计量经济学第十章
- 格式:doc
- 大小:349.50 KB
- 文档页数:5
计量经济学课后题答案第⼗三章⾯板数据模型⼀简单题1、简述⾯板数据模型的优点和局限性它能综合利⽤样本信息,同时反映应变量在截⾯和时序两个⽅向上的变化规律及特征。
由于⾯板数据模型在经济定量分析中,起着只⽤截⾯或只⽤时序数据模型不可替代的独特优点,⽽具有很⾼的应⽤价值。
总之:1.增加了样本容量;2. 可多层⾯分析经济问题局限性:模型设定错误与数据⼿机不慎引起较⼤的偏差;研究截⾯或者平⾏数据时,由于样本⾮随机性造成观测值的偏差,从⽽导致模型选择上的偏差。
2、你是如何理解⾯板数据的?在经济领域中,同时具有截⾯与时序特征的数据很多。
如统计年鉴中提供的各地区或各国的若⼲系列的年度(季度或⽉度)经济总量数据;在企业投资分析中,要⽤到多个企业若⼲指标的⽉度或季度时间序列数据;在城镇居民消费分析中,要⽤到不同省市反映居民消费和收⼊的年度时序数据。
我们将上述的企业、或地区等统称为个体,从⾏的⽅向看,是由若⼲个体在某个时期构成的截⾯观察值(截⾯样本),从列的⽅向看,是各时间序列。
这种具有三维(截⾯、时期、变量)信息的数据结构称为⾯板。
这是“⾯板”数据的由来,⾯板数据也称为时序截⾯数据或混合数据(Pooled Data)。
3、简述建⽴⾯板数据模型的过程。
(1)建⽴⾯板数据对象,即建⽴⼯作⽂件;(2)⾯板时序变量平稳性检验;(3)协整检验;(4)模型识别;(5)建⽴模型;(6)结论。
⼆填空题1、GDP界⾯变量是⼀维变量,⾯板变量为三维变量。
2、⾯板数据模型是⽆斜率系数⾮齐性、⽽截距齐性的模型。
3、⾯板数据模型识别包括效应模型识别和具体模型识别。
4、建⽴⾯板数据模型之前,要对⾯板变量进⾏平稳性检验和协整检验。
第⼗⼆章向量⾃回归(VAR)模型和向量误差修正(VEC)模型⼀简答题1、VAR模型的特点VAR模型不以经济理论为指导,它根据样本数据统计特征建模。
VAR模型对参数不施加零约束(如t检验),故称其为⽆约束VAR模型。
VAR模型的解释变量中不含t期变量,所有与线性联利⽅程组模型有关的问题均不存在。
E10.1(1) (2) (3) (4) (5)lnvio lnvio lnvio lnvio lnvio shall -0.443***-0.368***-0.0461*-0.288***-0.0280(0.0475) (0.0348) (0.0189) (0.0337) (0.0278)incarc_rate 0.00161***-0.0000710 0.00193***0.0000760(0.000181) (0.0000936) (0.000114) (0.0000720)density 0.0267 -0.172*-0.00887 -0.0916(0.0143) (0.0850) (0.0139) (0.0485)avginc 0.00121 -0.00920 0.0129 0.000959(0.00728) (0.00591) (0.00796) (0.00729)pop 0.0427***0.0115 0.0408***-0.00475(0.00315) (0.00872) (0.00252) (0.00781)pb1064 0.0809***0.104***0.1000***0.0292(0.0200) (0.0178) (0.0182) (0.0183)pw1064 0.0312**0.0409***0.0401***0.00925(0.00973) (0.00507) (0.00912) (0.00538)pm1029 0.00887 -0.0503***-0.0444*0.0733***(0.0121) (0.00640) (0.0175) (0.0129)_cons 6.135*** 2.982*** 3.866*** 2.948*** 4.348***(0.0193) (0.609) (0.385) (0.569) (0.435) N 1173 1173 1173 1173 1173R20.087 0.564 0.218 0.580 0.955adj. R2 State Effects Time Effects 0.0859NoNo0.5613NoNo0.1771YesNo0.5690NoYes0.9525YesYesStandard errors in parentheses*p < 0.10, **p < 0.05, ***p < 0.01(1)①回归(2)中shall的系数是-0.368,这意味着隐蔽武器法律,也即“准予”携带法律,约使暴力犯罪减少36.8%。
第十章一、名词解释1、结构式模型:根据经济理论和行为规律建立的描述经济变量之间直接关系结构的计量经济学方程系统称为结构式模型。
结构式模型中的每一个方程都是结构方程,将一个内生变量表示为其它内生变量、先决变量和随机误差项的函数形式,被称为结构方程的正规形式。
2、先决变量:模型中的外生变量和滞后内生变量被统称为先决变量,其含义是在模型求解时,这些变量已有所赋的值。
3、不可识别:如果联立方程计量经济学模型中某个结构方程不具有确定的统计形式,则称该方程为不可识别。
或者说如果从参数关系体系无法求出其结构方程的参数,则称该方程为不可识别。
如果一个模型系统中存在一个不可识别的随机方程,则认为该联立方程系统是不可识别的。
4、间接最小二乘法:先对关于内生解释变量的简化式方程采用普通最小二乘法估计简化式参数,得到简化式参数估计量,然后通过参数关系体系,计算得到的结构式参数的估计量,这种方法称为间接最小二乘法。
二、判断题1、√2、×3、√4、√5、√6、×7、×8、×三、单项选择题1、C2、B3、A4、 C5、 C6、 B7、B8、B9、B 10、B11、A 12、C 13、C 14、A15、D 16、C 17、C 18、D 19、B 20、B21、B 22、D 23、C 24、A四、多项选择题1、ADF2、ABCDE3、ABE4、ABCE五、简答题1、联立方程计量经济学模型的结构式BΓNY X+=中的第i个方程中包含gi个内生变量和ki 个先决变量,模型系统中内生变量和先决变量的数目用g和k表示,矩阵()BΓ00表示第i个方程中未包含的变量在其它g-1个方程中对应系数所组成的矩阵。
于是,判断第i个结构方程识别状态的结构式条件为:如果R g()BΓ001<-,则第i个结构方程不可识别;如果R g()BΓ001=-,则第i个结构方程可以识别,并且如果k k gi i-=-1,则第i个结构方程恰好识别,如果k k gi i->-1,则第i个结构方程过度识别。
《计量经济学》各章数据第10章 联立方程模型例10.3.1 设农产品市场均衡模型为需求函数: t t t dt u Y a P a a Q 1210+++= 供给函数: t t t st u R b P b b Q 2210+++= 平衡方程: st d t Q Q =式中,Y 为消费者收入,R 为天气条件指数,其余变量同前。
根据表10.3.1中的统计资料估计模型。
表10.3.1 农产品市场的有关统计资料10.5 案例分析10.5.1 中国宏观经济模型中国1978-2003年居民宏观消费CONS、国内生产总值GDP、国内投资总额INV、政府支出GOV、净出口NEX(单位:亿元)统计数据,如表10.5.1所示:表10.5.1 中国宏观经济统计数据10.5.2 克莱因战争间模型根据美国1920~1941年的统计资料,如表10.5.6所示。
用2SLS和系统估计法等方法对模型参数进行估计。
表10.5.6 美国1920~1941年的统计数据思考与练习17.设我国的价格、消费、工资模型设定为t t t u I a a W 110++= t t t Pt u W b I b b C 2210+++= t pt t t t u C W I P 33210++++=γγγγ其中:I =固定资产投资(亿元);W =国营企业职工年平均工资(元);C =居民消费水平指数(%);P =价格指数(%)。
C 、P 均以上年为100%。
样本观察值如表2所示:表2 固定资产投资、职工平均工资与居民消费指数等统计资料(1)用递归模型参数估计法求出该模型的估计式;(2)用普通最小二乘法逐一估计每个方程;(3)比较以上两种做法的结果。
18.表3是我国1978-2003年国内生产总值(GDP )、货币供给量(2M )、政府支出(G )和投资支出(I )的统计资料,试用表中数据建立我国的收入——货币供给模型:t t t t t u G a I a M a a GDP 132210++++= t t t t u M b GDP b b M 2122102+++=-(1)判别模型的识别性。
古扎拉蒂计量经济学第四版讲义Ch...第⼗章⾃回归和分布滞后模型Lecture Note 13 – Dynamic Econometric Models: Autoregressive and Distributed-Lag Models1. Some conceptsRegression models that take into account time lags are known as dynamic or lagged regression models .There are two types of lagged models: distributed-lag models and autoregressive models . In the former, the current and lagged values of regressors are explanatory variables. In the latter, the lagged value(s) of the regressand appears as explanatory variables.2. The role of “lag” or “time” in economics什么是lag :In economics the dependence of a variable y (the dependent variable) on another variable(s) x (the explanatory variable) is rarely instantaneous. Very often, y responds to x with a lapse of time. Such a lapse of time is called a lag .The reasons for lag:1. Psychological reasons.2. Technological reasons.3. Institutional reasons.3. Estimation of distributed-lag models假定含有⼀个解释变量及其滞后(这只是⼀种简化,当然可以推⼴到⼏个解释变量及其各⾃滞后)的分布滞后模型如下:01122t t t t t y x x x αβββε??=+++++ 17.3.1这⾥没有定义滞后长度,即,how far back into the past we want to go ,这样的模型称为infinite (lag) model 。
一:绘制时间序列图
根据1970-1991年的美国制造业固定厂房设备投资Y和销售量X的数据在Eviews中录入数据得到固定厂房设备投资Y时间序列图如下
由上图我们可以看出该时间序列可能存在趋势和截距项所以我们选择ADF检验的模型对其检验是否为平稳序列。
二:ADF检验结果
从检验的结果可以看出,在1%、5%、10%三个显着水平下,单位根检验的Mackinnon的临界值分别为、、,t检验统计量为远远大于相应的临界值,从而不能拒绝原假设,即可以说明固定厂房设备投资Y存在单位根,是非平稳数列。
三:根据1970-1991年的美国制造业固定厂房设备投资Y和销售量X的数据在Eviews 中录入数得到销售量X的时间序列图如下
由上图我们可以看出该时间序列可能存在趋势和截距项所以我们选择ADF检验的模型对其检验是否为平稳序列。
四ADF检验结果
从检验的结果可以看出,在1%、5%、10%三个显着水平下,单位根检验的Mackinnon的临界值分别为、、,t检验统计量为远大于相应的临界值,从而不能拒绝原假设,即可以说明销售量X存在单位根,是非平稳数列。
五:单整阶数检验
从检验的结果可以看出,在1%、5%、10%三个显着水平下,单位根检验的Mackinnon的临界值分别为、、,t检验统计量为,小于于相应的临界值,从而能拒绝原假设,即可以说明销售量X已经不存在单位根,是平稳数列。
即是二阶单整。
从
检
验
的
结
果
可
以
看
出,
在
1%、
5%、
10%
三
个
显
着
水
平
下,
单
位
根
检
验
的
Mac
kin
non
的
临
界
值分别为、、,t检验统计量质为.小于相应的临界值,从而能拒绝原假设,即可以说明固定厂房设备投资Y已经存在单位根,是平稳数列。
即是二阶单整。