方面存在的问题。
第二阶段:上世纪60-70年代。
就这一阶段的发展情况而言,由于空间技术已经得到了广泛的应用,所以促进了控制理论发展效果的全面提升。
先进的控制理论及其应用控制理论作为工业自动化的关键技术和工程实践的重要支撑,一直是自动化学科的热点和难点。
本文将从控制理论的发展历程、主要应用领域以及前沿研究进行探讨,为读者呈现一幅现代控制理论的全貌。
一、控制理论的发展历程20世纪初期,自动控制理论主要以传统的反馈控制为主,其特点是线性、时不变和基于电气传递函数。
20世纪40年代末到50年代初期,随着计算机、数字信号处理和许多实际控制问题的发展,出现了现代控制理论。
现代控制理论在传统控制基础上采用了新的数学工具如矩阵论、状态空间分析、最优控制等,可以处理非线性、时变和多输入多输出(MIMO)系统,并且可以针对复杂问题进行解决。
此外,现代控制理论还弥补了传统控制理论的不足,例如可以处理多约束问题、较高的鲁棒性、可扩展性和实时可变控制等。
二、控制理论的主要应用领域目前,控制理论已成为现代工业制造的必然选择,被广泛应用于工业过程自动化、交通运输、生态环境、飞行器和航空飞行行业等领域。
以下将介绍控制理论在几个典型应用领域的应用。
1、工业过程自动化领域在工业生产过程中,通过自动化系统进行生产线的控制,在保证生产能力的基础上,大大提高了生产质量和效率。
现代工业生产线上的控制系统不仅可以实现直接控制,还要通过传感器,进行过程反馈,对生产环境进行监控和测量。
特别是在石化、电力、水泥等能源行业领域,控制系统更是必不可少,这些领域的独特特点和复杂性要求自动化控制系统在生产工艺技术,传感器监控以及计算和通讯等方面达到较高的水平。
2、交通运输领域控制理论在交通运输领域的应用也十分广泛。
例如,在自动驾驶汽车领域中,现代控制理论被用于驾驶员辅助系统、车辆跟随控制等。
而且,现代控制理论还能够应用于交通信号灯的控制,使其按时或按需进行开关,优化城市交通流量,以及提高交通管理效率。
3、生态环境领域生态环境保护是当今全球性的发展趋势,而现代的控制理论在此领域也有很大的应用前景。
在水质监测领域,控制理论被应用于提高水质检测的准确性和响应速度。
复杂系统控制理论的应用与发展一、引言复杂系统是指由大量相互作用的部件构成的系统,这些部件之间无法单独考量,需要整体来进行分析和控制。
复杂系统的控制理论是研究如何通过控制某些变量来使整个系统达到预期目标的一门学科。
该理论已经广泛应用于诸如工业、交通、财经和社会管理等领域,并不断发展和完善。
二、控制方法的分类1.模型预测控制模型预测控制是一种基于模型的控制方法,首先对系统进行建模,建立数学模型。
通过模型预测,计算未来响应曲线,然后根据预测结果,制定控制策略来控制系统。
模型预测控制适用于许多系统,例如飞机导航系统和化工生产中的反应过程。
2.反馈控制反馈控制是指将系统输出与期望输出进行比较,通过调整控制输入来稳定系统,使输出误差最小。
反馈控制应用广泛,例如在飞机驾驶中,自动驾驶系统会通过输入导航数据进行调整,以保持在预定的航线上飞行。
三、复杂系统控制理论的应用1.交通管理城市交通管理是一个复杂的系统,交通拥堵和交通事故是城市交通管理中的两个主要问题。
因此,交通管理中的复杂系统控制理论应用越来越广泛。
例如,公路控制系统通过使用各种传感器和控制设备,帮助管理交通流。
2.金融投资金融投资涉及到许多复杂的变量和系统,例如股票市场、外汇市场和货币市场。
复杂系统控制理论可以帮助投资者建立有效的投资策略和风险管理方法,并通过对市场数据的调整,来使投资组合达到最大化。
3.医疗保健医疗保健是一个复杂的系统,包括医院、医生、患者和医疗设备等多个因素。
复杂系统控制理论可以用来改善医院管理和医疗过程,如医院排队排队系统的优化,放射成像技术的影响等。
四、未来的发展趋势复杂系统控制理论仍在持续发展和完善,未来的发展趋势包括:1.数据分析和人工智能随着技术的发展,机器学习和人工智能变得越来越重要。
数据分析和机器学习可以帮助我们理解大量数据,提高系统控制的精度和效率。
2.智能化和自动化随着技术的进步,智能化和自动化的应用将会越来越多,自然而然,复杂系统控制理论的应用将获得一系列的突破。
复杂系统控制理论的研究进展及应用现状随着科学技术的快速发展,人们已逐渐认识到许多复杂系统对社会和环境产生的影响越来越严重。
为了应对这些系统产生的复杂问题,数学家和物理学家开始研究应对这些问题的方式,并提出了复杂系统控制理论。
本文的主旨是介绍该理论的研究进展和应用现状。
研究进展控制理论是从数学、工程和科学中奠定基础。
控制理论的发展是为了控制复杂系统的行为和性质。
在过去的几十年中,由于这个领域的不断进步,已经出现了许多重要的新理论、新方法和新成果,规划、控制和分析复杂系统新算法,如图形分形和深度学习的机器学习技术。
在这个领域,复杂系统的分析研究成为热门话题,因为它们在现实中的重要性越来越显著,例如全球气候变化、互联网、经济市场等。
近年来,研究成果包括复杂网络、时滞控制、非线性控制、鲁棒控制、模糊控制和自适应控制等。
这些成果是控制理论中的重要组成部分,使得人们可以更好地认识复杂系统。
应用现状根据复杂系统控制理论的研究成果,成功应用在许多方面,如航空、能源、化学、医学、环境保护等。
下面我们将主要介绍其在以下三个方面的应用现状。
1. 控制机器人人们用机器人替换了许多重复劳动的任务,使生产过程半自动化或完全自动化。
但是,机器人在执行某些任务时会出现故障或错误,因此需要引入控制方法。
复杂系统控制理论允许控制机器人系统的状态和行为,这适用于许多应用场景。
例如,在医疗技术中,采用机器人手术可以大大优化和提高手术质量。
2. 控制生产过程制造商认识到,应用复杂的控制方法可以优化生产过程。
控制系统可以在一定程度上控制生产过程,以最小化其影响。
因此,这种方法在医药生产和食品加工等领域得到了广泛的应用。
3. 控制环境环境问题,如空气和水污染等,严重影响人们的生活和健康。
为了避免这些问题的影响,环境控制在很大程度上应用复杂系统控制理论。
例如,使用强制控制方法以最小化废气和废水的产生和释放,以实现生态平衡。
结论随着复杂问题逐步增加,控制复杂系统的需求也随之增加。
谈控制理论与控制工程的发展与应用作者:王海龙来源:《科技创新导报》2013年第04期摘要:现代化科学技术及计算机技术的高速发展,推动着控制理论的理论基础及具体方法的不断完善,而将控制理论及控制工程科学的应用于各个生活及生产领域的迫切性也日渐凸显,使得控制理论与控制工程也在不断的具体应用中获得着更为全面和系统化的发展。
将控制理论与控制工程有效的应用于多种问题的解决中,已成为科研人员进行难点课题突破及重要问题解决的关键手段。
关键词:控制理论与控制工程发展与应用中图分类号:TP13 文献标识码:A 文章编号:1674-098X(2013)02(a)-0066-01于20世纪产生的相对论、量子理论及控制理论被人们认为是三项重要的科学革命,人们借助该三项理论实现着客观世界认识上的飞跃。
随着控制理论与控制工程相关的理论研究工作的深入开展,其研究对象及应用领域也发生着重大的变化,就我国的教育部所进行的学科的设置及分类中,将控制理论及控制工程设置为控制科学与工程下的二级学科,学科核心便是控制理论,推动着我国控制理论与控制工程在科学研究领域的发展。
1 控制理论与控制工程的产生及发展控制理论作为对社会发展具有重要影响意义的学科,其产生起源可上溯至十八世纪发生在英国的技术革命中,瓦特在蒸汽机的发明之后,将离心式非锤调速器的相关控制原理应用于蒸汽机转速的控制中,开创出以蒸汽作为原动力的机械化格局,而之后的工程界逐渐的将控制理论应用于调速系统稳定性的研究中,通信技术和信息处理技术的高速发展,使得电气工程师们不断的研究出更为科学全面的控制系统分析方法,实现了控制系统的条件稳定性及开环不稳定性的分析研究,而控制理论的创始人于1948年所发表的控制理论的相关著作,就控制理论的相关方法所进行得阐述,推动反馈概念的应用并为控制理论的形成奠定下坚实的基础。
在科技的不断生产发展中,基于控制理论与控制工程的控制技术也在不断的完善,尤其是在计算机技术的不断推动之下,控制理论与控制工程拥有着更深入的发展。
控制理论的综述及发展方向1 控制理论的产生控制理论作为一门学科,它的真正应用开始于工业革命时期,即1788年瓦特发明蒸汽机飞球调速器。
该种采用机械式调节原理实现的蒸汽机速度自动控制是自动化应用的第一个里程碑。
二次大战前,控制系统的设计因为缺乏系统的理论指导而多采用试凑法,二次大战期间,由于建造飞机自动驾驶仪、雷达跟踪系统、火炮瞄准系统等军事设备的需要,推动了控制理论的飞跃发展。
1948年美国数学家维纳总结了前人的成果,认为世界存在3大要素:物质、能量、信息,发表了著名的《控制论》,书中论述了控制理论的一般方法,推广了反馈的概念,从而基本上确立了控制理论这门学科[1]。
2 控制理论的分类控制理论的发展分为经典控制理论阶段、现代控制理论阶段及大系统智能控制理论阶段,下面将详细介绍各个控制理论的特点及优缺点[2]。
2.1 经典控制理论自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。
经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。
经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。
经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。
[3]经典控制理论主要用于解决反馈控制系统中控制器的分析与设计的问题。
如图1所示为反馈控制系统的简化原理框图。
图1 反馈控制系统简化原理框图典型的经典控制理论包括PID控制、Smith控制、解耦控制、串级控制等。
常接触到的系统,如机床和轧钢机中常用的调速系统、发电机的自动调节系统以及冶炼炉的温度自动控制系统等,这些系统均被当作单输入—单输出的线性定常系统来处理。
如果把某个干扰考虑在内,也只是将它们进行线性叠加而已。
解决上述问题时,采用频率法、根轨迹法、奈氏稳定判据、期望对数频率特性综合等方法是比较方便的,所得结果在对精确度、准确度要求不高的情况下是完全可用的。
自动控制理论的发展及其应用综述黄佳彬312010122420世纪40年代,控制论这门学科开始发展,其标志为维纳于1948年出版7自动控制学科史上的名著《控制论,或动物和机器的控制和通信XCybernetics, or control and conunuiiication ill the animal and machine )。
控制论思想的提出为现代科学研究提供了新的思想和方法,同时书中的一些新颖的思想和观点吸引了无数学者,令其在自己研究的领域引进控制论。
随着研究队伍的庞大,控制论形成了多个分支,其中主要的儿个分支有生物控制论,工程控制论,军事控制论,社会、经济控制论,自然控制论。
这里我们主要对工程控制论进行研究。
1.自动控制理论的发展工程控制论的概念最早山钱学森引入,当时有两种控制理论思想,一种基于时间域微分方程,另一种基于系统的频率特性。
这两种思想即为经典控制理论, 主要研究的是单输入-单输出的控制系统,同时利用分析法与实验验证法这两种方法对某个控制系统进行数学建模,山此可以获得系统各元部件之间的信号传递关系的形象表示。
由于经典控制理论的建立基于传递函数和频率特性,是对系统的外部描述。
同时经典控制理论主要研究单输入单输出系统,无法解决现实工程应用中多输入多输出系统的问题,而且经典控制理论只对线性时不变系统进行讨论,存在不少的局限性,由此,现代控制理论逐渐发展起来。
现代控制理论是从线性代数的理论研究上得来的,本质是“时域法”,即基于状态空间模型在时域对系统进行分析和设计,并且引入“状态”这一概念,用“状态变量”和“状态方程”描述系统,以此来反应系统的内在本质和特性。
现代控制理论研究的内容主要有三方面:多变量线性系统理论、最优控制理论以及最优估计与系统辨识理论,这些研究从理论上解决了许多复杂的系统控制问题, 但是随着发展,实际生产系统的规模越来越大,控制对象、控制器、控制任务和LI的也更为复杂,导致现代控制理论的成果并未有在实际中很好的应用。