计量经济学答案第二章简单线性回归模型
- 格式:ppt
- 大小:1.29 MB
- 文档页数:15
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归样本回归模型与样本回归函数这两组概念开始,在现实中只能先从总体中抽取一个样本,本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所统计检验包括两个方面,本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以参数估计量统计性质的分析,例1、令kids运用样本回归函数进行预测,建立了回归分析的基本思想。
由总体回归模型在若干基本假设下得到,获得样本回归函数,ML)以及矩估计法(一是先检验样本回归函数与样本点的Goss-markov包括被解释变量条件均值与个educ表示该妇女接受过教育的年数。
生总体回但它只是并用它对总OLS)MM)。
“拟合优度”,t检验完成;第二,OLS估计量1函数、归函数是对总体变量间关系的定量表述,建立在理论之上,体回归函数做出统计推断。
的学习与掌握。
同时,也介绍了极大似然估计法(谓的统计检验。
第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
定理表明是最佳线性无偏估计量。
其三,值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析表示一名妇女生育孩子的数目,育率对教育年数的简单回归模型为(1)随机扰动项包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
计量经济学作业姓名:***班级:08级数学一班学号:***********简单线性回归模型一、建立模型为了研究四川省城镇具名消费支出以及可支配收入之间的关系,又经济理论分析可知,收入是影响居民消费支出的主要因素,居民消费支出Y与可支配收入X之间存在密切的关系,消费支出随着收入的增加而增加,但变动的幅度相比较低,即边际消费倾向MPC有0<MPC<1。
因此可设定居民消费支出Yi与Xi的关系为:Yi=ß1+ß2Xi+ui,其中ß1表示四川省城镇居民家庭平均每人年生活性消费支出(元);Xi为城镇居民家丁平均没人年可支配收入(元)。
变量采用年度数据,样本期为1978-1998年。
这里的ß1为居民没有收入来源时的最低消费。
二、估计模型中的位置参数假设模型中的随机误差项ui满足古典假定,运用OLS方法估计模型的参数,利用计量经济学计算机软件EViews计算过程如下:简历文档,输入数据首先点击EViews图标,进入EViews主页。
点击File后,在File菜单的New选项中点击Workfile,这时屏幕上出现Workfile Range对话框,在Srart Date里键入1978,在End Date里键入1998,点击OK后屏幕出现Workfile工作框。
在Object菜单栏,点击New Object对话框里选Group并在Name for Object上定义文件名,点击OK,屏幕出现数据编辑框。
也可在光标出直接输入Data Y X,回车后即可出现数据编辑框。
此时可录入数据,首先按上行键,这时对应“obs”字样的空格会自动上跳,在对应第二个“obs”字样,有边框的空格里键入变量名,再按下行键,这时对应变量名下的这一列出现“NA”字样,便可依时间顺序键入相应的数据。
其他变量的数据类似输入。
可以几个变量同时录入数据。
在主页上选Quick菜单,点击Eatimate Equation项,屏幕上出现估计对话框(Equation Spacification),在Easmation Setting中选OLS估计,即Least Squares,键入Y C X或Y X C(C为EViews固定的截距系数)。
第2章 一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
A 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
A 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
A 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
A 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
A i i ˆˆ0Y Y 0σ∑=时,(-)=B 2iiˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。
A ()()()i i 12iX X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii122iX Y -nXY ˆX -nXβ∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i iˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
计量经济学庞皓第三版课后答案解析word文档,精心编排整理,均可修改你的满意,我的安心第二章简单线性回归模型字体如需要请自己调整(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析:Dependent Variable: YMethod: Least SquaresDate: 12/27/14 Time: 21:00Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C X1R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike info criterionSum squared residSchwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)有上可知,关系式为y=+②关于人均寿命与成人识字率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:10Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C X2R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike info criterionSum squared resid SchwarzcriterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)由上可知,关系式为y=+③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:14Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C X3R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike info criterionSum squared residSchwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)由上可知,关系式为y=+(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为,说明所建模型整体上对样本数据拟合较好。
第二章 简单线性回归模型一、单项选择题(每题2分): 1、回归分析中定义的( )。
A 、解释变量和被解释变量都是随机变量B 、解释变量为非随机变量,被解释变量为随机变量C 、解释变量和被解释变量都为非随机变量D 、解释变量为随机变量,被解释变量为非随机变量2、最小二乘准则是指使( )达到最小值的原则确定样本回归方程。
A 、1ˆ()nt tt Y Y=-∑B 、1ˆn t tt Y Y =-∑ C 、ˆmax t tY Y - D 、21ˆ()n t t t Y Y =-∑3、下图中“{”所指的距离是( )。
A 、随机误差项B 、残差C 、i Y 的离差D 、ˆiY的离差 4、参数估计量ˆβ是iY 的线性函数称为参数估计量具有( )的性质。
A 、线性 B 、无偏性 C 、有效性 D 、一致性5、参数β的估计量βˆ具备最佳性是指( )。
A 、0)ˆ(=βVarB 、)ˆ(βVar 为最小C 、0ˆ=-ββD 、)ˆ(ββ-为最小 6、反映由模型中解释变量所解释的那部分离差大小的是( )。
A 、总体平方和 B 、回归平方和 C 、残差平方和 D 、样本平方和7、总体平方和TSS 、残差平方和RSS 与回归平方和ESS 三者的关系是( )。
A 、RSS=TSS+ESS B 、TSS=RSS+ESS C 、ESS=RSS-TSS D 、ESS=TSS+RSS 8、下面哪一个必定是错误的( )。
A 、 i i X Y 2.030ˆ+= ,8.0=XY rB 、 i i X Y 5.175ˆ+-= ,91.0=XY rC 、 i i X Y 1.25ˆ-=,78.0=XY rD 、 i i X Y 5.312ˆ--=,96.0-=XY r9、产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为ˆ356 1.5YX =-,这说明( )。
A 、产量每增加一台,单位产品成本增加356元B 、产量每增加一台,单位产品成本减少1.5元C 、产量每增加一台,单位产品成本平均增加356元D 、产量每增加一台,单位产品成本平均减少1.5元10、回归模型i i i X Y μββ++=10,i = 1,…,n 中,总体方差未知,检验010=β:H 时,所用的检验统计量1ˆ11ˆβββS -服从( )。
第二章简单线性回归模型2.1(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析:Dependent Variable: YMethod: Least SquaresDate: 12/27/14 Time: 21:00Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 56.64794 1.960820 28.88992 0.0000X1 0.128360 0.027242 4.711834 0.0001R-squared 0.526082 Mean dependent var 62.50000 Adjusted R-squared 0.502386 S.D. dependent var 10.08889 S.E. of regression 7.116881 Akaike info criterion 6.849324 Sum squared resid 1013.000 Schwarz criterion 6.948510 Log likelihood -73.34257 Hannan-Quinn criter. 6.872689 F-statistic 22.20138 Durbin-Watson stat 0.629074 Prob(F-statistic) 0.000134有上可知,关系式为y=56.64794+0.128360x1②关于人均寿命与成人识字率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:10Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 38.79424 3.532079 10.98340 0.0000X2 0.331971 0.046656 7.115308 0.0000R-squared 0.716825 Mean dependent var 62.50000 Adjusted R-squared 0.702666 S.D. dependent var 10.08889 S.E. of regression 5.501306 Akaike info criterion 6.334356 Sum squared resid 605.2873 Schwarz criterion 6.433542 Log likelihood -67.67792 Hannan-Quinn criter. 6.357721 F-statistic 50.62761 Durbin-Watson stat 1.846406 Prob(F-statistic) 0.000001由上可知,关系式为y=38.79424+0.331971x2③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:14Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 31.79956 6.536434 4.864971 0.0001X3 0.387276 0.080260 4.825285 0.0001R-squared 0.537929 Mean dependent var 62.50000Adjusted R-squared 0.514825 S.D. dependent var 10.08889S.E. of regression 7.027364 Akaike info criterion 6.824009Sum squared resid 987.6770 Schwarz criterion 6.923194Log likelihood -73.06409 Hannan-Quinn criter. 6.847374F-statistic 23.28338 Durbin-Watson stat 0.952555Prob(F-statistic) 0.000103由上可知,关系式为y=31.79956+0.387276x3(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。
第二章简单线性回归模型2.1(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析:Dependent Variable: YMethod: Least SquaresDate: 12/23/15 Time: 14:37Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 56.64794 1.960820 28.88992 0.0000 X1 0.128360 0.027242 4.711834 0.0001R-squared 0.526082 Mean dependentvar 62.50000Adjusted R-squared 0.502386 S.D. dependentvar 10.08889S.E. of regression 7.116881 Akaike infocriterion 6.849324Sum squared resid 1013.000 Schwarzcriterion 6.948510Log likelihood -73.34257 Hannan-Quinncriter. 6.872689F-statistic 22.20138 Durbin-Watsonstat 0.629074 Prob(F-statistic) 0.000134有上可知,关系式为y=56.64794+0.128360x1②关于人均寿命与成人识字率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/15 Time: 15:01Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 38.79424 3.532079 10.98340 0.0000 X2 0.331971 0.046656 7.115308 0.0000R-squared 0.716825 Mean dependentvar 62.50000Adjusted R-squared 0.702666 S.D. dependentvar 10.08889S.E. of regression 5.501306 Akaike infocriterion 6.334356Sum squared resid 605.2873 Schwarzcriterion 6.433542Log likelihood -67.67792 Hannan-Quinncriter. 6.357721F-statistic 50.62761 Durbin-Watsonstat 1.846406 Prob(F-statistic) 0.000001由上可知,关系式为y=38.79424+0.331971x2③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/14 Time: 15:20Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 31.79956 6.536434 4.864971 0.0001 X3 0.387276 0.080260 4.825285 0.0001R-squared 0.537929 Mean dependentvar 62.50000Adjusted R-squared 0.514825 S.D. dependentvar 10.08889S.E. of regression 7.027364 Akaike infocriterion 6.824009Sum squared resid 987.6770 Schwarzcriterion 6.923194Log likelihood -73.06409 Hannan-Quinncriter. 6.847374F-statistic 23.28338 Durbin-Watsonstat 0.952555Prob(F-statistic) 0.000103由上可知,关系式为y=31.79956+0.387276x3(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。
计量经济学第四版李子奈课后答案第一章:简介1.什么是计量经济学?它与其他学科有什么区别?计量经济学是经济学的一个重要分支,主要研究经济现象的数理模型、计量方法以及经济政策的评估方法。
它与其他学科的区别在于,计量经济学着重于将经济理论转化为具体的计量模型,并利用统计分析方法对经济数据进行验证和评估,以获得对经济问题的深入理解和预测能力。
2.请简要介绍计量经济学的基本步骤。
计量经济学的基本步骤包括以下几个方面:•确定经济理论模型:根据研究的经济问题和理论基础,构建适当的经济理论模型。
•收集数据:收集所需的经济数据,包括自变量和因变量的观测值。
•数据处理:对数据进行处理和清洗,包括缺失数据的处理、异常值的检测和处理等。
•模型估计:利用统计方法对经济模型的参数进行估计,获得合适的模型参数估计值。
•模型检验:利用统计检验方法对模型的合理性进行检验,包括参数的显著性检验、模型拟合优度的检验等。
•模型应用和预测:根据模型估计结果,应用模型进行实际问题的分析和预测。
第二章:线性回归模型1.请解释简单线性回归模型的含义。
简单线性回归模型是一种描述两个变量之间线性关系的模型。
它假设因变量(被解释变量)可以通过一个线性函数来解释,该线性函数包含一个自变量(解释变量)。
形式化地表示为:$y_i = \\beta_0 + \\beta_1x_i + u_i$,其中y i表示因变量的观测值,x i表示自变量的观测值,$\\beta_0$和$\\beta_1$表示模型的参数,u i表示误差项。
2.如何进行线性回归模型的估计和检验?线性回归模型的参数可以通过最小二乘法进行估计。
最小二乘法通过最小化观测值和模型估计值之间的差异,来获取最优的模型参数估计。
具体的估计方法可以通过计算样本数据的一阶矩和二阶矩来获得。
线性回归模型的检验可以通过对模型参数的显著性进行检验来进行。
通常使用t检验或F检验来判断模型参数的显著性。
t检验用于检验单个参数的显著性,而F检验用于检验多个参数的显著性。