2.医用物理学-物体的运动规律
- 格式:pptx
- 大小:6.43 MB
- 文档页数:10
《医用物理学》课程教学大纲(Medical Physics)一、课程基本信息课程编号:14072602,14072603课程类别:学科基础课适用专业:医学/药学/医检等专业学分:3总学时:48先修课程:高等数学后续课程:医学专业课课程简介:医用物理学是物理学的重要分支学科,是物理学与医学的交叉学科,也是医学类专业学生必修的基础课程。
开设这门课程的主要目的是,一方面是通过较系统的教学,使学生进一步深入理解物理概念和物理规律,为医学院学生后续学习现代医学打下必要、坚实的物理基础;另一方面使学生在物理思想、研究问题的科学方法与创新能力方面得到提高。
主要教学方法与手段:本课程以讲课为主,讲课形式兼顾PPT和板书,同时教学视频录像作为辅助手段,网络教学作为资源库和教学辅导手段。
选用教材:陈仲本,况明星.医用物理学[M].北京:高等教育出版社,2010必读书目:[1] 倪忠强,刘海兰,武荷岚.医用物理学[M].北京:清华大学出版社,2014选读书目:[1] 王振华.医用物理学[M].北京:北京邮电大学出版社,2009[2] 李旭光.医用物理学[M].北京:北京邮电大学出版社,2009[3] 程守洙,江之永,胡盘新. 普通物理学(第五版)[M].北京:高等教育出版社,2004[4] 马文蔚.物理学(第五版)[M].北京:高等教育出版社,2006[5] D. Halliday, R. Resnick, J. Walker. Fundamentals of Physics (Extended) [M]. John Wiley & Sons, Inc, 2001二、课程总目标:本课程目的在于通过对经典物理学和近代物理学的系统学习,尤其是和医学紧密相关的知识的介绍,了解物理学发展及其在医学中的应用,了解物理学发展过程中的基本方法,基本实验,基本思路。
掌握经典物理学中力学,热学和电磁学的基本知识和基本技能,理解近代物理学发展的基本内容和基本概念,并且能利用这些知识和技能为后续的医学专业课服务。
物体运动规律物体运动规律是物理学研究的基础之一。
物体的运动规律描述了物体在空间和时间上的变化,并通过数学方式来解释它们。
在这篇文章中,我们将探讨物体运动的基本规律,包括匀速直线运动、匀变速直线运动和曲线运动。
首先,让我们来讨论匀速直线运动。
匀速直线运动是指物体在一条直线上以相等的速度运动。
根据牛顿第一定律,物体在没有外力作用下将保持匀速直线运动。
这意味着物体的速度将保持不变,同时沿直线运动。
当物体的速度为正时,物体向正方向运动;当物体的速度为负时,物体向负方向运动。
物体的位移(或移动的距离)可以通过速度乘以运动时间来计算。
对于匀速直线运动,物体的速度可以通过位移除以时间来计算。
接下来,我们来讨论匀变速直线运动。
匀变速直线运动是指物体在一条直线上以逐渐变化的速度运动。
根据牛顿第二定律,物体在受到外力作用下,加速度与合外力成正比。
加速度可以通过合外力除以物体的质量来计算。
根据运动学公式,物体的速度变化可以通过加速度乘以时间来计算。
而物体的位移则可以通过初始速度乘以时间再加上加速度的一半乘以时间的平方来计算。
在匀变速直线运动中,物体的速度和位移都是随时间而变化的。
最后,我们来探讨曲线运动。
曲线运动是指物体在空间中以曲线路径运动。
在曲线运动中,物体的速度和加速度的方向都会随时间改变。
曲线运动可以分为平面内曲线运动和空间曲线运动。
平面内曲线运动是指物体在同一个平面内以曲线路径运动,如圆周运动。
空间曲线运动是指物体在空间中以曲线路径运动,如抛体运动。
曲线运动的物体有速度和加速度的大小和方向都会随着时间的推移而改变。
在物体运动规律的应用中,我们可以通过使用运动学公式来解决一些与物体运动相关的问题,如计算物体的速度、加速度、位移等。
同时,我们也可以通过运用牛顿定律、万有引力定律等来解决与物体运动相关的动力学问题。
总结起来,物体运动规律包括匀速直线运动、匀变速直线运动和曲线运动。
通过研究物体的速度、加速度、位移等参数的数学关系,我们可以揭示物体在空间和时间上的变化规律。
物体的运动及运动规律物体的运动一直是人类研究的重要课题,运动规律则是物理学中的基本概念之一。
对于物体的运动规律进行深入研究不仅有助于我们更好地理解周围世界的运动现象,还对实际生活中的问题解决有着重要的指导作用。
本文将介绍物体的运动及其运动规律,并探讨其中的重要原理和实际应用。
一、物体的运动类型在物理学中,物体的运动可以分为直线运动和曲线运动两种类型。
直线运动是指物体沿直线路径移动的运动方式,其中最简单的直线运动是匀速直线运动。
在匀速直线运动中,物体在相等时间内移动的距离相等,速度保持不变。
除了匀速直线运动,还存在匀加速直线运动。
在匀加速直线运动中,物体在单位时间内速度的增加量相等,即加速度保持恒定。
曲线运动则是物体沿曲线路径移动的运动方式,如抛体运动和圆周运动等。
抛体运动是指物体在重力作用下,以一定的初速度和角度从水平面上抛出运动的过程。
而圆周运动是指物体在半径一定的圆轨道上做运动,它具有向心加速度和向心力的特点。
二、运动规律1. 牛顿第一定律:惯性定律牛顿第一定律是物体运动规律的基础,也被称为惯性定律。
它表明,当物体不受力或受到合力为零的作用时,物体将保持静止或匀速直线运动状态。
2. 牛顿第二定律:动力学定律牛顿第二定律是描述运动状态的一个重要定律,也被称为动力学定律。
它表明,当物体受到合力作用时,物体将产生加速度,其大小与受力成正比,与物体的质量成反比,即F=ma。
其中,F表示合力,m表示物体的质量,a表示物体的加速度。
3. 牛顿第三定律:作用与反作用定律牛顿第三定律也被称为作用与反作用定律。
它表明,任何两个物体之间的作用力与反作用力具有相等大小、方向相反的特点。
换句话说,对物体施加的作用力会有一个同样大小但方向相反的反作用力作用在作用体上。
三、运动规律的应用运动规律的研究不仅仅是理论性的,它还具有广泛的实际应用价值。
1. 物体受力分析运动规律可以帮助我们分析物体受力的情况,从而了解物体的运动状态和受力情况。
《医用物理学》大纲一、课程简介要求:掌握流体、液体表面现象、声波、磁场、电场、电流、几何光学、波动光学、X射线、核医学成像技术的物理原理;理解物理现象的基本过程;了解物理因子与生物体的相互作用规律等。
二、内容和要求【要求】通过对物理学研究对象的了解,弄清物理学与现代医学的内在联系。
【内容】物理学的研究对象,物理学与医学的关系。
第一章力学基本定律【要求】在中学力学知识的基础上总结提高,对医学上需要的力学基础知识作进一步的讨论,掌握物体弹性的一般规律,为了解生物组织的力学性质打基础。
【内容】刚体的转动角量与线量的关系转动动能与转动惯量力矩与转动定律动量矩守恒定律,物体的弹性,应力与应变,杨氏弹性模量,骨骼与肌肉的力学性质。
第二章流体的运动【要求】掌握理想流体和稳定流动的概念、连续性方程、伯努力方程与泊肃叶定律及其应用;理解层流与湍流、雷诺数的概念、粘性流体的伯努力方程的物理意义;了解心脏作功、血液的粘度及其影响因素、人体循环系统中的血流特点。
【内容】1.理想流体的流动理想流体,稳定流动,液流连续原理。
2.伯努利方程伯努利方程及应用。
3.实际流体的流动流体的粘滞性,层流、湍流、雷诺数,泊肃叶方程,流量与流阻、压强差的关系,粘性流体的伯努力方程。
4.斯托克斯定律斯托克斯定律,沉降速度。
5.血液在循环系统中的流动心脏作功,血流速度分布,血流过程中的血压分布。
重点:1.稳定流动的概念,流体连续原理的应用。
2.伯努利方程的意义及其应用(计算和解释现象)。
难点:伯肃叶公式推导。
第三章振动、波动和声波【要求】深入掌握振动与波动的基本规律。
了解声学的基本概念和超声的特点及医学应用。
【内容】简谐振动谐振动方程相位相位差旋转矢量法谐振动能量振动的合成同方向同频率谐振动的合成垂直方向同频率谐振动的合成受迫振动阻尼振动共振波的产生和传播简谐波的波动方程波的强度波的衰减惠更斯原理波的叠加原理波的干涉和衍射声波声压声阻声强声强级和响度级超声的产生与接收超声的性质超声诊断与治疗多普勒效应超声血流计第四章分子动理论【要求】掌握液体表面张力的基本规律。
物体运动规律物体运动是自然界中普遍存在的现象,而物体的运动规律则是研究物体在运动过程中所遵循的一系列定律和规则。
在物理学中,物体的运动规律可以由牛顿运动定律来描述和解释。
本文将通过对物体的运动规律进行探讨,帮助读者更好地理解物体运动中的一些基本原理。
一、牛顿第一定律-惯性定律牛顿第一定律也被称为惯性定律,它表明一个物体如果受到的合力为零,则物体将保持静止或匀速直线运动的状态。
这意味着物体具有一种惯性,即物体会继续保持当前的状态,无论是静止还是运动。
当外力作用于物体时,物体会发生变化,从静止变成运动,或者改变运动方向和速度。
这一定律揭示了物体的运动状态与所受的力之间的关系。
二、牛顿第二定律-运动定律牛顿第二定律描述了物体运动时所受到的力与物体加速度之间的关系。
牛顿第二定律的数学表达式为F=ma,其中F代表物体所受的合力,m代表物体的质量,a代表物体的加速度。
根据这个定律,我们可以推导出一个重要的结论:当施加在物体上的外力增加时,物体的加速度也会增加;而当物体的质量增加时,物体的加速度会减小。
三、牛顿第三定律-作用-反作用定律牛顿第三定律也被称为作用-反作用定律,它指出任何两个物体之间的相互作用力大小相等、方向相反,并且作用在彼此不同的物体上。
具体而言,当一个物体对另一个物体施加一个力时,第二个物体会以相同的大小但方向相反的力作用于第一个物体上。
这个定律更加突出了物体之间相互作用的普遍性和不可分割性。
四、运动规律的应用物体运动规律不仅存在于理论上的定律,而且在生活实践中也有广泛的应用。
例如,汽车的制动过程可以通过牛顿的运动定律来解释,当司机踩下制动踏板时,摩擦力产生向反方向的合力。
另一个例子是弹射运动,如篮球的弹跳,根据牛顿定律,当篮球落地时,地面对篮球施加一个向上的力,使篮球产生弹跳。
此外,物体的运动规律在天体物理学中也有广泛的应用。
行星绕太阳运动、卫星绕行星运动等都可以通过运动定律来解释。
五、总结物体运动规律是物理学中的基本概念,通过牛顿的运动定律,我们可以更好地理解和解释物体在运动过程中所遵循的规律。
运动学描述物体的运动状态随什么变化的规律摘要:1.物体运动状态的定义与描述2.物体运动状态变化的原因3.物体运动状态变化的规律4.总结正文:一、物体运动状态的定义与描述物体运动状态是指物体在空间中的位置、速度、加速度等物理量的变化情况。
其中,速度是描述物体运动快慢和方向的物理量,加速度是描述物体速度变化快慢和方向的物理量。
物体的运动状态可以通过其速度和加速度来描述。
二、物体运动状态变化的原因物体运动状态的变化是由外力引起的。
根据牛顿第一定律,一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
外力是使物体运动状态改变的原因,它可以改变物体的速度、加速度以及运动方向。
三、物体运动状态变化的规律物体运动状态变化的规律可以通过牛顿运动定律来描述。
牛顿运动定律包括以下三条:1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
该定律指出了物体具有惯性,即物体维持自己的运动状态并不需要力。
2.牛顿第二定律:物体的加速度与作用在物体上的外力成正比,与物体的质量成反比。
该定律描述了物体受到外力后,其加速度与外力、质量之间的关系。
3.牛顿第三定律:作用在物体上的力与物体对它的反作用力大小相等,方向相反,作用在同一条直线上。
该定律揭示了力的相互作用性质。
通过以上三条定律,可以描述物体运动状态变化的规律。
例如,当物体受到一定的力作用时,其速度会发生变化,从而改变物体的运动状态。
四、总结物体运动状态的变化是由外力引起的,其变化的规律可以通过牛顿运动定律来描述。
物理物体运动规律探究物理学是研究物体的运动与力的学科之一,而物体的运动规律是物理学研究的核心内容之一。
在物理学中,我们通过实验和观察来揭示物体运动的规律,并通过数学模型来描述和预测物体的运动行为。
本文将探究几个常见的物体运动规律及其应用。
一、匀速直线运动规律匀速直线运动是最简单的运动形式之一,它是指物体在某一方向上保持恒定速度运动的过程。
根据物理学的研究,我们可以得出以下匀速直线运动的规律。
1.位移与时间的关系:在匀速直线运动中,物体的位移与时间的关系是线性关系。
当物体的速度保持不变时,位移随时间呈线性增加。
2.速度与时间的关系:根据匀速直线运动的定义,速度恒定不变。
因此,在匀速直线运动中,速度与时间无关。
3.加速度与时间的关系:由于匀速直线运动的速度始终保持不变,所以加速度为零。
匀速直线运动在实际生活中有着广泛的应用。
例如,我们常见的汽车行驶过程中就是一种匀速直线运动。
通过研究物体的匀速直线运动规律,我们可以更好地理解和预测车辆的运动行为,为交通规划和设计提供参考依据。
二、加速直线运动规律加速直线运动是指物体在某一方向上速度不断变化的过程。
与匀速直线运动相比,加速直线运动涉及到加速度的概念。
以下是加速直线运动的规律。
1.位移与时间的关系:在加速直线运动中,物体的位移与时间的关系不再是线性关系,而是二次函数关系。
这是由于加速度导致速度的变化,进而影响位移的变化。
2.速度与时间的关系:在加速直线运动中,速度随着时间的增加而增加或减小。
速度的变化率即为加速度,可以通过导数的概念来描述。
3.加速度与时间的关系:加速直线运动的加速度不是恒定不变的,而是随着时间的变化而变化。
加速度可以是正值,表示速度增加;也可以是负值,表示速度减小。
加速直线运动在现实生活中有着许多应用。
例如,我们常见的自由落体运动就是一种加速直线运动。
当物体从高处自由落体时,加速度恒定为重力加速度,根据加速直线运动规律,我们可以计算出物体下落的时间、速度以及落地时的位置等。
医用物理学教学大纲Medical Physics(供预防医学专业本科五年制用)前言《医用物理学》是高等医学教育中的一门公共基础课,它是研究生命活动最基本规律的科学。
它的任务是研究物质的基本结构、基本运动形式、相互作用等基本规律,介绍物理学的理论、方法和技术对现代医药科学的发展所做的重要贡献。
医用物理学的目的是使学生比较系统地掌握现代医学所需要的物理学基础理论、基本知识、基本技术和方法,培养学生辩证唯物主义世界观和分析问题、解决问题的能力。
为学生学习后续课程以及将来从事医疗卫生和科研工作打下必要的物理基础。
本课程是所有医学相关课程的共同基础课程,为后续学科学习奠定必要基础。
本大纲与高等教育出版社出版,喀蔚波主编的教育科学“十五”国家级规划课题研究成果教材第一版《医用物理学》配套使用,适用于五年制临床医学专业本科生的教学。
大纲所列教学内容可通过课堂讲授、实验、自学、讨论、计算机多媒体等等方式进行教学。
划横线部分为要求学生重点掌握的内容,其他为一般熟悉和一般了解内容。
总学时为60学时,其中理论48学时,实验12学时。
本课程为院考课程,学生理论课考核采用笔答考试方式为主,其成绩占总成绩的60%。
平时作业成绩占10%,实验考核成绩占30%(其中实验操作15%,实验报告15%)。
第一章力学的基本定律目的要求掌握对运动的描述方程,质点、刚体、位移速度、加速度、角位移、角速度、角加速度的概念。
掌握运动方程与速度、加速度方程的关系。
熟悉力、牛顿运动定律、动量守恒定理。
教学内容1.物理量及其表述(质点,矢量,标量,平均量,即时量,参考系,量纲)2.运动描述(位置矢量,运动方程,位移,平均速度,瞬时速度)3.牛顿运动定律(牛顿第一定律,牛顿第二定律,牛顿第三定律)4.动能定理(动能,势能,做功)5.动量守恒定理(冲量,动量)4.刚体的定轴转动(自学)第二章流体的运动目的要求掌握理想流体和稳定流动的概念、连续性方程及伯努利方程的物理意义并熟练应用。
《医用物理学》课程标准适用专业:高职高专医疗设备应用技术专业建议课时数:64一、前言(一)课程的性质《医用物理学》是医疗设备应用技术专业的重要基础课程。
本课程的主要任务是使学生较系统地掌握医学相关的物理基础,培养学生的科学素质和科学思维方法,提高学生应用基本理论解决实际问题的能力,为学生学习专业基础课和专业课,如电路基础、医用超声设备、X线影像设备等课程奠定基础,对学生的职业岗位能力培养和职业素质养成起到一个重要的支撑作用。
(二)课程设计思路本课程建议课时:总学时64,理论学时54,实践学时10。
学分4分。
本课程是以高职医疗设备应用技术专业学生的就业为导向,根据专业岗位所涵盖的工作任务的需要而设置,经职业能力分析,以实际工作任务为引领,以医疗器械行业所应具备的职业能力为主线。
课程设计依据学生就业岗位的特点,对物体运动、振动、电磁场、光学等医学物理知识进行讲解和分析,培养学生应用基本理论解决实际问题的能力。
课程内容包括:物体的运动规律、振动和波、分子动理论、静电场、电磁现象与电磁波、电流对人体的作用、几何光学、波动光学、激光及其医学应用、X射线等。
二、课程目标通过本课程的学习,使学生掌握医用物理学的基础知识,熟悉常用物理仪器的使用方法,培养学生沟通、团结协作的社会能力,使学生具备相关职业岗位工作能力和可持续发展能力。
(一)知识目标1. 掌握医学物理的基本理论、基本原理和科学的思维方法。
2. 熟悉相关专业课程所需的物理名词与基本知识。
3. 了解与专业相关的医疗器械的基本物理原理。
(二)能力目标1. 熟练掌握长度测量基本仪器、称衡基本仪器、电学基本仪器的使用方法,培养学生正确规范地完成相关基础实验的能力。
2. 学会示波器、电位差计、万用表等仪器的使用和操作,培养学生实际操作、数据处理和故障排除的能力。
(三)思政育人目标1. 形成良好的心理素质和职业素养。
2. 具备善于观察、自主思考、独立分析和解决问题的能力。