钢筋的主要力学性能
- 格式:ppt
- 大小:1.96 MB
- 文档页数:20
第2章钢筋混凝土材料的力学性能2.1 钢筋2.1.2 钢筋的力学性能钢筋的主要力学性能包括强度和变形性能,可通过拉伸试验得到的应力-应变曲线来说明。
由此分为有屈服点的钢筋和无屈服点钢筋,即钢筋的应力-应变曲线有的有明显的流幅,如图2-5。
如热轧低碳钢和普通的热轧合金钢制成的钢筋。
有的则没有明显的流幅(图2-6),如光面钢丝等。
从图2-5的典型应力-应变曲线来看,应力值在A点以前,应力和应变按线性比例关系增长,A点对应的应力称为比例极限。
过了A点以后,应变比应力增长地快,到达Bˊ点以后,钢筋开始出现塑流,Bˊ称为屈服上限,它与加载速度、断面形式、试件表面光洁度等不确定因素有关,故Bˊ是不稳定的。
待从Bˊ降至B点(屈服下限)后,应力水平基本不变而应变急剧增加,图形接近水平线,直到C点。
B点到C点的水平部分称为为依据的。
过C点以后,应力又继续增长,钢筋的抗拉能力又开始发挥,随屈服台阶,BC大小称为流幅。
有明显流幅的热轧钢筋屈服强度是以屈服下限着曲线上升,到达最高点D,D对应的应力称为钢筋的极限强度,CD段称为钢筋的强化阶段。
过了D点以后,应变迅速增加,应力随之下降,在测试试件上体现为试件薄弱处的截面突然显著减小,发生局部径缩现象,变形迅速增加达到E点试件被拉断。
而图2-6中没有明显流幅的钢筋应力-应变关系曲线则没有前者的屈服台阶,而是直接到达强度极限,乃至破坏,具有脆性破坏的特点。
钢筋的一个强度代表值是标准值,标准值应具有不小于95%的保证率。
对构件计算配筋时,对于热轧钢筋的强度标准值是根据屈服强度确定,用fyk表示。
因为构件中的钢筋应力达到屈服点后,将产生很大的塑性变形,使钢筋混凝土构件出现很大变形和不可闭合的裂缝,以至不能使用。
对预应力钢绞线、钢丝和热处理钢筋等没有明显屈服点的钢筋强度标准值是根据国家标准极限抗拉强度ζb 确定的,采用钢筋应力为0.85ζb的点作为条件屈服点。
普通钢筋的强度标准值见后面的附表6。
建筑钢材概述金属材料一般包括黑色金属和有色金属两大类。
在建筑工程中应用最多的钢材属于黑色金属。
建筑钢材包括钢结构用型钢(如钢板、型钢、钢管等)各钢筋混凝土用钢筋(如钢筋、钢丝等)。
钢材是在严格的技术控制条件下生产的,与非金属材料相比,具有品质均匀稳定、强度高、塑性韧性好、可焊接和铆接等优异性能。
钢材主要的缺点是易锈蚀、维护费用大、耐火性差、生产能耗大。
一、钢材的冶炼钢是由生铁冶炼而成。
生铁的冶炼过程是;将铁矿石、熔剂(石灰石)、燃料(焦炭)置于高炉中,约在1750℃高温下,石灰石志铁矿石中的硅、锰、硫、磷等经过化学反应,生成铁渣,浮于铁水表面。
铁渣和铁水分别从出渣口和出铁口排出,铁渣排出时用水急冷得水淬矿渣;排出生铁中含有碳、硫、磷、锰等杂质。
生铁又分为炼钢生铁(白口铁)和铸造生铁(灰口铁)。
生铁硬而脆、无塑性和韧性,不能焊接、锻造、轧制。
炼钢就是将生铁进行精练。
炼钢过程中,在提供足够氧气的条件下,通过炉内的高温氧化作用,部分碳被氧化成一氧化碳气体而逸出,其他杂质则形成氧化物进入炉渣中被除去,从而使碳的含量降低到一定的限度,同时把其他杂质的含量也降低到允许范围内。
所以,在理论上凡是含碳量在2%以下,含有害杂质较少的Fe-C合金都可称为钢。
根据炼钢设备的不同,常用的炼钢方法有空气转炉法、氧气转炉法、平炉法、电炉法。
二、钢材的分类钢材的品种繁多,分类方法很多,通常有按化学成分、质量、用途等几种分类方法。
钢的分类见表一,目前,在建筑工程中常用的钢种是普通碳素钢和普通低合金结构钢。
建筑钢材的主要技术性能钢材的技术性质主要包括力学性能(抗拉性能、冲击韧性、耐疲劳和硬度等)和工艺性能(冷弯和焊接)两个方面。
一、力学性能1.拉伸性能拉伸是建筑钢材的主要受力形式,所以拉伸性能是表示钢材性能和选用的钢材的重要指标。
将低碳钢(软钢)制成一定规格的试件,放在材料试验机上进行拉伸试验,可以绘出如图一所示的应力—应变关系曲线。
钢筋力学性能钢筋是建筑工程中使用最为普遍的一种材料,它的力学性能决定了其应用范围的丰富性。
因此,了解钢筋力学性能的相关知识,对于设计者来说非常重要。
钢筋的力学性能是其力学性能的主要组成部分,包括屈服强度、抗弯强度、断裂强度和延伸率等。
屈服强度是钢筋在抗弯应力下受力到不能继续抗拉或抗压时的应力大小。
一般来说,混凝土结构构件在抗弯应力下的钢筋屈服强度通常为260MPa或以上。
抗弯强度是指钢筋受抗弯应力或裂缝开启载荷时的最大抗弯应力强度,一般情况下设计中抗弯强度不应低于屈服强度的1.1倍,也就是约286MPa,如果设计抗弯强度比屈服强度小,则可能影响构件的抗弯性能。
断裂强度是指钢筋受力时的最大抗拉应力强度,一般情况下实际应用中断裂强度不低于640MPa,高于屈服强度2.5倍以上。
延伸率是指钢筋断裂强度和屈服强度之间的比率,一般情况下实际应用中延伸率不低于15%,表明钢筋的抗拉强度很高。
除此之外,还有其他一些钢筋的力学性能,如抗冷弯强度、硬度、抗腐蚀性能等,它们也是钢筋力学性能评价的重要数据之一。
钢筋在经过高温轧制、拉伸机加工、漆包线缠绕等其他过程之后,其力学性能也会有所变化,为了保持钢筋的良好性能,可以对其进行规范化处理,如表面防护、表面涂漆、表面处理、去污清洁等,以确保钢筋的正常使用。
钢筋的力学性能有许多影响因素,如原料的材质、生产工艺、表面处理以及成型过程中的温度等,都会影响钢筋的力学性能。
因此,在生产和使用钢筋时,一定要了解其力学性能,并进行科学合理的把握,确保钢筋正常使用,避免构件由于材料不合格而出现破坏。
总之,钢筋的力学性能是影响钢筋的使用性能的重要因素,任何使用者都必须了解学习钢筋的力学性能,以确保钢筋的正常使用,提供有效力学保障,保障钢筋的力学安全和稳定性。
1 、钢筋的应力应变曲线钢筋的强度与变形钢筋的力学性能有强度、变形(包括弹性和塑性变形)等。
图1—1 有明显流幅的钢筋应力应变曲线图1—2 没明显流幅的钢筋的应力应变曲线-3对于有明显流幅的钢筋(俗称软钢),一般取屈服强度作为钢筋设计强度的依据。
因为屈服之后,钢筋的塑性变形将急剧增加,钢筋混凝土构件将出现很大的变形和过宽的裂缝,以致不能正常使用。
对于没有明显流幅的钢筋一般取为0.85 (硬钢)钢材的极限强度是材料能承受的最大应力。
通常以屈强比(屈服强度/极限强度)来反映钢筋的强度储备,屈强比越小,强度储备就越大,钢筋的利用程度越低。
反映钢筋塑性性能的基本指标是伸长率和冷弯性能。
伸长率是钢筋试件拉断后的伸长值与原长的比值,即(1-1)冷弯性能:要求钢筋绕一规定直径辊进行弯曲,在达到规定的冷弯角度时,钢筋不出现裂缝或断裂。
对于有明显流幅的钢筋,其主要指标为屈服强度、抗拉强度、伸长率和冷弯性能四项;对于没有明显流幅的钢筋,其主要指标为抗拉强度、伸长率和冷弯性能三项。
我国用于混凝土结构的钢筋主要有:HPB235级、HRB335级、HRB400级和RRB400级热轧钢筋。
纵向受力钢筋宜采用HRB400级和HRB335级钢筋。
混凝土混凝土强度是混凝土受力性能的一个基本指标。
在工程中常用的混凝土强度有立方体抗压强度标准值、轴心抗压强度和轴心抗拉强度等。
1 、立方体抗压强度标准值我国《混凝土结构设计规范》规定,混凝土强度等级应按立方体抗压强度标准值确定。
立方体抗压强度标准值( )系指按照标准方法制作养护的边长为150 的立方体试块,在28天龄期,用标准试验方法测得的具有95%保证率的抗压强度。
按照砼立方体抗压强度标准值的大小我国《混凝土结构设计规范》将混凝土的强度划分为十四个强度等级,如C80即表示其立方体抗压强度标准值是80N/mm2。
混凝土的立方体抗压强度也和试块的尺寸有关,立方体尺寸越小,测得的混凝土抗压强度越高,这种现象称为“尺寸效应”,因此采用200 和l00 的立方体试块时,所得强度数值要分别乘以强度换算系数1.05和0.95加以校正。
建筑结构设计对钢筋的种类及性能要求钢筋是由碳素钢和合金钢加工制作的线材,一般将直径d≥6mm的线材称为钢筋,而将直径d<6mm的线材称为钢丝。
有时根据碳含量和主要合金元素来对钢筋材料命名,按照“平均碳含量万分数、主要合金元素符号、合金含量百分数”的顺序予以标注。
根据建筑结构设计要求的不同,对钢筋的种类及性能也相应的有不同的要求。
标签建筑结构;钢筋;种类;性能;要求钢筋是由碳素钢和合金钢加工制作的线材,一般将直径d≥6mm的线材称为钢筋,根据建筑结构设计要求的不同,对钢筋的种类及性能也相应的有不同的要求。
1 钢筋的种类钢筋外形有光面(光圆)、螺旋纹(螺纹)、人字纹以及月牙形等形式。
除光圆钢筋外,其他形式的钢筋统称为变形钢筋或带肋钢筋。
螺纹钢筋在工地上较常用,所以经常将变形钢筋简称为“螺纹钢”。
钢筋根据使用上的不同,可分为普通钢筋和预应力钢筋两类。
1.1 普通钢筋用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力钢筋,称为普通钢筋。
普通钢筋由低碳钢、低合金钢热轧而成,又称热轧钢筋。
1.2 预应力钢筋预应力钢筋有钢绞线、钢丝和热处理钢筋等种类。
1.2.1 钢绞线钢绞线是由多根高强度钢丝扭结而成并经消除应力后的盘卷状钢丝束。
常用的钢绞线有3股、7股等,截面以公称直径(钢绞线外接圆直径)度量。
钢绞线具有截面集中、比较柔软、盘弯后运输方便、与混凝土黏结性能良好等特点,可大大简化现场成束工序,是一种较理想的预应力钢筋,广泛应用于后张法大型构件。
1.2.2 消除应力钢丝由高碳镇静钢光圆盘条钢筋经冷拔制成的钢丝,经回火处理以消除残余应力。
其强度高,塑性好,但与混凝土的黏结力差,一般用作预应力筋。
根据表面不同,可分为光面钢丝、螺旋肋钢丝和刻痕钢丝三种。
预应力钢筋还采用低松弛钢丝。
与普通松弛钢丝不同的是,钢丝冷拔后在一定拉力条件下进行回火处理,以消除残余应力。
经过这种工艺处理的钢丝,弹性极限和屈服强度提高,应力松弛率大大降低,故称为低松弛钢丝。
一、钢材的主要性能钢材的力学性能:有明显流幅的钢筋,塑形好、延伸率大。
技术指标:屈服强度、延伸率、强屈比、冷弯性能。
力学性能是最重要的使用性能,包括抗拉性能、冲击韧性、耐疲劳性等。
工艺性能包括冷弯性能和可焊性。
(1)抗拉性能:抗拉性能钢材最重要的力学性能。
屈服强度是结构设计中钢材强度的取值依据。
抗拉强度与屈服强度之比(强屈比)σb/σs,是评价钢材使用可靠性的一个参数。
对于有抗震要求的结构用钢筋,实测抗拉强度与实测屈服强度之比不小于1.25;实测屈服响度与理论屈服强度之比不大于1.3;强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料。
钢材受力破坏前可以经受永久变形的性能,称为塑性,它是钢材的一个重要指标。
钢材的塑性指标通常用伸长率表示。
伸长率随钢筋强度的增加而降低。
冷弯也是考核钢筋塑性的基本指标。
(2)冲击韧性,是指钢材抵抗冲击荷载的能力,在负温下使用的结构,应当选用脆性临界温度较使用温度为低的钢材。
(3)耐疲劳性:钢材在应力远低于其屈服强度的情况下突然发生脆断破裂的现象,称为疲劳破坏。
危害极大,钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高。
二、钢筋的工艺性能1、钢材的性能主要有哪些内容钢材的主要性能包括力学性能和工艺性能。
力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。
工艺性能是钢材在各加工过程中表现出的性能,包括冷弯性能和可焊性。
(1)抗拉性能。
表示钢材抗拉性能的指标有屈服强度、抗拉强度、屈强比、伸长率、断面收缩率。
屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。
发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。
抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。
钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
建筑常用钢材的力学性能和工艺性能讲解钢材的技术性能包括力学性能、工艺性能和化学性能等。
力学性能主要包括拉伸性能、冲击韧性、疲劳强度、硬度等;工艺性能是钢材在加工制造过程中所表现的特性,包括冷弯性能、焊接性能、热处理性能等。
只有了解、掌握钢材的各种性能,才能正确、经济、合理地选择和使用各种钢材。
一、力学性能(一)拉伸性能钢材的拉伸性能,典型地反映在广泛使用的软钢(低碳钢)拉伸试验时得到的应力σ与应变ε的关系上,如图7.7所示。
钢材从拉伸到拉断,在外力作用下的变形可分为四个阶段,即弹性阶段、屈服阶段、强化阶段和颈缩阶段。
图7.7低碳钢受拉应力-应变1.弹性阶段在OA范围内应力与应变成正比例关系,如果卸去外力,试件则恢复原来的形状,这个阶段称为弹性阶段。
弹性阶段的最高点A所对应的应力值称为弹性极限σp。
当应力稍低于A点时,应力与应变成线性正比例关系,其斜率称为弹性模量,用e表示。
弹性模量反映钢材的刚度,即产生单位弹性应变时所需要应力的大小。
2.屈服阶段当应力超过弹性极限σp后,应力和应变不再成正比关系,应力在B上和B 下小范围内波动,而应变迅速增长。
在σ-ε关系图上出现了一个接近水平的线段。
试件出现塑性变形,AB称为屈服阶段,B下所对应的应力值称为屈服极限σs。
钢材受力达到屈服强度后,变形即迅速发展,虽然尚未破坏,但已不能满足使用要求。
所以设计中一般以屈服强度作为钢材强度取值的依据。
对于在外力作用下屈服现象不明显的钢材,规定以产生残余变形为原标距长度0.2%时的应力作为屈服强度,用σ0.2表示,称为条件屈服强度。
3.强化阶段当应力超过屈服强度后,由于钢材内部组织产生晶格扭曲、晶粒破碎等原因,阻止了塑性变形的进一步发展,钢材抵抗外力的能力重新提高。
在σ-ε关系图上形成BC段的上升曲线,这一过程称为强化阶段。
对应于最高点C的应力称为抗拉强度,用σb来表示,它是钢材所能承受的最大应力。
钢材屈服强度与抗拉强度的比值(屈强比σs/σb),是评价钢材受力特征的一个参数,屈强比能反映钢材的利用率和结构安全可靠程度。
钢筋原材检测报告1. 摘要本报告旨在对钢筋原材料进行全面的检测和分析,以确保其符合相关质量标准和规范要求。
通过对钢筋的化学成分、力学性能以及表面质量的检验,评估钢筋原材料的质量和可靠性。
本次检测结果将为钢筋的选择和使用提供重要的参考依据。
2. 检测方法本次钢筋原材料的检测主要采用以下方法:2.1 化学成分检测通过取样的方式,将钢筋材料送至实验室进行化学成分的分析。
采用光谱仪等专业设备,可准确测定钢筋中各种元素的含量,如碳含量、硫含量、锰含量等,并对其进行比较和评估。
2.2 力学性能检测钢筋的力学性能是其最重要的技术指标之一。
本次检测采用万能材料试验机等设备,对钢筋的抗拉强度、屈服强度、弯曲强度等性能进行了全面测定和分析。
同时,还对钢筋的冷弯性能、焊接性能等进行了评估。
2.3 表面质量检测钢筋的表面质量直接影响其在建筑结构中的作用和使用寿命。
通过目测和放大镜等设备,对钢筋的表面进行了全面检查。
检测重点包括钢筋的氧化程度、锈蚀状况、表面裂纹等。
3. 检测结果3.1 化学成分检测结果经过化学成分检测,钢筋样品的主要化学成分如下表所示:元素含量(%)碳含量0.25硫含量0.035锰含量0.75根据标准要求,以上各项元素的含量均符合质量标准,说明该钢筋原材料的化学成分符合要求。
3.2 力学性能检测结果经过力学性能检测,钢筋样品的主要性能参数如下:•抗拉强度:600 MPa•屈服强度:400 MPa•弯曲强度:550 MPa以上数据表明,该钢筋原材料的力学性能满足相关标准的要求,具备较高的强度和韧性。
3.3 表面质量检测结果经过表面质量检测,钢筋样品的表面情况如下所示:•表面无明显氧化和锈蚀现象;•表面无可见裂纹和缺陷。
该钢筋原材料的表面质量良好,无明显的质量问题,符合使用要求。
4. 结论基于对钢筋原材料的全面检测和分析,可以得出以下结论:1.钢筋原材料的化学成分符合相关要求,具备合格的质量。
2.钢筋原材料的力学性能满足标准要求,具备较高的强度和韧性。
钢筋的力学性能主要包括引言钢筋是一种广泛应用于建筑和基础设施工程中的重要材料。
它具有优异的力学性能,能够承受巨大的拉力和抗压能力。
本文将重点介绍钢筋的力学性能,包括钢筋的强度、韧性、延性和疲劳寿命等方面。
钢筋的强度钢筋的强度是指钢筋能够承受的最大力量。
钢筋的强度与其钢材的性质有关,一般可以分为屈服强度和抗拉强度两种。
屈服强度是指钢筋开始产生塑性变形时所能承受的最大应力,而抗拉强度是指钢筋在拉伸过程中能够承受的最大应力。
钢筋的强度决定了它在结构中所能发挥的作用,对工程安全和可靠性有着重要的影响。
钢筋的韧性韧性是指材料在受到外力作用时能够产生的塑性变形能力。
钢筋具有良好的韧性,这意味着在受力作用下能够发生较大的形变而不会立即断裂。
钢筋的韧性使其能够吸收能量,增加结构的抗震性能,从而提高工程的安全性。
钢筋的延性延性是指材料在受到外力作用下能够发生较大的塑性变形而不断裂的性能。
钢筋具有良好的延性,这意味着当结构遭受较大荷载时,钢筋能够发生较大的变形,从而吸收能量,减少结构的应力集中,提高结构的抗震能力。
钢筋的疲劳寿命疲劳寿命是指材料在长期交替载荷作用下能够承受的循环次数。
钢筋在建筑结构中常常受到重复的荷载作用,例如地震、风力等。
钢筋的疲劳寿命是衡量其在长期使用过程中的耐久性能指标之一。
通过合理的设计和材料选择,可以提高钢筋的疲劳寿命,从而延长结构的使用寿命。
结论钢筋作为一种重要的建筑材料,具有优异的力学性能。
本文介绍了钢筋的强度、韧性、延性和疲劳寿命等方面的性能。
钢筋的强度决定了其在结构中的作用,韧性和延性使得钢筋能够吸收能量,提高结构的抗震性能。
通过合理的设计和材料选择,可以延长钢筋的使用寿命,提高工程的安全性和可靠性。
钢筋的性能钢筋力学性能钢筋的力学性能,可通过钢筋拉伸过程中的应力-应变图加以说明。
热轧钢筋具有软钢性质,有明显的屈服点,其应力-应变图见图9-5。
从图中可以看出,在应力达到a点之前,应力与应变成正比,呈弹性工作状态,a点的应力值σp称为比例极限;在应力超过a点之后,应力与应变不成比例,有塑性变形,当应力达到b点,钢筋到达了屈服阶段,应力值保持在某一数值附近上、下波动而应变继续增加,取该阶段最低点c点的应力值称为屈服点σs;超过屈服阶段后,应力与应变又呈上升状态,直至最高点d,称为强化阶段,d点的应力值称为抗拉强度(强度极限)σb;从最高点d至断裂点e'钢筋产生颈缩现象,荷载下降,伸长增大,很快被拉断。
冷轧带肋钢筋的应力-应变图(图9-6),呈硬钢性质,无明显屈服点。
一般将对应于塑性应变为0.2%时的应力定为屈服强度,并以σ0.2表示。
图9-5 热轧钢筋的应力-应变图图9-6 冷轧带肋钢筋的应力-应变图提高钢筋强度,可减少用钢量,降低成本,但并非强度越高越好。
高强钢筋在高应力下往往引起构件过大的变形和裂缝。
因此,对普通混凝土结构,设计强度限值为360MPa。
钢筋的延性通常用拉伸试验测得的伸长率表示。
影响延性的主要因素是钢筋材质。
热轧低碳钢筋强度虽低但延性好。
随着加入合金元素和碳当量加大,强度提高但延性减小。
对钢筋进行热处理和冷加工同样可提高强度,但延性降低。
混凝土构件的延性表现为破坏前有足够的预兆(明显的挠度或较大的裂缝)。
构件的延性与钢筋的延性有关,但并不等同,它还与配筋率、钢筋强度、预应力程度、高跨比、裂缝控制性能等有关。
例如,即使延性最好的热轧钢筋,当配筋率过小或过大时,构伴均可能发生表现为断裂或混凝土碎裂的脆性破坏。
而由延性并不高的钢丝、钢绞线配筋的构件,由于钢筋强度很高,在很大的变形和裂缝下也不致断裂。
钢筋锚固性能钢筋混凝土结构中,两种性能不同的材料能够共同受力是由于它们之间存在着粘结锚固作用,这种作用使接触界面两边的钢筋与混凝土之间能够实现应力传递,从而在钢筋与混凝土中建立起结构承载所必须的工作应力。
一钢筋的物理力学性能钢筋混凝土及预应力混凝土结构中,所用钢筋的物理力学性能主要是在静力、反复和重复荷载下的强度和弹塑性变形性能,弹塑性性能一般用延伸率和冷弯性能来表示。
目前的发展趋向是尽量采用高强度的钢筋,以减轻结构的重量。
如:美国钢筋混凝土规范允许采用屈f)为56kg/mm2作为钢筋混凝土结构中钢筋的设计强度。
预应力混凝土结构中,服强度(y采用热处理钢筋以及碳素钢丝,钢绞线的强度分别达到160kg/mm2和180kg/mrn2。
提高钢筋强度的同时,要注意钢筋的塑性性能,避免钢筋脆断。
预应力混凝土中的应力松弛、应力腐蚀等问题受广泛重视。
国内外学者对钢筋的延性、承受反复作用力和重复荷载下的疲劳性能也进行了研究。
此外,温度,特别是低温对钢筋的物理力学性能的影响,我国也进行了一定的研究。
1.1 钢筋的类型和应力应变曲线1 钢筋的类型混凝土及预应力混凝土结构中采用的钢筋有碳素钢和低合金钢。
碳素钢分为低碳钢(含碳量少于0.25%)和高碳钢(含碳量在0.6%~1.4%)。
含有锰、硅、钒、钛等合金元素的低合金钢(含有少量合金元素)。
加入少量合金元素能显著地提高钢筋的综合性能和强度。
锰系的合金元素如16Mn,25MnSi等,硅钒系的低合金钢如15SiV,35Si2V等,硅钛系的低合金钢如16SiTi,35Si2Ti等,另外还有锰硅钒系的如45MnSiV,65MnSiV等。
国外多采用硅-锰系低合金钢,欧洲、美国、日本常加铬、钒,苏联则加入铌、钛、锆。
混凝土结构设计规范(GB50010-2002)选用的钢筋,是按照现行国家标准《钢筋混凝土用热轧带肋钢筋》GB1499、《钢筋混凝土用热轧光圆钢筋》GB13013、《钢筋混凝土用余热处理钢筋》GB13014和《预应力混凝土用钢丝》GB/T5223选用。
热轧钢筋根据强度等级分为I至Ⅳ级如表1-1所示。
除I级钢筋(3号钢)为光面外。
其余均为螺纹钢筋。
采用月牙形变形钢筋。
钢丝除碳素钢丝、刻痕钢丝外,还有用低碳钢(0号、2号、3号、4号不等)的钢筋经数道冷拔成的冷拔低碳钢丝。
钢筋的种类及其力学性能(三)钢筋的种类及其力学性能1.钢筋的品种和级别在钢筋混凝土中,采用的钢材型式有两大类:一类是劲性钢筋,由型钢(如角钢、槽钢、工字钢等)组成。
在钢筋混凝土构件中置人型钢的称为劲性钢筋混凝土,通常在荷重大的构件中才采用。
另一类是柔性钢筋,即通常所指的钢筋。
柔性钢筋又包括钢筋和钢丝两类。
钢筋按外形分为光圆钢筋和变形钢筋两种。
钢筋的品种很多,可分为碳素钢和普通低合金钢。
碳素钢按其含碳量的多少,分为低碳钢(含碳<0.25%),中碳钢(含碳0.25%—0.6%)和高碳钢(含碳0.6%-1.4%)。
低碳钢强度低但塑性好,称为软钢;高碳钢强度高但塑性、可焊性差,称为硬钢。
普通低合金钢,除了含有碳素钢的元素外,又加入了少量的合金元素,如锰、硅、矾、钛等,大部分低合金钢属于软钢。
建筑工程中,常用的钢筋按加工艺的不同分为:热轧钢筋、冷拉钢筋。
冷轧带肋钢筋、冷轧扭钢筋、热处理钢筋、碳素钢丝、刻痕钢丝、冷拔低碳钢丝、钢绞线等。
对热轧钢筋,按其强度分为HPB235、HRB335、HRB400、RRB400四种。
钢筋级别越大强度越高,但塑性越低。
HPB235钢为普通碳素钢筋,HBB335、HRB400、RRB400级钢筋均为普通低合金钢。
2.钢筋的应力,应变曲线和力学性能指标钢筋混凝土及预应力混凝土结构中所用的钢筋可分为两类:有明显屈服点的钢筋(一般称为软钢)和无明显屈服点的钢筋(一般称为硬钢)。
钢筋的力学性能指标有4个,即屈服强度、极限抗拉强度、伸长率和冷弯性能。
(1)屈服强度对于软钢,取下屈服点的应力作为屈服强度。
对无明显屈服点的硬钢,设计上通常取残余应变为0.2%时所对应的应力作为假想的屈服点,称为条件屈服强度,用σ0.2来表示。
对钢丝和热处理钢筋的σ0.2,规范统一取0.8倍极限抗拉强度。
(2)极限抗拉强度对于软钢,取应力-应变曲线中的最高点为极限抗拉强度;对于硬钢,规范规定,将应力-应变曲线的最高点作为强度标准值的依据。