计量经济学第二章
- 格式:ppt
- 大小:3.04 MB
- 文档页数:56
Chapter 2. Review of Probability2.1 Random Variables and Probability Distributions概率Probability:在大量重复实验下,事件发生的频率趋向的某个稳定值。
例如,记事件“下雨”为A,其发生的概率为P()A。
条件概率Conditional Probability :例:已知明天会出太阳,下雨的概率有多大?记事件“出太阳”为B 。
则在出太阳的前提条件下降雨的“条件概率”(conditional probability )为,P()P()P()A B A B B ∩≡其中,“∩”表示事件的交集(intersection ),故P()A B ∩为“太阳雨”的概率,参见图2.1。
条件概率是计量经济学的重要概念之一。
图2.1、条件概率示意图独立事件Independence :如果条件概率等于无条件概率,即P()P()A B A =,即B 是否发生不影响A 的发生,则称,A B 为相互独立的随机事件。
此时,P()P()P()P()A B A B A B ∩≡=,故P()P()P()A B A B ∩=也可以将此式作为独立事件的定义。
全概公式如果事件组{}12,,,(2)n B B B n ≥ 两两互不相容,()0(1,,)i P B i n >∀= ,且12n B B B ∪∪∪ 为必然事件(即在12,,,n B B B 中必然有某个i B 发生,“∪”表示事件的并集,union ),则对任何事件A 都有(无论A 与{}12,,,n B B B 是否有任何关系),1P()P()P()ni i i A B A B ==∑全概公式把世界分成了n 个可能的情形,再把每种情况下的条件概率“加权平均”而汇总成无条件概率(权重为每种情形发生的概率)。
该公式有助于理解后面的迭代期望定律。
离散型随机变量Discrete Random Variable :假设随机变量X 的可能取值为{}12,,,,k x x x ,其对应的概率为{}12,,,,k p p p ,即(P )k k p X x ≡=,则称X 为离散型随机变量,其分布律可以表示为,1212k k X x x x pp p p其中,0k p ≥,1kkp=∑。
第二章 数学基础 (Mathematics)第一节 矩阵(Matrix)及其二次型(Quadratic Forms)第二节 分布函数(Distribution Function),数学期望(Expectation)及方差(Variance) 第三节 数理统计(Mathematical Statistics ) 第一节 矩阵及其二次型(Matrix and its Quadratic Forms)2.1 矩阵的基本概念与运算 一个m ×n 矩阵可表示为:v a a a a a aa a a a A mn m m n n ij ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡== 212222111211][矩阵的加法较为简单,若C=A +B ,c ij =a ij +b ij但矩阵的乘法的定义比较特殊,若A 是一个m ×n 1的矩阵,B 是一个n 1×n 的矩阵,则C =AB 是一个m ×n 的矩阵,而且∑==nk kj ikij b ac 1,一般来讲,AB ≠BA ,但如下运算是成立的:● 结合律(Associative Law ) (AB )C =A (BC ) ● 分配律(Distributive Law ) A (B +C )=AB +AC 问题:(A+B)2=A 2+2AB+B 2是否成立?向量(Vector )是一个有序的数组,既可以按行,也可以按列排列。
行向量(row ve ctor)是只有一行的向量,列向量(column vector)只有一列的向量。
如果α是一个标量,则αA =[αa ij ]。
矩阵A 的转置矩阵(transpose matrix)记为A ',是通过把A 的行向量变成相应的列向量而得到。
显然(A ')′=A ,而且(A +B )′=A '+B ',● 乘积的转置(Transpose of a production ) A B AB ''=')(,A B C ABC '''=')(。