七年级下-变量之间的关系
- 格式:doc
- 大小:644.50 KB
- 文档页数:7
第三章变量之间的关系自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。
3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量.(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。
(3)利用具体情境来体会两者的依存关系。
二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。
(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。
2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量; (3)写出栏目名称,有时还根据问题内容写上单位;(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值.(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。
三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。
2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。
3、求两个变量之间关系式的途径:(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式.(2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。
4、关系式的应用:(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。
第三章 变量之间的关系【学习目标】1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.感受生活中存在的变量之间的依赖关系. 3.能读懂以不同方式呈现的变量之间的关系.4.能用适当的方式表示实际情境中变量之间的关系,并进行简单的预测. 【考点总结】要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量叫做常量.特别说明:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量. 要点二、用表格表示变量间关系借助表格,我们可以表示因变量随自变量的变化而变化的情况.特别说明:表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等. 要点三、用关系式表示变量间关系关系式是我们表示变量之间关系的另一种方法.利用关系式(如3y x =),我们可以根据任何一个自变量的值求出相应的因变量的值.特别说明:关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式. 要点四、用图象表示变量间关系图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.用图象表达两个变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.特别说明:图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色. 【例题讲解】类型一、常量、自变量与因变量例1、根据心理学家研究发现,学生对一个新概念的接受能力y 与提出概念所用的时间x (分钟)之间有如表所示的关系:(1)上表中反映的两个变量之间的关系,哪个是自变量?哪个是因变量?(2)根据表格中的数据,提出概念所用时间是多少分钟时,学生的接受能力最强?(3)学生对一个新概念的接受能力从什么时间开始逐渐减弱?【答案】(1)“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)13分钟;(3)从第13分钟以后开始逐渐减弱【分析】(1)根据表格中提供的数量的变化关系,得出答案;(2)根据表格中两个变量变化数据得出答案;(3)提供变化情况得出结论.【详解】解:(1)表格中反映的是:提出概念所用时间与对概念的接受能力这两个变量,其中“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)根据表格中的数据,提出概念所用时间是13分钟时,学生的接受能力最强达到59.9;(3)学生对一个新概念的接受能力从第13分钟以后开始逐渐减弱.【点睛】本题考查用表格表示变量之间的关系,理解自变量、因变量的意义以及变化关系是解决问题的关键.【训练】某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是变量和变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?【答案】(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键.类型二、用表格表示变量间关系例2、一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1秒,v的变化情况相同吗?在哪个时间段内,v增加的最快?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.【答案】(1)时间与速度;时间;速度;(2)0到3和4到10,v随着t的增大而增大,而3到4,v随着t的增大而减小;(3)不相同;第9秒时;(4)1秒.【分析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出v的变化趋势;(3)根据表中的数据可得出V的变化情况以及在哪1秒钟,V的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.【详解】解:(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加最大; (4)由题意得:120千米/小时=12010003600⨯(米/秒),由33.328.9 4.4-=,且28.924.2 4.7 4.4-=>, 所以估计大约还需1秒.【点睛】本题主要考查函数的表示方法,常量与变量;关键是理解题意判断常量与变量,然后结合图表得到问题的答案即可.【训练】某路公交车每月有x 人次乘坐,每月的收入为y 元,每人次乘坐的票价相同,下面的表格是y 与x 的部分数据.x /人次500 1000 1500 2000 2500 3000 … y /元1000200040006000…(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入-支出费用)【答案】(1)反映了收入y 与人次x 两个变量之间的关系,其中x 是自变量,y 是因变量;(2)表格见解析;(3)7000人次. 【分析】(1)根据表格即可得出结论;(2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元,即可得出结论; (3)先求出每增加1人次乘坐,每月的收入就增加2元,然后求出总收入即可求出结论; 解:(1)反映了收入y 与人次x 两个变量之间的关系,其中x 是自变量,y 是因变量. (2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元, 表格补充如下:÷=(元)(3)10005002()÷(人次)4000+100002=7000答:每月乘坐该路公交车要达到7000人次【点睛】此题考查的是变量与常量的应用,掌握实际问题中的等量关系是解决此题的关键.类型三、用关系式表示变量间关系例3.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.①题中有几个变量?②你能写出两个变量之间的关系吗?【答案】①有2个变量;②能,函数关系式可以为y=4x+2.【解析】试题分析:①根据变量和常量的定义可得结果;②由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x﹣1)=4x+2.试题解析:①观察图形:x=1时,y=6,x=2时,y=10;x=3时,y=14;…可见每增加一张桌子,便增加4个座位,因此x张餐桌共有6+4(x﹣1)=4x+2个座位.故可坐人数y=4x+2,故答案为:有2个变量;②能,由①分析可得:函数关系式可以为y=4x+2.【训练】已知,如图,在直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8.P是线段AC上的一个动点,当点P从点C向点A运动时,运动到点A停止,设PC=x,△ABP的面积为y.求y与x之间的关系式.【答案】y=﹣125x+24.【分析】过点B作BD⊥AC于D,则BD为AC边上的高.根据△ABC的面积不变即可求出BD;根据三角形的面积公式得出S△ABP=12AP•BD,代入数值,即可求出y与x之间的关系式.【详解】如图,过点B作BD⊥AC于D.∵S△ABC=12AC•BD=12AB•BC,∴BD=8624105 AB BCAC⋅⨯==;∵AC=10,PC=x,∴AP=AC﹣PC=10﹣x,∴S△ABP=12AP•BD=12×(10﹣x)×245=﹣125x+24,∴y与x之间的关系式为:y=﹣125x+24.【点睛】此题考查直角三角形的面积求法,列关系式的方法,能理解图形中三角形的面积求法得到高线BD的值是解题的关键.类型四、用图象表示变量间关系例4、巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【答案】(1)t,s;(2)2,6;(3)小明距起点的距离为300米.【分析】解析(1)观察函数图象即可找出谁是自变量谁是因变(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度420200110=2(米/秒),小明的速度为42070=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题关键在于看懂图中数据【训练】如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中, 是自变量, 是因变量;(2)甲的速度乙的速度(大于、等于、小于);(3)6时表示;(4)路程为150km,甲行驶了小时,乙行驶了小时;(5)9时甲在乙的(前面、后面、相同位置);(6)乙比甲先走了3小时,对吗?.【答案】(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对. 【解析】试题分析:(1)根据自变量与因变量的含义得到时间是自变量,路程是因变量;(2)甲走6小时行驶100千米,乙走3小时走100千米,则可得到他们的速度的大小;(3)6时两图象相交,说明他们相遇;(4)观察图形得到路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)观察图象得到t=9时,乙的图象在甲的上方,即乙行驶的路程远些;(6)观察图象得到甲先出发3小时后,乙才开始出发.试题解析:解:(1)函数图象反映路程随时间变化的图象,则t是自变量,s是因变量;(2)甲的速度是100÷6=503千米/小时,乙的速度是100÷3=1003千米/小时,所以甲的速度小于乙的速度;(3)6时表示他们相遇,即乙追赶上了甲;(4)路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)t=9时,乙的图象在甲的上方,即乙行驶的路程远些,所以9时甲在乙的后面;(6)不对,是乙比甲晚走了3小时.故答案为(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对. 考点:函数的图象.【训练】根据图回答下列问题.(1)图中表示哪两个变量间的关系?(2)A、B两点代表了什么?(3)你能设计一个实际事例与图中表示的情况一致吗?【答案】(1)时间与价钱;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元5月2日花100元5月3日花250元5月4日花200元5月5日花300元5月6日花150元5月7日花250元【解析】试题分析:认真分析表中数据再结合身边的事例即可得到结果.(1)图中表示时间与价钱的关系;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元5月2日花100元5月3日花250元5月4日花200元5月5日花300元5月6日花150元5月7日花250元考点:本题考查的是函数的图象点评:解答本题的关键是读懂图象,得到图象的特征及规律,再根据这个规律解决问题.。
完整)七年级数学下册-变量之间的关系测试题1.给定一个圆珠笔盒子,其中有12支圆珠笔,售价为18元。
用y表示圆珠笔的售价,x表示圆珠笔的支数,则y与x 之间的关系为y=1.5x。
2.如果物体运动的路程s与时间t的关系式为s=3t+2t+1,则当t=4时,该物体所经过的路程为28米。
3.给定两个变量m和v之间的4组对应数据,求m与v 之间的关系。
根据数据,最接近的关系式为v=2m-2.4.龟兔赛跑的故事中,兔子睡觉后被乌龟追上,最终乌龟先到达终点。
用S1和S2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相符的图象为S1-S2随时间t的变化曲线,前半段曲线较平缓,后半段曲线较陡峭。
5.给定XXX一天内的体温变化情况,图象反映了24小时内小红的体温变化。
下列说法错误的是B,即下午5时体温最高。
6.小王设计了一个程序,输入和输出数据如表所示。
根据数据,当输入数据8时,输出的数据为xxxxxxxx。
7.给定某汽车在行驶过程中的速度与时间的关系曲线,描述了汽车在不同时间的速度变化情况。
根据图象,说法错误的是B,即第12分时汽车的速度是千米/时。
8.给定一个,向其中注水,注满为止。
注水量V与水深h 之间的关系的图象大致如图3所示,则这个是图中的D。
18.XXX晨骑车从家到学校,路程如图7所示,先上坡后下坡。
如果他返回时上下坡的速度不变,那么他从学校骑车回家需要多长时间?(答案需要填写在空白处)19.一根弹簧的原长为13厘米,挂物体质量不得超过16千克,每挂1千克就会伸长0.5厘米。
当挂物体质量为10千克时,弹簧长度为多少厘米?挂物体质量X(千克)与弹簧长度y(厘米)的关系式是什么?(不考虑X的取值范围)20.如图6-31,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶的图像,两地间的距离是100千米。
请回答以下问题:1)谁出发的时间更早?早了多少时间?谁先到达乙地?提前了多少时间?2)两人在途中行驶的速度分别是多少?3)在什么时间段内,两辆车都在途中行驶?在这段时间内,自行车在摩托车前面,两辆车相遇,自行车在摩托车后面分别是什么时候?21.下表是三家电器厂2007年上半年每个月的产量:x/月 | y/台。
(新教材)北师大版精品数学资料期末复习(三) 变量之间的关系01 知识结构本章知识是学习函数的基础,要求掌握表示变量之间关系的三种方法,学会分析变量之间的关系,并能进行简单的预测.02 典例精讲【例1】 下面的表格列出了一个试验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是(C )A .b =d 2B .b =2C .b =d2D .b =d +25【思路点拨】 这是一个用图表表示的关系,可以看出d 是b 的2倍,即可得关系式.【方法归纳】 利用表格表示两个变量之间关系,其对应值清晰明了,但它们之间的关系不够明朗,要结合数据加以分析才能发现潜在的规律.从表示自变量与因变量的表格中辨识自变量与因变量,一般第一栏为自变量,第二栏为因变量.【例2】 下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序(D )①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水(水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系);④一杯越来越凉的水(水温与时间的关系). A .①②④③ B .③④②① C .①④②③ D .③②④①【思路点拨】 观察图象的走势,并与实际情景相联系是解决此题的关键.【方法归纳】 解决此类题重在观察图象并对图象上的数量关系和走势进行分析,抓住图象的转折点,这些转折点往往是运动状态发生改变或者相互的数量关系发生改变的地方.【例3】 如图所示,圆柱的高为10 cm ,当圆柱的底面半径变化时,圆柱的体积也发生变化.(1)在这个变化过程中,圆柱的底面半径是自变量,圆柱的体积是因变量;(2)请你求出圆柱的体积V(cm 3)与圆柱的底面半径R(cm )之间的关系式; (3)R 的值能为负值吗?为什么?(4)当圆柱的底面半径从2 cm 变化到5 cm 时,圆柱的体积变化了多少?(最后结果保留π)【思路点拨】 (1)题目中有两个变量,主动变化的量是圆柱的底面半径,随之变化的是圆柱的体积;在(2)中,根据圆柱的体积=底面积×高即可求出V 与R 之间的关系式;由于R 为圆柱的底面半径,所以(3)中R 不能为负值;在(4)中,分别求出R 1=2 cm 和R 2=5 cm 时圆柱的体积,其差值即为体积的变化量. 【解答】 (2)因为圆柱的体积=底面积×高,所以V =πR 2×10=10πR 2.(3)因为R 为圆柱的底面半径,所以R>0,因此R 不能为负值.(4)因为10πR 22-10πR 21=10π·52-10π·22=10π·(52-22)=210π,所以圆柱体积增加了210π cm 3. 【方法归纳】 当变量之间的关系以图形形式表示时,可根据图形特点寻找有关变量的等量关系.然后根据等量关系列出关系式.值得注意的是,为使实际问题有意义,在求出变量之间的关系式后,要根据具体的题目要求,确定自变量的取值范围. 03 整合集训一、选择题(每小题3分,共30分)1.小亮以每小时8千米的速度匀速行走时,所走路程s(千米)随时间t(小时)的增大而增大,则下列说法正确的是(C ) A .8和s ,t 都是变量 B .8和t 都是变量 C .s 和t 都是变量 D .8和s 都是变量2.已知三角形ABC 的面积为2 cm 2,则它的底边a(cm )与底边上的高h(cm )之间的关系为(D ) A .a =4h B .h =4a C .a =h 4 D .a =4h3.对关系式的描述,不正确的是(D )A .x 看作自变量时,y 就是因变量B .x ,y 之间的关系也可以用表格表示C .x 在非负数范围内,y 的最大值为2D .当y =0时,x 的值为-24.如图所示y =2-x 是某市某天的气温随时间变化的图象,通过观察可知,下列说法中错误的是(C )A .这天15时气温最高B .这天3时气温最低C .这天最高气温与最低气温的差是13℃D .这天有两个时刻气温是30℃5.2017年1月4日上午,小华同学接到通知,他的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是(C )6则表中a 的值为(B )A .21.5B .20.5C .21D .19.57.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x 表示注水时间,用y 表示浮子的高度,则用来表示变量y 与x 之间关系的选项是(B )8.(衡阳中考)小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分钟)之间的关系,根据图象,下列信息错误的是(A )A .小明看报用时8分钟B .公共阅报栏距小明家200米C .小明离家最远的距离为400米D .小明从出发到回家共用时16分钟9.贝贝利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8 A.861 B.863 C.865 D.86710.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S(阴影部分),则变量S 与t 的大致图象为(A )二、填空题(每小题4分,共20分)11.圆的周长C 与圆的半径r 之间的关系式为C =2πr ,其中常量是2,π.12.一蜡烛高20厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是h =20-4t .13.如图是某个计算y 值的程序,若输入x 的值是32,则输出的y 值是12.14.(义乌中考)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的图象,则小明回家的速度是每分钟步行80米.15.下面由小木棒拼出的系列图形中,第n 个图形由n 个正方形组成,请写出第n 个图形中小木棒的根数S 与n 的关系式S =3n +1.三、解答题(共50分)16.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有一家印刷社,收费y(元)与印刷数量x(张)之间关系如表:(1)(2)从上表可知:收费y(元)随印刷数量x(张)的增加而增大; (3)若要印制1 000张宣传单,收费多少元?解:(1)上表反映了印刷数量和收费两个变量之间的关系,印刷数量是自变量,收费是因变量. (3)由上表可知:印刷数量每增加100张,收费增加15元,所以每张的价格是0.15元. 所以收费y(元)与印刷数量x(张)之间的关系式为y =0.15x. 当x =1 000时,y =0.15×1 000=150(元). 故要印制1 000张宣传单,收费150元.17.(10分)青春期男、女生身高变化情况不尽相同,下图是小军和小蕊青春期身高的变化情况.(1)上图反映了哪两个变量之间的关系?自变量是什么?因变量是什么?(2)A,B两点表示什么?(3)小蕊10岁时身高多少?17岁时呢?(4)比较小军和小蕊青春期的身高情况有何相同与不同.解:(1)反映了身高随年龄的变化而变化的关系,自变量是年龄,因变量是身高.(2)A点表示小军和小蕊在11岁时身高都是140厘米,B点表示小军和小蕊在14岁时身高都是155厘米.(3)小蕊10岁时身高130厘米,17岁时身高160厘米.(4)相同点:进入青春期,两人随年龄的增长而快速长高,并且在11岁和14岁时两人的身高相同;不同点:11岁至14岁间小蕊的身高变化比小军的快些,14岁后小军的身高变化比小蕊的快些.18.(10分)如图所示,在△ABC中,底边BC=8 cm,高AD=6 cm,E为AD上一动点,当点E从点D沿DA向点A运动时,△BEC的面积发生了变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)若设DE长为x(cm),△BEC的面积为y(cm2),求y与x之间的关系式.解:(1)ED长度是自变量,△BEC的面积是因变量.(2)y与x的关系式为y=4x.19.(10分)新成药业集团研究开发了一种新药,在试验药效时发现,如果儿童按规定剂量服用,那么2小时的时候血液中含药量最高,接着逐步衰减,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当儿童按规定剂量服药后:(1)何时血液中含药量最高?是多少微克?(2)A点表示什么意义?(3)每毫升血液中含药量为2微克以上时在治疗疾病时是有效的,那么这个有效期是多长?解:(1)服药后2小时血液中含药量最高,最高是4微克.(2)A点表示血液中含药量为0.(3)有效期为5小时.20.(10分)如图,用一段长为60 m的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设与墙平行的篱笆AB的长为x m,菜园的面积为y m2.(1)试写出y与x之间的关系式;(2)当AB 的长分别为10 m 和20 m 时,菜园的面积各是多少?解:(1)因为与墙平行的篱笆AB 的长为x m , 所以长方形的另一边长为60-x2 m ,则长方形的面积为60-x2·x m 2.所以y 与x 之间的关系式为: y =60-x 2·x =-12x 2+30x. (2)当x =10时,y =-12×102+30×10=250(m 2);当x =20时,y =-12×202+30×20=400(m 2).21.(12分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h ),两车之间的距离为y(km ),图中的折线表示y 与x 之间的关系.根据图象解答下列问题: (1)甲、乙两地之间的距离为900km ; (2)请解释图中点B 的实际意义; (3)求慢车和快车的速度.解:(2)图中点B 的实际意义是:当慢车行驶4 h 时,慢车和快车相遇. (3)由图象可知,慢车12 h 行驶的路程为900 km , 所以慢车的速度为90012=75(km /h ).当慢车行驶 4 h 时,慢车和快车相遇,两车行驶的路程之和为900 km ,所以慢车和快车行驶的速度之和为9004=225(km /h ),所以快车的速度为225-75=150(km /h ).。
一理论理解1、若Y随X的变化而变化,则X是自变量Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。
⑤总价=单价×总量。
⑥平均速度=总路程÷总时间二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.九、估计(或者估算)对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.。
第三章变量之间的关系1.能发现实际情境中的变量及其相互关系,并确定其中的自变量与因变量.2.从表格、图象中分析出某些变量之间的关系,并能用自己的语言表达,培养有条理的思考和表达的能力.3.根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测.4.能从图象中获取变量之间关系的信息,并能用语言进行描述.1.经历探索具体情境中两个变量之间关系的过程,进一步培养符号感和抽象思维.2.经历从图象中分析变量之间关系的过程,体会变量之间的关系,结合具体情境,理解图象上的点表示的意义.1.能从运动变化的角度解释生活中的数学现象,体验成就感,获得学习的乐趣,发展对数学更高层次的认识.2.感受数学来源于生活又服务于生活,激发学习数学的乐趣.3.体验从运动变化的角度认识数学对象的过程,培养对数学的认识.本章对于学生来说是一章全新的知识,主要是从数学的角度研究变量和变量之间的关系,将有助于人们更好地认识现实世界、预测未来.同时,研究现实世界中的变化规律,也使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式.我们知道,函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容.本套教材对函数的学习不是一蹴而就的,而是遵照循序渐进、螺旋上升的原则进行设计.在七年级上册中,教材已经在代数式求值、探索规律等地方渗透了变化的思想,而本章则是第三学段第一次集中讨论变量之间的关系.本章通过大量学生感兴趣的日常生活或其他学科中的问题(如骆驼的体温、潮汐的涨落),使他们体会变量和变量之间相互依赖的关系,感受数学的应用价值.本章还通过分析用表格、关系式和图象所表示的变量间关系的活动,使学生初步理解并尝试用数学的方法描述变量之间的关系.学生通过本章中对变量间关系的学习,将为以后顺利过渡到函数学习打下基础.为了发展学生对函数思想的理解,必须使他们对变量间关系的多种表示——表格表示、关系式表示、图象表示有相当丰富的经历.因此教材在第1节中通过探讨小车下滑时间的活动,使学生初步体会变量之间的相依关系,并用表格来表示变量之间的关系.使学生学习如何从表格中获取信息,发展他们通过数据分析进行预测和解决问题的能力.在学生已经学会计算一些图形的面积和体积的基础上,教材在第2节讨论由底边长(或半径、高)的变化引起的面积(或体积)的变化,并由此引出运用关系式表示变量之间的关系.然后运用形象的“机器输入输出图”,渗透自变量和因变量值的对应思想,为以后理解函数的概念做铺垫.“排碳计算公式”内容的设计是为了将生活中变量之间关系的表达转化为数学上的关系式表达.在第3节第1课时中,通过学生所熟悉的气温变化图,引入变量之间关系的第三种表示方法——图象.图象表示因其直观性有着其他表示方式所不能替代的作用,它是将关系式和数据转化为图形形式,是“看见”相应的变化规律的途径之一.因此,本章在第3节第2课时中特别又对图象所表示的变量之间的关系进行了讨论,让学生用语言描述图象所表示的变化过程,加强他们对图象表示的理解,发展从图象中获得信息的能力及有条理地进行语言表达的能力.概括起来说,第1节是本章的起始课,除给出变量、常量的概念,还给出变量之间关系的第一种表示方式——表格表示法.第2节给出变量之间关系的第二种表示方式——关系式表示法.第3节给出变量之间关系的第三种表示方式——图象表示法,并力图与表格表示法、关系式表示法进行联系,但不要求学生画图象.【重点】能根据表格中的数据、关系式中的变量、图象上的点来获取信息,明确自变量、因变量所表示的实际意义.【难点】三种表示变量之间关系的方法之间的联系,能从具体问题中获取变量之间的关系.1.本章主要讨论的是现实世界中大量存在的变量,讨论如何用数学的方法去理解、表示变量之间的关系,并解决一些问题和进行预测.因此在教学中,教师要创设丰富的现实情境使学生体会变量以及变量之间相互依赖的关系,而不是形式地讨论变量的有关概念.教师可以充分利用教科书中提供的问题,也可以创设新的情境,或鼓励学生自己从生活中寻找有关素材供课堂讨论.2.运用数学的语言、方法、知识去理解、刻画现实世界中的变化规律,是本章学习的主要目标之一.而实现这一目标的重要途径是使学生亲身经历探索现实世界变化规律的过程,在探索活动中理解变量之间的相依关系,并尝试用语言和符号去刻画.例如,在探索小车下滑过程中下滑时间与支撑物高度的关系时,教师应鼓励学生充分地从表格中获取信息,运用自己的语言进行描述,并与同伴进行交流.有条件的地方,教师可以让学生亲自实践这个实习或实践其他可操作性的实习,使他们获得变量之间关系的直观体验,并体会收集数据、整理数据、由数据进行推断的思考方式.3.注重使学生从表格、关系式、图象中尽可能多地获取信息,并运用语言进行表达.前面已经提到,为了发展学生对变量之间关系的理解,必须使他们对变量之间关系的多种表示——表格表示、关系式表示、图象表示有相当丰富的经历.因此,教科书安排了大量由表格、关系式、图象所表达的变量之间关系的实例.在学生讨论这些例子时,教师要留给他们充分思考的时间,鼓励他们从表格、关系式、图象中尽可能多地获取信息,并运用自己的语言进行表述.当学生运用语言进行表述时,教师不要苛求语言的统一性以及对关系的精确描述,只要学生能大致描述出变量之间的关系即可.4.在现实情境中评价学生对变量之间关系的理解.在考查学生对变量之间关系的理解时,应关注学生是否能够感受周围世界中的变量,是否能够发现变量之间互相依赖的关系;关注学生是否能从表格和图象中获取信息,并由此进行预测;关注学生能否运用语言、表格、关系式描述一些变量之间的关系等.评价时应提供具体的问题情境,从大量实际问题或学生感兴趣的问题出发.避免形式化地对两个变量之间关系的三种表达形式进行讨论.5.在本章的学习中,好多信息都是由学生花费了较多的时间从具体问题中抽象出变化规律、理解符号所代表的变化规律等活动中获得的,这些活动对于学生发展符号感具有重要的价值.因此,对上述活动过程教师应给予学生大量支持与鼓励,而不是直接将结论告诉学生.教学时教师应从以下几方面对学生加以关注:从事活动的投入程度;从表格、关系式、图象中获取信息的准确性和广泛性;对具体情境中变量之间关系的敏感性;运用语言描述变量之间关系的合理性等.1用表格表示的变量间关系1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感.2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子.3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测.经历实习、操作、观察、猜想、交流等获取信息的过程,体会我们生活在一个变化的世界中,进一步理解变量之间的关系,从表格中获取两个变量之间关系的有关信息.激发学生学习数学的兴趣,认识到现实生活中蕴含着大量两个变量之间关系的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决.【重点】通过具体情境理解变量、自变量和因变量的概念,能从表格中发现变量之间的变化关系,并能用自己的语言描述出来.【难点】对表格中的数据作出分析和预测,用变量之间变化的思想描述我们所生活的世界中的变化.【教师准备】多媒体课件.【学生准备】预习教材P62~63.导入一:前一段时间大萌子和萌爸的三十年照片被晒在网上,这30张照片是一个北京姑娘1岁到30岁和爸爸的合影,从小到大,她的每一步都有爸爸陪伴,每张照片都有那一年的故事,触动心灵!孩子茁壮成长,父母日渐老去.[处理方式]通过上面的例子,我们感到:我们生活在一个变化的世界中.从数学的角度研究变化的量,讨论它们之间的关系,将有助于我们更好地了解自己、认识世界和预测未来,这也是我们第三章将要学习的变量之间的关系.[设计意图]通过具体生活的实例激发学生的学习兴趣,在学生熟悉的情境中自然地引入本章的内容,学生感到亲切、贴近生活,乐意去学习探究,又通过具体的情境,让学生对本章学习研究的内容有个大致的了解,目的性较强,直接指向本节课所要学习的内容.导入二:猜猜看:他是谁?[处理方式]让学生观察交流,感受身边的日常变化.[设计意图]通过具体情境激发学生的学习兴趣,让学生观察图片作为课堂教学的引入,通过举例,希望学生体会身边的事物无时无刻不在发生变化,培养学生善于观察的能力,让学生感受事物的变化,进而引向本节课所要学习的内容.探究活动1小车下滑实习思路一【活动内容1】直观感知支撑物的高度与小车下滑时间的变化关系.下面我们来观察一个小车下滑实习:(课件出示)王波学习小组利用同一块木板,测量小车从不同高度下滑的时间.【问题】支撑物的高度不同,小车下滑的时间有怎样的变化?(如上图)[处理方式]课件演示小车从不同高度下滑的实习.讨论得出:图(1)小车下滑的时间较长,图(4)小车下滑的时间较短.从图(1)到图(4),随着支撑物的增高,小车下滑的时间逐渐变短.由于木板的长度不变,因此支撑物的高度越高,木板就越陡,小车下滑的时间就越短.【活动内容2】数据感知支撑物的高度与小车下滑时间的变化关系.(1)支撑物高度为70 cm时,小车下滑时间是多少?(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3)h每增加10 cm,t的变化情况相同吗?(4)估计当h=110 cm时,t的值是多少?你是怎样估计的?(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?[处理方式]先小组讨论后,汇报交流,师引导学生根据表格中数据进行适当的运算,通过观察分析这些计算结果,得出相应的结论,让学生了解这是利用表格分析变化关系、预测变化趋势的一种常用的方法.得出答案:(1)支撑物高度为70 cm时,小车下滑时间是1.59 s.从表格中直接可以查出.(2)t随着h的增大而减少.支撑物的高度越高,下滑的时间就越短.(3)h每增加10 cm,t的变化情况不相同.通过计算,可得到h每增加10 cm,t的变化量依次减少1.23 s,0.55 s,0.32 s,0.24 s,0.18 s,0.12 s,0.09 s,0.09 s,0.06 s.因此h每增加10 cm,t的变化情况不相同,但是随着h(4)t的变化量的变化趋势可以发现t的减少量要小于0.06 s或等于0.06 s,故可估计t的减少量为0.05 s,因此t的值大约为1.35- 0.05=1.30(s).(5)随着支撑物高度h的变化,下滑的时间t会发生变化,小车下滑的路程没有发生变化.探究小车下滑的时间随高度变化的情况.[处理方式]请两名同学到前面来进行实习.其他每组同学记录实习数据.(拿出实习器材:小车、木板、秒表、调节高度的装置,找两名学生到前面来进行实习,说明实习的目的及步骤)根据实习数据师生共同讨论,得出问题答案.猜想:随着小车的下滑高度的增加,小车下滑的时间逐渐减小.师:那么事实是不是这样呢?我们就来验证一下,让小车从不同的高度滑下,用秒表记录下每次小车下滑的时间,看看有何规律.师生:支撑物高度为70 cm时,小车下滑时间为1.59 s.师:如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?生:随着h逐渐变大,t逐渐变小.师:h每增加10 cm,t的变化情况相同吗?为什么?生:不相同.因为我是通过计算得到的,h每增加10 cm,t的变化量依次减少1.23 s,0.55 s,0.32 s,0.24 s,0.18 s,0.12 s,0.09 s,0.09 s,0.06 s.(如下表:教师此时展示差值表,便于学生分析回答问题)因此h每增加10 cm师生:当h=110 cm时,t的值可能是1.30 s,从表格中可以看出当小车的高度从90 cm上升到100 cm 时,时间减少了0.06 s,而且随着高度的增加,时间减少的越来越少,所以当小车的高度从100 cm上升到110 cm时,时间最多减少0.06 s,所以我认为减少0.05 s比较合适,所以我认为h=110 cm时,t的值可能是1.30 s.师:这位同学回答得很好.我们推测估计时,要根据表中的数据进行分析整理,然后作出合理的回答.(教师可说明答案是1.29 s至1.35 s中的任意一个值)师:随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?生:随着支撑物高度h的变化,小车下滑的时间t会发生变化,小车下滑的路程没有发生变化.[设计意图]通过小车下滑的实习,让学生参与到收集数据的实习过程中,借助于数据感受具体的变化及其中蕴含的规律;亲身感受随着支撑物高度的增加,小车下滑所用的时间越来越少.体会这一过程中变化的量,为变量、自变量、因变量、常量这些概念的引入打下基础.同时鼓励学生充分进行交流,培养他们从表格中获取信息的能力.程中,若有两个变量x和y,其中y随着x的变化而发生变化,我们就把x叫自变量,y叫因变量.始终不变的量叫做常量.②利用在变化过程中,两个变量的因果关系,确定自变量和因变量.③借助表格,可以表示因变量随自变量的变化而变化的情况.④在利用表格表示变量之间的关系时,通常自变量在表格的第一行,而因变量则在第二行.[设计意图]为更好地感受变量之间的关系;通过小车下滑实习进一步积累感性认识,进一步体会在具体的情境中,变量之间的依存关系和变化关系,既能激起学生学习的兴趣,又为知识的直接概括积累了材料,在此基础上通过学生看书自学,明确各自意义,再通过回顾前置实习巩固概念,符合学生的认知规律,最后点题,明确表格是表示变量之间关系的一种常用方法.先独立完成下列问题,然后小组内交流.1.我国从1949年到(1)上表反映了和两个变量之间的关系,是自变量,是因变量.(2)如果用x表示时间,y表示我国人口数量,那么随着x的变化,y的变化趋势是什么?(3)从1949年起,时间每向后推移10年,我国人口是怎样变化的?[处理方式]引导学生观察表格中的数据变化,发现变量的整体变化趋势;利用变量之间的因果关系,区分出自变量和因变量.通过计算人口数量随年份的增加量,根据增加量的变化,得出人口数量随时间的变化关系.解:(1)时间人口数量时间人口数量(2)随着x的增加,y也增加.(3)从1949年起,时间每向后推移10年,我国人口增加1.5亿左右.但最后10年的增加量大约只有0.76亿.(答案合理即可)2.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间有如下的关系(其中0≤x≤30(1)(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用的时间是多少时,学生的接受能力最强?[处理方式]引导学生观察表格中的数据变化,发现变量间的变化关系和变化趋势.解:(1)提出概念所用的时间和学生的接受能力之间的关系.提出概念所用的时间是自变量,学生的接受能力是因变量.(2)59.(3)13分钟.[设计意图]利用不同的问题情境,使学生感受到变量之间的依赖关系和变化关系,理解变量、自变量、因变量的概念,能根据表格中的数据,对变量进行分析和预测,达到掌握知识的目的;新颖的问题情境,能够吸引学生积极地参与学习;简单口述,既能训练学生的思维能力和语言表达能力,又可以节省时间,起到提高学习效率的作用.[知识拓展]1.在一个变化过程中,数值发生变化的量叫做变量.2.一般地,在一个变化过程中,主动变化的量是自变量,受其他量影响而发生变化的量是因变量.3.自变量和因变量是相对的,一个量在某一变化过程中是自变量,而在另一变化过程中可能是因变量.4.常量和变量是相对的,在不同的研究过程中,二者可以相互转化.5.因变量的数值与自变量的数值必须一一对应.1.变量、常量、自变量、因变量的定义.2.借助表格,我们可以表示因变量随自变量的变化而变化的情况.1.(1)上表反映了与之间的变化关系其中是自变量,是因变量;(2)如果用x表示时间,y表示电话费,那么随着x的增加,y的变化趋势是;(3)丽丽打了5分钟电话,应该付元的电话费;(4)你能帮助丽丽预测一下,如果打10分钟电话,那么需付元电话费;(5)你能知道每打1分钟电话,需要付多少元电话费吗?电话费与打电话的时间有怎样的关系?解:(1)时间电话费时间电话费(2)不断增加(3)3.0(4)6.0(5)每分钟0.6元,电话费=0.6×时间.2.(1)上述哪些量在变化?(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由.解:(1)排数和座位数在变化,排数是自变量,座位数是因变量.(2)第5排有76个座位,第6排有80个座位.(3)第n排有60+4(n- 1)=(4n+56)个座位,每一排比前一排多4个座位.1用表格表示的变量间关系探究活动1小车下滑实习探究活动2变量、自变量、因变量、常量等概念一、教材作业【必做题】教材第63页习题3.1知识技能第1,2题.【选做题】教材第64页习题3.1问题解决第4,5题.二、课后作业【基础巩固】1.在利用太阳能热水器来加热水的过程中,热水器里水的温度随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积2.据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐增加,如果用t表示时间,y表示人口数量,那么是自变量,是因变量.3.某条河受暴雨袭击,(1)上表反映了与之间的关系其中是自变量,是因变量;(2)12时的水位是;(3)这个时段水位上升最快.【能力提升】4.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为方.5.苹果熟了,:(1)上表反映了和两个变量之间的关系,是自变量,是因变量;(2)根据表格中的数据,售价y是随销售数量x的变化而的;(3)估计当x=15时,y的值是.【拓展探究】6.下表是某冰箱厂2015(1)根据表格中的数据,(2)根据表格你知道哪几个月的月产量相同?哪个月的月产量最高?(3)求2015年前半年的平均月产量是多少.【答案与解析】1.B(解析:由题意可知,水的温度随着所晒时间的变化而变化,所晒时间是自变量,水的温度是因变量.故选B.)2.时间(或t)人口数量(或y)3.(1)时间水位时间水位(2)4米(3)20至24时4.20(解析:由题意得5月份用水量超过18方,设超过的部分为x方,由题意列方程为12×2+6×2.5+3x=45,解得x=2,所以5月份用水量为20方.)5.(1)销售数量售价销售数量售价(2)变化(3)31.56.解:(1)随着月份x的增大,月产量y正在逐渐增加.(2)1月、2月两个月的月产量相同,6月份月产量最高.(3)(10000+10000+12000+13000+14000+18000)÷6≈12833(台).故2015年前半年的平均月产量约为12833台.用学生比较熟悉而又感兴趣的具体问题情境和实例展开知识的学习和探究,学生能积极、主动地参与知识的学习过程;学生充分地交流讨论,较好地训练了学生的语言表达能力和对知识的理解能力;学生主动参与实习,亲身感受变量之间的变化关系,印象深刻,理解到位;通过口答叙述,小组讨论达成共识,再进行交流展示,既节省了时间,又达到了目标.整体来看,学生积极参与,踊跃发言,对变量、自变量、因变量的理解较好,对表格表示的变量间的关系,有一个比较清楚的了解,对数据的分析和预测比较客观、合理.由于本节知识点较少,也较为简单,在设计教学过程的时候,比较松散,学生训练的题目较少,特别对表格中的数据变化有一定规律的题目训练不够,对数据变化的情况学生叙述不够准确、客观,教师的引导不够到位,学生使用数学语言的能力还要进一步加强.加强对数学语言训练的力度,结合具体的问题情境训练学生语言表达的准确性和简洁性;设计灵活多样而新颖的题目,加强对学生理解知识能力的训练,同时结合具体题目做好渗透,为下一节的学习做好铺垫;增大课堂容量,采取更加灵活的方式,加大训练的强度,增加训练的效果.随堂练习(教材第63页)1.解:如气温随时间的变化,脉搏随运动强度的变化,作物的高度随种植时间的变化等.(答案不唯一)2.解:(1)氮肥的施用量和土豆产量之间的关系;氮肥的施用量是自变量,土豆产量是因变量.(2)32.29t,15.18 t.(3)如可以回答氮肥的施用量为336 kg/hm2时比较适宜,因为此时土豆的产量最高;还可以回答氮肥的施用量为259 kg/hm2时比较适宜,因为此时土豆的产量与施用量为336 kg/hm2时差不多,而又可以节约肥料.合理即可.(4)这里主要关注的是对变化过程的大致刻画,答案只要合理即可.习题3.1(教材第63页)知识技能1.解:2.解:(1)(3).问题解决4.解:(1)老花镜的度数越大,镜片与光斑的距离越小.(2)140度~150度(估计的度数接近即可).5.解:(1)反映了海拔高度与空气含氧量之间的关系.海拔高度是自变量,空气含氧量是因变量.(2)299.3g/m3,182.08 g/m3.(3)大约为150.66 g/m3(合理即可).奥运会的年份与届数如下表所示,表中n的值等于()年份1896 1900 1904 (2012)A.28B.29C.30〔解析〕年份是自变量,届数是因变量,根据数据可得二者的变化规律:第1届相应的举办年份=1896+4×(1- 1)=1892+4×1=1896;第2届相应的举办年份=1896+4×(2- 1)=1892+4×2=1900;第3届相应的举办年份=1896+4×(3- 1)=1892+4×3=1904;…;第n届相应的举办年份=1896+4×(n-1)=1892+4n.根据规律代入相应的年份即可算出届数.令1892+4n=2012,解得n=30.故选C.[解题策略]此题主要考查了数字的变化,解题关键是弄清题意,根据题目中给出的规律列出代数式.本题每届举办年份比上一届举办年份多4.2用关系式表示的变量间关系1.经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感.2.能根据具体情境,用关系式表示某些变量之间的关系.3.能根据关系式求值,初步体会自变量和因变量的数值对应关系.1.如何将生活中的实际问题转化为数学问题.2.如何用数学方法解决实际生活中的问题.培养学生动手的能力,探索问题、研究问题的能力及应用数学知识的能力.通过教学让学生领悟探索问题和研究问题的方法.【重点】通过用关系式表示变量之间的关系,体会变量之间的数值对应关系.【难点】将具体问题抽象成数学问题并将它用关系式表示出来.【教师准备】多媒体课件.【学生准备】预习教材P66~67.导入一:【活动内容】复习用表格表示两个变量之间的关系.【问题】随着手机的普及,现代人们的通信越来越便捷.打电话要交话费,下表是某同学家长调取的。
初中数学七年级下册《变量之间的关系》大单元教学设计一.教材分析变量之间的关系是继学习代数式求值、探索规律后运用各变量之间的关系解决具体实际问题。
在本章的学习中学生已经分别利用表格、图像、表达式等多种方法表示变量之间的关系上,进一步依据学生实际创新的情景,解决实际问题。
此外从本章开始,学生的数学学习从常量进入了变量的世界,由于是刚刚接触一种新的思维方式,学生对于变量之间的关系的理解停留在表象上,事实上我们期望通过本章对变量和变量之间的关系的丰富经历,为学生以后顺利的过度到函数学习打下基础,而为了发展学生对函数的理解,必须使他们对函数的多种表示有相当丰富的经历,结合本章的学习,学生的抽象思维将不断加强,对数学知识的认识将上升到新的境界。
二.整体结构函数是研究现实世界变化规律的一个重要模型,在六年级上学期中,教科书已经在代数式求值、探索规律等地方渗透了变化的思想,而本章则是第三学段第一次集中讨论变量之间的关系,主要是让学生联系实际背景了解变量以及量与量之间变化的规律,为以后顺利过渡到函数学习打下基础。
从木章开始学生从常量的世界进入了变量的世界,开始接触一种新的思维方式。
本单元主要内容是两个变量之间的关系及表示方法,能确是其中的自变量或因变量,能够正确写出变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测,通过表格、图像、表达式获取信息解决实际问题。
本章的重点是用表格、表达式和图像表示变量之间的关系,难点是从表格、表达式和图像中分析变量之间的关系,并进行变化规律的预测。
三.对应课标①探索简单实例中的数量关系和变化规律,了解常量、变量的意义;了解函数的概念和表示法,能举出函数的实例。
②能结合图象对简单实际问题中的函数关系进行分析(例68)。
③能确定简单实际问题中函数自变量的取值范围,会求函数值。
④能用适当的函数表示法刻画简单实际问题中变量之间的关系, 理解函数值的意义。
⑤结合对函数关系的分析,能对变量的变化情况进行初步讨论。
一、理论知识
1.基本概念
常量:某一变化过程中,保持同一数值的量。
(不变化的量)
变量:某一变化过程中,可以取不同数值的量
自变量(因) 因变量(果)
某一变化过程中,有两个变量X,Y ,当X 在一定范围内取一个数值,Y 都有唯一确定的
数值与其对应,那么,X
是自变量,Y 是因变量。
——这也是函数的定义,Y 是X 的函数。
2.变量之间关系表示法
在直角坐标系中,横轴-自变量;纵轴-因变量
二、典型题型 1.
⑴由表格图象求某处对应关系
例题1-(1)-1:小红帮助母亲预算4月份的用电量,小红记录了4月初连续8天每天早上电表显示 ⑵4月5日早上电表显示的读数是多少?
⑶这个月的前5天共用电多少?(小红家每天只在晚上用电) ⑷估计在4月9日早上电表的读数是多少? ⑸估计4月份的总用量。
答案:⑴这个表格反映了日期与电表读数这两个变量之间的关系,日期是自变量,电表读数是因
变量之
间关系表示法
变量之间关系表达式(一次函数)
变量之间某处对应关系(具体数字列方程)
变量。
⑵4月5日早上电表显示的读数是35千瓦时。
⑶前5天共用电39-21=18(千瓦时)
⑷估计在4月9日早上电表的读数为49或50千瓦时。
⑸四月份总用电量为(46-21)÷7×30≈107(千瓦时)。
说明:①每天早上记录读数,并且只在晚上用电。
所以记录了8天每天早上读数,实际上只记录了7天的用电量。
②此类题主要看前后差值是多少,将此差值作为规律应用,本题中前后差值为3或4,所以在估计4月9日早上电表读数为46+3或46+4
深度/km 1 2 3 4 5 6 7
温度/℃55 90 125 160 195 230 265
⑵深度每增加1km,温度增加多少摄氏度?
⑶估计10km处深的岩层温度是多少摄氏度?
答案:⑴反映了地表以下的岩层的温度和它所处的深度之间的关系,深度是自变量,温度是因变量。
⑵深度每增加1km,温度增加35摄氏度。
⑶估计10km处深的岩层温度是265+35×3=370摄氏度。
说明:此类题的关键在于:因变量和自变量之间的关系从头尾是相同的,即自变量1到2,因变量增加了多少,那么自变量2到3也是增加这么多。
例题1-(1)-3:某城市为了节约用水,采用分段收费标准,若某户居民每月应交水费y(元)与用水量x(吨)之间的关系如图所示,根据图象回答:
⑴每户用水不足5t时,每吨收费多少元?超过5t时,超过部分每吨
收费多少元?
⑵若某户居民某月用水3.5t,应交水费多少元?若某月交水费17元,
该居民用水多少吨?
答案:⑴不足5t时,每吨收费10
2
5
=(元);超过5t时,超过部分每吨
收费20.510
3.5
85
-
=
-
(元)
⑵∵3.5<5 ∴该用户应交水费3.5×2=7(元);∵10<17<20.5 ∴该居民用水
1710
57
3.5
-
+=(吨)
例题1-(1)-4:某记者乘车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路。
若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(km)与时间x(h)之间的关系如图所示,则下列结论正确的是(C)
A.汽车在高速公路上的行驶速度为100km/h
B.乡村公路总长为90km。
C,汽车在乡村公路上的行驶速度为60km/h。
D,该记者在出发后4.5h到达采访地。
答案解析:A. 180
902
=; B. 乡村公路总长为360-180=180(km )
;C. 乡村公路行驶速度为 27018060(/)3.52km h -=-;D. 记者在出发后360180
25()60h -+=到达采访地。
思路分析:解该类题目时,纵坐标的增量/横坐标的增量=特定的量(速度等)
⑵变量之间关系表达式(一次函数)
A. 3y x =
B. 3x y =-
C. 3y x =-
D. 3
x
y =
思路:x 和y 的乘积都等于-3,所以答案为C 。
例题1-(2)-2:某超市为方便顾客,将瓜子出售时放入包装袋内,其质量X(千克)与售价Y(元)之间
⑵买8千克这种瓜子需花费多少元?
⑶用100元去买这种瓜子最多能买多少千克? 答案:⑴Y=3X +0.10
⑵当X=8时,Y=3×8+0.10=24.1 所以买8千克这种瓜子需花费24.1元
⑶当Y=100时,3X+0.10=100,X=33.3 所以100元去买这种瓜子最多能买33.3千克 思路:y 变化部分是x 的3倍。
例题1-(2)-3:某居民小区按照分期付款的方式售房,购房时,首期(第1年)付款30000元,以后
(2)根据表格推测,第7年应付多少元?
(3)如果第x 年(其中x >1)应付房款为y 元,写出y 与x 之间的关系。
(4)小明家购得一套住房,到第8年恰好付清房款,8年来他家总共交付房款多少元? 解答:(1)反映了 每年的付款数和年份之间的关系。
年份是自变量。
(2)第7年应付40000元(因为从第2年开始,每年增加5000元) (3) 5000(1)y x =+
(4)8年来总共交付房款30000+15000+20000+25000+30000+35000+40000+45000=240000(元)
例题1-(2)-4:一个装有进水管和出水管的蓄水池,每单位时间内进水量和出水量是一定的,若从某时刻开始的4小时内只进水不出水,在随后的8小时内既进水又出水,则得到时间x(小时)与蓄水池内的水量y(立方米)之间的关系如图所示。
⑴求进水管进水和出水管出水的速度 ⑵如果12小时后只出水不进水,求y 随x 变化而变化的关系式。
答案:⑴进水管进水的速度为20÷4=5(立方米/小时) 出水管出水的速度为(8×5-10)÷8=3.75(立方米/小时)
⑵y=30-3.75(x-12),即15
754
y x =-
思路:本题关键在于速度的求法,总量/时间=速度
例题1-(2)-5:A 市欲将一批容易变质的水果运往B 市销售,现有飞机、火车、汽车三种运输方式, 运输工具 途中速度(km/h) 途中费用(元/km) 装卸费用/元 装卸时间/h
飞机
200 16 1000 2 火车
100 4 2000 4 汽车
50 8 1000 2 x km ⑴如果用123,,W W W 分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出 123,,W W W 与x 之间的关系式。
⑵当x=250时,应采用哪种运输方式,才能使运输过程中的总支出费用最少?
解答:(1) 1161000200(2)171400200
x
W x x =+++=+
装卸费用对于每种运输工具是固定的,途中费用×路程,损耗费用/k m ×时间 (2)算出每种运输工具运输时的总支出,进行比较就可以了。
总结:变量之间的关系式表达式就是求因变量y 和自变量x 之间的关系,即把y 用包含x 的 多项式表示,也就是x 的多少倍;x 加减某以定值=y
2.由关系描述判断选择图象
例题2-1:小明爸爸早出去散步,从家
走了20分钟到达距家800米的公园,她在 公园休息了10分钟,然后用30分钟原路
返回家中,那么小明爸爸离家的距离s(单位:米)与离家的时间t(单位:分)之间的关系图象大致是(D )
例题2-2:洗衣机在洗涤衣服时经历了注水,清洗,排水三个连续过程(工作前洗衣机内无水), 在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致是(D )
例题2-3:如左图是蓄水池横断面示意图,分浅水区和深水区,如果这个蓄水池以固定的流量注水(蓄水池中现在无水),下列右图中能大致表示水的最大深度与时间之间关系的是(C )
思路说明:考察路程,时间,速度等之间的关系。
3.由图象/表格求出 用代数式表示的一般表达式
例题3-1:如图是在正方形网格中按规律添成的阴影,根据此规律,第n 个图中的阴影部分小
正方形的个数是(22n n ++)
2(1)22n n n n ⨯++=++
关键点:找出不变的部分,先将不变部分隔离,找出剩下部分的表达式,最后将不变部分加上。
例题3-2:添在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是(D )
A.38
B.52
C.66
D.74
4.关系式(计算程序)已知,由自变量求因变量
例题4-1:根据图中的程序计算y 值,若输入的x 值为3
2
,则输出的结果是(C ) A.
72 B. 94 C. 12 D.
A. 10
99
B. 11100
C. 11102
D. 102104
5.判断
一种商品原价450元,日销售量与每件降价的数额如下表:
上表中反映了两个变量 的关系, 是自变量, 是因变量。
自变量
因变量。