3.2 代数式 (2)
- 格式:ppt
- 大小:380.00 KB
- 文档页数:19
七年级数学导学案课题:§3.2代数式(2)班级 姓名 学号主备人:学习目标:1、了解单项式、单项式的系数、次数,多项式、多项式的项、次数,整式概念;2、能用代数式表示简单问题的数量关系;3、能解释一些简单代数式的实际背景或几何背景。
学习重点:对代数式意义的理解,准确表述单项式、多项式相关概念。
学习难点:叙述代数式的意义。
学习过程:一、自学指导:(一)知识回顾:1、像a -1、30a 、9b 、b+2c +2ac 等这样的式子都称为 ;注意:单独一个数或一个字母也是代数式。
2、书写代数式规范要求:①字母与字母、字母与数字的和(差),并且后面带单位时,要加括号; ②出现除法运算时,要写成分数形式;③字母与数字积时,数字写在字母的前面,之间的乘号可以用“·”,也可以省略不写;字母与字母积时,之间的乘号可以用“·”,也可以省略不写;数字与数字积时,之间的乘号不能省略。
3、填空:(1)小明买了单价分别为10元和12元的两种共8本,其中单价为10元的书a 本,应付 元;(2)比a 的21大5的数是 ; (3)一个两位数的个位数字是a ,十位数字是b ,这个两位数是 ;(二)阅读课本P70-71,完成下列问题:1、自学课本例1,理解解题过程;2、像0.55a 、0.35b 、0.15m 、0.8a 2等都是数与字母的积,这样代数式叫做 ;注意:单独一个数或一个字母也是 ;3、单项式中的 叫做单项式的系数;单项式中所有 的指数和叫做单项式的次数;4、自学课本例2,理解解题过程;5、几个单项式的和叫做 。
多项式中,每一个单项式叫做多项式的一个 ;多项式里含有几项,就把这个多项式叫做几项式,其中次数最高项的次数,叫做这个多项式的 ;不含字母的项叫做 。
4、单项式和多项式统称 。
二、合作探究:1、如果—mxy |n –1 |是关于x 、y 的一个单项式,且系数是2,次数是3,则m= ,n= ;2、如果3a 3b -4ab k +25是五次多项式,那么k = ;3、完成下列填空:(1)苹果每千克a 元,橘子每千克b 元,买5千克苹果、6千克橘子,应付 元;(2)小明每步长a m ,小亮每步长b m ,小明、小亮从小桥的两端相向而行,小明5步、小亮6步两人相遇,小桥长 m ;(3)a 个五边形、b 个六边形共有 条边;4、从所列的代数式,你有咋样的发现?5、仿照上面的发现,用不同方式解释代数式2(x +y )所表示的实际意义。
【教学目标】〖知识与技能〗1、了解代数式的分类以及整式、分式、单项式、多项式的概念; 2、理解单项式的系数和次数、多项式的次数与项数的概念;〖过程与方法〗通过引导学生思考、分析、对比,使学生加深对相关概念的理解。
〖情感、态度与价值观〗培养学生的观察分析和比较归纳的能力。
【教学重点】代数式的分类及整式、单项式、、多项式的概念 【教学难点】多项式的项数和次数概念的理解 【教学过程】 一、自学质疑:1、什么叫做整式、分式?2、什么叫做单项式?单项式的系数?单项式的次数?3、什么叫做多项式?多项式的项、常数项、多项式的次数? 二、交流展示:观察下列代数式,你能对它们进行适当分类吗?2222156232522125ba b a a a xy m n c ab ab -+--+,,,,,,,,0 三、互动探究:如何对代数式进行分类?根据交流展示内容,由学生分析归纳,老师总结。
四、精讲点拨:【点拨】 1、代数式的分类:代数式可以分为整式和分式。
整式:在代数式中,或者没有除法,或者虽有除法,但除式(或分母)中不含字母。
像这样的代数式叫做整式。
如;上述的5ab ,21xy+52 , -2 , 156a ,0 分式:在代数式中,不但有除法,而且除式(或分母)中含有字母。
像这样的代数式叫做分式。
如;上述的c ab 2 , m n ,a 2-3 ,2222ba b a -+ 整式可以分为单项式和多项式。
2、单项式:(1)单项式:不含有加减运算的整式,叫做单项式。
如:7436.05322322z y x n m a x ,,,-。
单独一个数或一个字母, 例如3,52-,a 等,也叫单项式。
(2)、单项式的系数:单项式里的数字因数,叫做单项式的系数。
它通常写在字母的前面。
3.2 代数式(第2课时)如7436.05322322z y x n m a x ,,,-的系数,分别为2、53-.、036、74。
x a -和2的系数分别为1和—1。
章节测试题1.【答题】式子x+y,﹣2x,ax2+bx﹣c,0,,﹣a,中()A. 有5个单项式,2个多项式B. 有4个单项式,2个多项式C. 有3个单项式,3个多项式D. 有5个整式【答案】B【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式有4个:﹣2x,0,,﹣a;多项式有2个:x+y,ax2+bx﹣c.选B.2.【答题】多项式的次数及最高次项的系数分别是().A. 2,-3B. 5,-3C. 3,3D. 3,-3【答案】D【分析】利用多项式的相关定义进而分析得出答案.【解答】多项式是几个单项式的和,每一个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,所以的次数为最高单项式的次数为,最高次项的系数为.选D.3.【答题】一个长方形的周长是40,若长方形的一边用字母x表示,则长方形的面积是()A. x(20﹣x)B. x(40﹣x)C. x(40﹣2x)D. x(20+x)【答案】A【分析】根据题意列出代数式即可.【解答】∵长方形的周长为40,一边长为x,∴与长为的边相邻的另一边长为(20﹣x),∴长方形的面积=x(20﹣x).选A.4.【答题】下列说法中正确的是().A. a是单项式B. 的系数是2C. 的次数是1D. 多项式的次数是4【答案】A【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】选项A. a是单项式,正确.选项 B. 的系数是,错误.选项C. 的次数是,错误.选项 D. 多项式的次数是2,错误.所以选A.5.【答题】在代数式x2+5,﹣1,x2﹣3x+2,π,,中,整式有()A. 3个B. 4个C. 5个D. 6个【答案】C【分析】根据多项式与单项式统称为整式,判断即可.【解答】根据整式的概念知:x2+5,﹣1,x2﹣3x+2,π,是整式,选C.6.【答题】下列说法正确的是()A. 单项式a2b的次数为2B. 单项式的系数是C. 0是单项式D. 多项式1-xy+2x2y是五次三项式【答案】C【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】A. 单项式a2b的次数为3,故A选项错误;B. 单项式的系数是,故B选项错误;C. 0是单项式,正确;D. 多项式1-xy+2x2y是三次三项式,故D选项错误,选C.7.【答题】多项式4x3﹣3x2y4+2x﹣7的项数与次数分别是()A. 4,9B. 4,6C. 3,9D. 3,10【答案】B式的系数.【解答】多项式4x3﹣3x2y4+2x﹣7有4个项,次数为6.选B.8.【答题】在代数式3、4+a、a2﹣b2、、中,单项式的个数是()A. 2个B. 3个C. 4个D. 5个.【答案】A【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式的定义:“表示数与字母乘积的式子叫做单项式,单独的一个数或字母也是单项式”分析可知,上述式子中,3、是单项式,共2个;选A.9.【答题】对于单项式2×105a,下列说法正确的是()A. 系数为2,次数为1B. 系数为2,次数为6C. 系数为2×105,次数为1D. 系数为2×105,次数为0【答案】C个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式2×105a的系数为2×105,次数为1.选C.10.【答题】(3m-2)x2y n+1是关于x,y的五次单项式,且系数为1,则m,n的值分别是()A. 1,4B. 1,2C. 0,5D. 1,1【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】由题意得:,解得.选B.11.【答题】在代数式x2+5,-1,-3x+2,π,,,5x中,整式有()A. 3个B. 4个C. 5个D. 6个【答案】C【分析】根据多项式与单项式统称为整式,判断即可.【解答】根据整式的定义:单项式、多项式的统称,故整式有x2+5,−1,−3x+2,π,5x,共5个.选C.12.【答题】代数式x+yz,4a,mn3+ma+b,-x,1,3xy2,,,中()A. 有5个单项式,4个多项式B. 有8个整式C. 有9个整式D. 有4个单项式,3个多项式【答案】D【分析】本题考查了单项式、多项式以及整式的定义,注意是整式而不是分式.【解答】单项式有:4a,x,1,3xy2,共4个;多项式有:x+yz,mn3+ma+b,,共3个;整式有:x+yz,4a,mn3+ma+b,−x,1,3xy2,共7个;分式有:,,共2个。
课题:第三章第二节代数式(二)课型:新授课教学目标:1.会求代数式的值.2.会利用代数式求值推断代数式所反映的规律.重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.难点:正确地求出代数式的值.教法及学法指导:本节课设计了六个教学环节:第一环节:创设情境,导入新课;第二环节:建立模型,讲解新课;第三环节:反馈练习,巩固新知;第四环节:拓展练习,综合实践;第五环节:课堂小结,检测题;第六环节:布置作业.把全班分成6个小组(每小组6人)进行小组竞学,合作交流,培养学生的探究能力与合作交流意识,提高分析问题.解决问题的能力.课前准备:教师准备:制作课件.学生准备:(提前一天布置)①预习课文,想一想:本节讲述了哪几个知识点?你最多能掌握哪几个?还有什么困惑?②完成随堂练习及习题【设计意图】意在让学生提前预习,提前做课后随堂练习及习题,提高课堂教学效率,拒绝低效课堂.教学过程:一、情境互动,教学引入师:同学们两周前刚刚体检完都知道咱们现在的身高,那么你们能猜到咱们成年以后的身高吗?生1:能,给自己的父母差不多.生2:不好猜!有的和父母的身高相差很大.师:同学们说的都很好,现在老师给你们看一个研究报告,你们就能预测你们成年后的身高:据报纸记载,一位医生研究得出由父母身高预测子女成年后身高的公式是:儿子身高是由父母身高的和的一半,再乘以1.08;女儿的身高是父亲身高的0.923倍加上母亲身高的和再除以2 .(1)已知父亲身高是a 米,母亲身高是b 米,试用代数式表示儿子和女儿的身高 (2)五年级女生小红的父亲身高是1.75米,母亲的身高是1.62米;六年级男生小明的父亲的身高是1.70,母亲的身高是1.62,试预测成年以后小明与小红谁个子高? (3)试预测成年后你的身高.(幻灯片演示引例)(教师巡回,学生独立完成,利用投影展示) 生:(1)解:儿子的身高:(a +b )/2米. 女儿的身高:(0.923a +b )/2米. 生:(2)小红的身高:(0.923×1.75+1.62)/2=1.617米. 小明的身高:(1.70+1.62)/2=1.66米 生:老师我预测我的身高是1.6米. 生:我预测我的身高是1.58米. 生:我的是1.85米.师:同学们做的都很好,通过做题我们发现在探讨了代数式之后,不仅能用字母与代数式表示数量关系,还能解释一些代数式的实际背景或几何意义.今天我们就来研究第二节的第二课时:代数式求值.【设计意图】七年级学生正处于生长发育阶段的关键期,大部分学生对自己的身高非常关注。