2列代数式
- 格式:doc
- 大小:149.00 KB
- 文档页数:4
2.2列代数式(第1课时)教课目的在详细的情形中能列出代数式,进一步熟习代数式的书写要求。
要点难点要点:列代数式;难点:理解描绘数目关系的语句,正确地列出代数式。
教课过程一激情引趣,导入新课1下边是我在从前学生作业中采集到的代数式,他们的书写规范吗?为何?(1) ab3;(2) s÷t;(3) 23xy;(4)(a+b)(a+b);(5) 2+b平方米。
52比一比,看谁做得快而准。
(1)小明买铅笔 5 支,买练习本 4 本,此中铅笔x 元一支,练习本y 元一本,那么他对付给商铺____________元。
(2)某校梯形教室第一排有8 个座位,第二排有位,那么第n 排有 ____________个座位。
10 个座位,此后每排比它前一排多 2 个座(做完后沟通议论,你是怎么知道的?)(3)小斌从边长为10 cm的正方形纸片的4 个角均剪去一个边长为x cm 的小正方形,做成一个无盖的纸盒,你能算出纸盒的表面积吗?x10二合作沟通,研究新知1思虑问题:什么是代数式?察看上边列出的式子:5x 4 y ,8+2(n-1),100 4x2, 前方碰到的: 1139a,3.31t,此后我们将要碰到的:5,2xy2,11, 还有: 0,-1, m,-a 这些式子有什么共同点v0.23x 4 y r R2呢?依据下边的提示回答。
( 1 )在有些式子中,数与数、数与字母、字母与字母之间是用什么符号连结的?_____________(2)这些式子中含有等号或许不等号吗?______________(3)有没有不含有运算符号的式子?____________;你能说出什么是代数式吗?用_______ 把 ______________ 连结而成的式子,叫做代数式。
独自的一个数或许一个字母也叫_________.2 沟通经验:如何列代数式?你有什么经验?例 1 用代数式表示:(1)一个数 x 与 6 的和;( 2)比 -5 小 a 的数;(3) a 与 b 和的平方;(4) a 与 b 的平方和;( 5) a 与 b 的平方差;(6) a 与 b 差的平方;(7)某校买书 25 本,每本 a 元,该校对付书费多少元?(8)有一个容量是 60 升的铁桶,贮满油,拿出(x 1) 升后,桶内还有油多少升?说一说: 25a 还能够表示什么?例 2 3 月 12 日某校团委组织260 名学生(此中女生有 b 人)去青少年世纪林植树,每个男生植树 x 棵,每个女生植树y 棵,你能用代数式表示他们共植树多少棵吗?变式:( 1)3 月 12 日某校团委组织260 名学生(此中女生有 b 人)去青少年世纪林植树, 3个男生植树 5 棵, 5 个女生植树 3棵,你能用代数式表示他们共植树多少棵吗?(2)3 月 12 日某校团委组织260名学生(此中女生有 b 人)去青少年世纪林植树,每个男生植树 x 棵,每个女生比男生少植树 1 棵,你能用代数式表示他们共植树多少棵吗?四应用迁徙稳固提升1 研究规律例 3 下边每个图都是由s 个圆构成的,形如三角形图案,每条边上(包含极点)共有n 个,按此规律推测,用含有n 的式子表示为s=_________。
2019年七年级数学上册 第三章第2节列代数式教案 人教新课标版一、课题 §3.2列代数式二、教学目标1、使学生能把简单的与数量有关的词语用代数式表示出来;2、初步培养学生观察、分析和抽象思维的能力三、教学重点和难点重点:把实际问题中的数量关系列成代数式难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式四、教学手段现代课堂教学手段五、教学方法启发式教学 六、教学过程(一)、从学生原有的认知结构提出问题1、用代数式表示乙数:(投影)(1)乙数比x 大5;(x+5)(2)乙数比x 的2倍小3;(2x-3)(3)乙数比x 的倒数小7;(x1-7) (4)乙数比x 大16%((1+16%)x)(应用引导的方法启发学生解答本题)2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式(二)、讲授新课例1 用代数式表示乙数:(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数解:设甲数为x ,则乙数的代数式为(1)x+5 (2)2x-3; (3)x 1-7; (4)(1+16%)x(本题应由学生口答,教师板书完成)最后,教师需指出:第4小题的答案也可写成x+16%x例2 用代数式表示:(1)甲乙两数和的2倍;(2)甲数的31与乙数的21的差; (3)甲乙两数的平方和;(4)甲乙两数的和与甲乙两数的差的积;(5)乙甲两数之和与乙甲两数的差的积 分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式解:设甲数为a ,乙数为b ,则(1)2(a+b); (2)31a-21b ; (3)a 2+b 2; (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)(本题应由学生口答,教师板书完成)此时,教师指出:a 与b 的和,以及b 与a 的和都是指(a+b),这是因为加法有交换律a 与b 的差指的是(a-b),而b 与a 的差指的是(b-a)例3 用代数式表示:(1)被3整除得n 的数;(2)被5除商m 余2的数分析本题时,可提出以下问题:(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n 的数如何表示?(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m 余2的数呢?解:(1)3n ; (2)5m+2(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)例4 设字母a 表示一个数,用代数式表示:(1)这个数与5的和的3倍;(2)这个数与1的差的41; (3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的31的和 分析:启发学生,做分析练习如第1小题可分解为“a 与5的和”与“和的3倍”,先将“a 与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”解:(1)3(a+5); (2)41(a-1); (3)21(5a+7); (4)a 2+31a(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)例5 设教室里座位的行数是m ,用代数式表示:(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?(2)教室里座位的行数是每行座位数的32,教室里总共有多少个座位? 分析本题时,可提出如下问题:(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?(2)教室里有m 行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)解:(1)m(m+6)个; (2)(23m)m 个(四)、师生共同小结首先,请学生回答: 1?2?其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备掌握七、练习设计1、用代数式表示:(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?2、已知一个长方形的周长是24厘米,一边是a厘米,求:(1)这个长方形另一边的长;(2)这个长方形的面积四)九、教学后记由于列代数式的内容既是本章的重点,又是本书的重点,同时也是学生学习过程中的一个难点,故在设计其教学过程时,注意所选例题及练习题由易到难,循序渐进,使学生逐步地掌握好这一内容,为今后的学习打下一个良好的基础。
永州柳子中学 七 年级 数学 科教学设计课题:列代数式 上课时间 班级:设计者:课型:新授第 课时累计 课时【三维目标】1、知识与技能:让学生理解“代数式”的概念,使学生能用代数式表示简单问题的数量关系。
2、过程与方法:在自主学习合作探究中列出代数式,培养学生由具体到抽象,体验由“特殊到一般”的数学思想,培养学生的数学抽象和数学建模核心素养。
3、情感、态度与价值观:通过多媒体技术渗透数学文化,培养学生的学科素养,培养学生勇于探索的科学精神.【教学重点】把实际问题中的数量关系列成代数式 【教学难点】根据实际问题,正确列出代数式 【教学媒体】 多媒体(微课、PPT 、Flash ) 【教学过程】学 生 活 动一、情景引入: 1.播放代数式的发展简史微课视频. 2.我市为了创建全国“文明城市”,政府置办了两种规格的公益宣传广告牌. (1)据了解,小广告牌是边长为a m 的正方形,则它的面积为 m 2. (2)大广告牌是面积为5m 2的长方形,一块大广告牌比一块小广告牌面积大 m 2. (3)大广告牌的长为b m ,则宽为 m. (4)若大广告牌制作20个,小广告牌制作10个,大广告牌x 元/个,小广告牌y 元/个,则一共需要多少钱? 二、合作探究 探究一:代数式的定义 像a 2 , 5-a 2,b5 , 20x+10y 这样,把数与表示数的字母用运算符号连接而成的式子叫做代数式. 单独一个数或者一个字母也是代数式. 针对练习1: 利用社会主义核心价值观进课堂,让学生感知生活中的数学。
学生通过观察、归纳得出代数式的概念判断下列各式哪些是代数式:(1)a (2)n -m 51 (3)ab 21(4)t sv (5)a b 2 (6)4a ≤11注意:“=”,“>”,“<”,“≥”,“≤”,“≠”等符号不是运算符号. 探究二:列代数式 例1 用代数式表示: (1)a 的7倍与2b 的差; (2)a 的倒数与b 的和; (3)x 、y 两数的平方和减去这两数积的2倍. 变式:x 、y 两数和的平方减去两数积的2倍. 例2 列代数式: (1)小兰家距学校5 km ,她步行的速度是v km/h ,而骑自行车比步行快10km/h. ①她骑自行车的速度是 km/h. ②她从家到学校步行需要 小时,骑车需要 小时. (2)已知铅笔每支x 元,练习本每本y 元,小明买铅笔5支,练习本6本,需多少元? (3)一件进价为x 元的商品,卖出后利润为25%,那么这件商品的利润是多少元?(利润=进价×利润率) 例3 (1)如右图,已知圆的半径为a cm , 则它的面积为 cm ². (2)如图,将长为b cm ,宽为a cm 的长方形剪去四个边长为x cm 的小正方形,那么剩下部分(即图中阴影部分)的面积是多少平方厘米?(用代数式表示)学生自主辨析学生独立完成并展示体验列代数式的方法 展示质疑、 相互点评学生独立思考上台展示 自主完成,感知图形的特征四、思维拓展…如图,搭1个六边形需要 根火柴棒; 搭2个六边形需要 根火柴棒; 搭3个六边形需要 根火柴棒;搭4个六边形需要 根火柴棒;…若搭n 个六边形需要 根火柴棒. 五、 小结梳理本节课你有什么收获?联系生活实际,你能说说代数式25a 可以表示什么吗? 六、练习检测1.用代数式表示:比x 的3倍小2的数为_______;2.x 的2倍与y 的和的平方用代数式表示为( ) A.(2x+y)² B.2x+y ² C.2x ²+y ² D.2(x+y)²3.用语言叙述代数式3-m1表达不正确的是( ) A 、比m 的倒数小3的数 B 、m 的倒数与3的差 C 、1除以m 的商与3的差 D 、m 与3的差的倒数 4.(1) 填写下表: 三角形个数 1 2 3 4 火柴棒根数照这样的规律搭下去,搭n 个这样的三角形需要多少根火柴棒?逻辑性思维训练 独立思考,小组合作探究展示说明不同的思路方法自主小结发散性思维训练检测反馈 板 书 设 计列代数式1、代数式: 例12、列代数式: ①依据关键词和运算顺序②依据数量关系式 例2 ③依据图形特征. ③依据规律列出代数式.。
2.1.2列代数式一、教学目标1、理解列代数式的意义.2、能用代数式表示简单的数量关系.3、通过列代数式体会代数式会使问题变得简洁,更具有一般性.4、会求简单的代数式的值. 二、课时安排:1课时.三、教学重点:用代数式表示简单的数量关系. 四、教学难点:求简单的代数式的值. 五、教学过程 (一)导入新课某地区夏季高山上的温度从山脚处开始每升高100米降低0.7℃.如果山脚温度是28℃,那么比山脚高300米处的温度是多少?一般地,比山脚高x 米处的温度是多少?如何解决这个问题?下面我们学习列代数式. (二)讲授新课在上面讨论的问题中,我们可以用字母来表示数,并且把问题中涉及的数量关系用代数式来表示,这就是列代数式.典例:例3、用代数式表示:(1)a 的3倍与b 的和; (2)a 的一半与b 的相反数的和; (3)a 与b 两数的平方差; (4)a 与b 两数和的平方. 解:(1)3a+b; (2) );(21b a -+(3)a 2-b 2; (4)(a+b)2. (三)重难点精讲例4、用语言表述下列代数式的意义:(1)某型号计算机每台x 元,那么15x 表示___________________;(2)某校合唱队男生和女生共45人,其中男生y 人,那么45-y 表示______________. 解:(1)15台计算器的价格; (2)合唱队中女生的人数.跟踪训练: 填空:1、某厂产品产量第一年为a ,第二年比第一年增长了5%,第三年比第二年增长了4%,则第三年的产量是a(1+5%)(1+4%).2、用代数式表示:数a 的平方与b 的差的3倍为3(a 2-b). 3、代数式 (a –b)²的意义是a 与b 差的平方. 思考:代数式3a+b 能表示什么意义?如果a(元),b(元)分别表示签字笔和圆珠笔的单价,那么3a+b 表示3支签字笔和1支圆珠笔的价格;如果a(千克),b(千克)分别表示1袋大米和1袋面粉的质量,那么3a+b 表示3袋大米和1袋面粉的总质量……典例:例5、设甲数为x ,乙数为y ,用代数式表示: (1)甲数与乙数的和的三分之一; (2) 甲数的3倍与乙数的倒数的差; (3)甲、乙两数积的2倍; (4)甲、乙两数的平方和..)4(;2)3(;13)2();(31)1(22y x xy yx y x +-+解:交流:列代数式时,在表示方法上要注意什么? 1、要正确理解问题中的数量关系.2、特别要弄清问题中的和、差、积、商与大、小、多、少、倍、几分之几等词语的意义.3、要弄清楚问题中的运算顺序. 典例:例6、某学校有退休教师x 人,比在职教师少21人.教师节前学校组织慰问活动,请他们参加音乐会.学校为退休教师购买A 级票,为在职教师购买B 级票.已知音乐会门票的价格是:A 级票每张100元,B 级票每张80元.(1)学校购买音乐会门票的总费用是多少?(用含x 的代数式表示)(2)如果这所学校有退休教师11人,那么学校购买音乐会门票的总费用是多少? 解:(1)设该校有退休教师x 人,那么有在职教师(x+21)人,因此学校购买音乐会门票的总费用应是[100x+80(x+21)]元;(2)当x=11时, 100x+80(x+21)=100×11+80×(11+21)=3660. 因此,学校购买音乐会门票的总费用为3660元. 跟踪训练:某动物园的门票价格是 :成人票每张10元,学生票每张5元. (1)一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费? (2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费? 解:(1)该旅游团应付门票费是(10x +5y )元. (2)把 x =37, y =15 代入代数式 10x +5y ,得 10×37+5×15=445. 因此,他们应付445元门票费. 思考:在上面的问题中,“学校购买音乐会门票的费用”是怎样计算出来的?它给你什么启示?由于“学校有退休教师11人”,就是代数式[100x+80(x+21)]中,x=11,所以只要把x=11代替代数式中的x 进行计算,就可以得到购票需要的总费用.它告诉我们,用具体的数值代替代数式中的字母时,可以求出对应的代数式的值.一般地,用数值代替代数式里的字母,按照代数式原有的运算关系计算得出的结果,叫做代数式的值.典例:例7、求下列代数式的值: (1)-2x-5,其中x=-2; (2) .25,373-=+y y 其中 解:(1)当x=-2时,-2x-5=-2×(-2)-5=4-5=-1;.6313721537)25(337325)2(-=+-=+-⨯=+-=y y 时,当.2)2(;))(1(,25,28222y xy x y x y x +++-=-=求下列代数式的值:、已知:例 .481)25()25()2(2)2(2)2(;481)29()25(2-))(1(25,2222222=-+-⨯-⨯+-=++=-=⎥⎦⎤⎢⎣⎡-+=+-=-=y xy x y x y x 时:解:当跟踪训练:求代数式的值:4x 2+3xy-x 2-9,其中x=2,y=-3. 解:当x=2,y=-3时, 原式=4×22+3×2×(-3)-22-9 =4×4+3×2×(-3)-4-9 =-15.(四)归纳小结通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.(五)随堂检测1、用代数式表示:“比k 的平方的2倍小1的数”为( ) A 、2k2-1 B 、(2k)2-1 C 、2(k -1)2D 、(2k -1)22、某工厂第二季度的产值比第一季度的产值增长了x%,第三季度又比第二季度增长了x%,则第三季度比第一季度增长了 ( )A 、2x%B 、1+2x%C 、(1+x%)2D 、(2+x%) 3、用语言叙述代数式a2-b2正确的是( ) A 、a, b 两数的平方差 B 、a 与b 差的平方 C 、a 与b 的平方的差 D 、 b, a 两数的平方差4、已知a3-a-1=0,求:a3-a+2016的值.六、板书设计七、作业布置:课本P85 习题 5八、教学反思2.4等式的基本性质一、教学目标1、理解掌握并等式的基本性质1.2、理解掌握并等式的基本性质2.3、会用等式的基本性质把等式变形.二、课时安排:1课时.三、教学重点:等式的基本性质1、2.四、教学难点:会用等式的基本性质把等式变形.五、教学过程(一)导入新课观察下图:我们发现,如果在平衡的天平的两边都加(或减)同样的量,天平还是保持平衡.下面我们学习等式的基本性质.(二)讲授新课实践:我们在测量物体质量的天平两边放入质量相同的砝码,并把这种状态想象成一个等式成立的形式,利用它来研究等式具有什么性质.(1)在天平的一边再放入(或取出)一些砝码,会发生什么现象?怎样做就能使天平恢复平衡?这说明等式应具有什么性质?(2)使天平的一边的砝码的数量扩大到原来的几倍(或缩小到原来的几分之一),会发生什么现象?怎样做就能使天平恢复平衡?这又说明等式应具有什么性质?同学们思考并交流 (三)重难点精讲通过上面的实验研究,我们可以归纳出等式具有以下两个基本性质: 等式的基本性质1、等式两边加上加(或减去)同一个数或整式,所得的等式仍然成立.2、等式两边都乘(或除以)同一个数(除数不能是0),所得的等式仍然成立. 我们可以用数学式子表示等式的基本性质:1、如果a=b ,c 表示任意的数或整式,那么a+c=b+c.2、如果a=b ,c 表示任意的数,那么ac=bc ; 如果a=b ,c ≠0,那么cb c a =. 典例:例、用适当的数或式子填空,使得到的结果仍是等式,并说明是根据等式的哪条基本性质及怎样变形(改变式子的形状)的.(1)如果3x=7-5x ,那么3x+_______=7. (2)如果132=-x ,那么x=_______. 解:(1)3x+5x=7.根据等式的基本性质1,在等式的两边都加上5x. (2)x=23-. 根据等式的基本性质2,在等式的两边同时乘23-. 跟踪训练:用适当的数或式子填空,使得到的结果仍是等式,并说明是根据等式的哪条基本性质及怎样变形(改变式子的形状)的.(1)如果2x=6-3x ,那么3x+_______=7. (2)如果241=-y ,那么y=_______.解:(1)3x+3x=6.根据等式的基本性质1,在等式的两边都加上5x. (2)y=-8.根据等式的基本性质2,在等式的两边同时乘-4. (四)归纳小结通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.(五)随堂检测1、根据等式的性质,方程5x -1=4x 变形正确的是( ) A .5x +4x =-1 B.25x -21=2x C .5x -4x =-1 D .5x +4x =1 2、下列四组变形中,变形正确的是( ) A .由5x +7=0,得5x =-7 B .由2x -3=0,得2x -3+3=0 C .由6x =2,得x =31D .由5x =7,得x =353、用适当的数或式子填空,使所得的结果仍是等式,并说明根据哪一条性质以及怎样变形的.(1)若2x +7=10,则2x =10-7.根据等式的性质____,等式两边同时 ; (2)若-3x =-18,则x = .根据等式的性质____,等式两边同时____________________. (3)若3(x -2)=-6,则x -2= .根据等式的性质____,等式两边同时 ,所以x = . 六、板书设计七、作业布置:课本P84 练习 1、2八、教学反思1.11.1数的近似和科学记数法一、教学目标1、了解近似值的概念.2、能按要求对一个数四舍五入取近似值.3、会用计算器求一个数的近似值.二、课时安排:1课时.三、教学重点:能按要求对一个数四舍五入取近似值.四、教学难点:能按要求对一个数四舍五入取近似值.五、教学过程(一)导入新课先看一个例子:对于参加同一个会议的人数,有两种报道:“会议秘书处宣布,参加今天会议的有513人”。