磁路的基本定律
- 格式:docx
- 大小:37.34 KB
- 文档页数:5
第一章磁路电机是一种机电能量转换装置,变压器是一种电能传递装置,它们的工作原理都以电磁感应原理为基础,且以电场或磁场作为其耦合场。
在通常情况下,由于磁场在空气中的储能密度比电场大很多,所以绝大多数电机均以磁场作为耦合扬。
磁场的强弱和分布,不仅关系到电机的性能,而且还将决定电机的体积和重量;所以磁场的分析扣计箅,对于认识电机是十分重要的。
由于电机的结构比校复杂,加上铁磁材料的非线性性质,很难用麦克斯韦方程直接解析求解;因此在实际工作中.常把磁场问题简化成磁路问题来处理。
从工程观点来说,准确度已经足够。
本章先说明磁路的基本定律,然后介绍常用铁磁材料及其性能,最后说明磁路的计算方法。
1-1 磁路的基本定律一、磁路的概念磁通所通过的路径称为磁路。
图1—1表示两种常见的磁路,其中图a为变压器的磁路,图b为两极直流电机的磁路。
在电机和变压器里,常把线圈套装在铁心上。
当线圈内通有电流时、在线圈周围的空间(包括铁心内、外)就会形成磁场。
由于铁心的导磁性能比空气要好得多,所以绝大部分磁通将在铁心内通过,并在能量传递或转换过程中起耦合场的作用,这部分磁通称为主磁通。
围绕裁流线圈、部分铁心和铁心周围的空间,还存在少量分散的磁通,这部分磁通称为漏磁通。
主磁通和漏磁通所通过的路径分别构成主磁路和漏磁路,图1—l中示意地表出了这两种磁路。
用以激励磁路中磁通的载流线圈称为励磁线圈(或称励磁绕组),励磁线圈中的电流称为励磁电流(或激磁电流)。
若励磁电流为直流,磁路中的磁通是恒定的,不随时间而变化,这种磁路称为直流磁路;直流电机的磁路就属于这一类。
若励磁电流为交流(为把交、直流激励区分开,本书中对文流情况以后称为激磁电流),磁路中的磁通随时间交变变化,这种磁路称为交流磁路;交流铁心线圈、变压器和感应电机的磁路都属于这一类。
二、磁路的基本定律进行磁路分析和计算时,往往要用到以下几条定律。
安培环路定律 沿着任何一条闭合回线L ,磁场强度H 的线积分值dlH L∙⎰ 恰好等于该闭合回线所包围的总电流值∑i ,(代数和).这就是安培环路定律(图l —2)。
磁路的基本概念和基本定律在很多电工设备(象变压器、电机、电磁铁等)中,不仅有电路的问题,同时还有磁路的问题,这一章,我们就学习磁的相关知识。
一、磁铁及其性质:人们把物体能够吸引铁、钴等金属及其合金的性质叫做磁性,把具有磁性的物体叫做磁体(磁铁)。
磁体两端磁性最强的区域叫磁极。
任何磁体都具有两个磁极,而且无论把磁体怎样分割总保持有两个异性磁极,也就是说,N极和S极总是成对出现的。
与电荷间的相互作用力相似,磁极间也存在相互的作用力,且同极性相互排斥,异极性相互吸引。
1.1磁场与磁感应线磁铁周围和电流周围都存在磁场。
磁场具有力和能的特征。
磁感应线能形象地描述磁场。
它们是互不交叉的闭合曲线,在磁体外部有N极指向S极,在磁体内部由S极指向N极,磁感应线上某点的切线方向表示该点的磁场方向,其疏密程度表示磁场的强弱。
1.2描述磁场的物理量:磁感应强度B:在磁场中垂直于磁场方向的通电导线所受电磁力F与电流I和导线有效长度L的乘积IL的比值即为该处的磁感应强度,即B=F/IL,单位:特斯拉。
磁感应强度是表示磁场中某点磁场强弱和方向的物理量,它是一个矢量,它与电流之间的方向关系可用右手螺旋定则来确定。
磁通∮:磁感应强度B和与它垂直方向的某一截面积S的乘积,称为通过该面积的磁通,即∮=BS,由上式可知,磁感应强度在数值上可以看作与磁场方向相垂直的单位面积所通过的磁通,故又称为磁通密度,单位是伏.秒,通常称为“韦”。
磁通∮是描述磁场在空间分布的物理量。
磁导率u是说明媒体介质导磁性能的物理量。
1.3定则电流与其产生磁场的方向可用安培定则(又称右手螺旋法则)来判断。
安培定则既适用于判断电流产生的磁场方向,也可用于在已知磁场方向时判断电流的方向。
1.直线电流产生的磁场,以右手拇指的指向表示电流方向,弯曲四指的指向即为磁场方向。
2.环形电流产生的磁场:以右手弯曲的四指表示电流方向,拇指所指的方向即为磁场方向。
3.通电导体在磁场内的受力方向,用左手定则来判断。
电机及拖动基础知识要点复习电机复提纲第一章:概念:主磁通、漏磁通、磁滞损耗、涡流损耗。
磁路的基本定律:安培环路定律:XXX。
磁路的欧姆定律:作用在磁路上的磁动势F等于磁路内的磁通量Φ乘以磁阻Rm。
磁路与电路的类比:与电路中的欧姆定律在形式上十分相似。
E=IR。
磁路的基尔霍夫定律:1)磁路的基尔霍夫电流定律:穿出或进入任何一闭合面的总磁通恒等于零。
2)磁路的基尔霍夫电压定律:沿任何闭合磁路的总磁动势恒等于各段磁路磁位差的代数和。
第二节常用铁磁材料及其特性铁磁材料:1、软磁材料:磁滞回线较窄。
剩磁和矫顽力都小的材料。
软磁材料磁导率较高,可用来制造电机、变压器的铁心。
2、硬磁材料:磁滞回线较宽。
剩磁和矫顽力都大的铁磁材料称为硬磁材料,可用来制成永久磁铁。
铁心损耗:1、磁滞损耗——材料被交流磁场反复磁化,磁畴相互摩擦而消耗的能量。
2、涡流损耗——铁心内部由于涡流在铁心电阻上产生的热能损耗。
3、铁心损耗——磁滞损耗和涡流损耗之和。
第二章:一、换向:尽管电枢在转动,但处于同一磁极下的线圈边中电流方向应始终不变,即进行所谓的“换向”。
二、直流电机的应用:作为电动机运行——在直流电机的两电刷端上加上直流电压,电枢旋转,拖动生产机械旋转,输出机械能;作为发动机运行——用原动机拖动直流电机的电枢,电刷端引出直流电动势,作为直流电源,输出电能。
三、直流电机的主要结构:定子的主要作用是产生磁场,转子又称为“电枢”,作用是产生电磁转矩和感应电动势。
要实现机电能量转换,电路和磁路之间必须在相对运动,所以旋转电机必须具备静止的和转动的两大部分,且静止和转动部分之间要有一定的间隙(称为:气隙)。
四、直流电机的铭牌数据:直流电机的额定值有:1、额定功率PN(kW);2、额定电压UN(V);3、额定电流IN(A);4、额定转速nN(r/min);5、额定励磁电压UfN(V)。
五、直流电机电枢绕组的基本形式:直流电机电枢绕组的基本形式有两种:一种叫单叠绕组,另一种叫单波绕组。
磁路的基本定律
磁路的基本定律
磁路是指由铁芯和线圈组成的电器元件,在电机、变压器、电磁铁等
电气设备中广泛应用。
学习磁路的基本定律对于理解和分析这些设备
的工作原理具有重要意义。
一、磁通量
1.1 磁通量的定义
磁通量是指通过一个闭合曲面内部的总磁场线数,通常用字母Φ表示,单位为韦伯(Wb)。
1.2 磁通量的计算公式
根据高斯定理,一个闭合曲面内部的总磁场线数等于该曲面上法向量
方向上的磁感应强度积分。
因此,可以用以下公式计算:
Φ = ∫B·dS
其中,B为磁感应强度(单位为特斯拉),dS为曲面微元(单位为平
方米),积分范围为该闭合曲面内部。
二、安培环路定理
2.1 安培环路定理的定义
安培环路定理是指在一个闭合回路上,沿着任意一条路径积分得到的
电流总和相等。
即:
∮H·dl = I
其中,H为磁场强度(单位为安培/米),dl为路径微元(单位为米),I为该回路内的电流(单位为安培)。
2.2 安培环路定理的应用
安培环路定理可以用于分析磁路中的磁通量和磁场强度之间的关系。
例如,在一个闭合回路上,如果有一段铁芯,那么根据安培环路定理,该铁芯内部的磁场强度H应该等于该回路内部电流I所产生的磁通量
Φ与铁芯长度l之比。
即:
H = Φ / l
三、法拉第电磁感应定律
3.1 法拉第电磁感应定律的定义
法拉第电磁感应定律是指当一个闭合线圈中的磁通量发生变化时,会在线圈中产生感应电动势。
即:
ε = -dΦ/dt
其中,ε为感应电动势(单位为伏特),Φ为线圈内部的磁通量,t为时间。
3.2 法拉第电磁感应定律的应用
法拉第电磁感应定律可以用于分析变压器、发电机等设备中的工作原理。
例如,在一个变压器中,当一侧线圈中的交流电流产生变化时,会在另一侧线圈中产生感应电动势,从而实现电能的传输和变换。
四、磁化曲线
4.1 磁化曲线的定义
磁化曲线是指在给定条件下,磁通量Φ和磁场强度H之间的关系。
通常用图表或曲线表示。
4.2 磁化曲线的特点
磁化曲线的形态取决于铁芯材料的性质和工作状态。
一般来说,磁化曲线可以分为四个阶段:
(1)剩磁区:当外部磁场强度H为零时,铁芯内部仍然存在一定的磁通量Φ,称为剩磁。
(2)线性区:当外部磁场强度H逐渐增加时,铁芯内部的磁通量Φ随之增加,并呈现出一个近似于直线的增长趋势。
(3)饱和区:当外部磁场强度H继续增加时,铁芯内部的磁通量Φ将不再随之增加,并趋于饱和。
(4)过饱和区:当外部磁场强度H进一步增加时,铁芯内部的磁通量Φ反而会减少,称为过饱和。
五、总结
磁路的基本定律包括磁通量、安培环路定理、法拉第电磁感应定律和
磁化曲线。
这些定律在电机、变压器、电磁铁等设备中都有广泛应用。
通过学习这些基本定律,可以更好地理解和分析这些设备的工作原理,为工程设计和实际应用提供参考。