必修二高中数学立体几何专题——空间几何角和距离计算
- 格式:doc
- 大小:585.50 KB
- 文档页数:13
立体几何中的向量方法(二)——空间角与距离求解1.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°2.若平面α,β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( )A .10B .-10 C.12 D .-123.两平行平面α,β分别经过坐标原点O 和点A (2,1,1),且两平面的一个法向量n =(-1,0,1),则两平面间的距离是( )A.32B.22C. 3 D .3 2 4.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1) B.⎝ ⎛⎭⎪⎫1,3,32C.⎝ ⎛⎭⎪⎫1,-3,32D.⎝⎛⎭⎪⎫-1,3,325.如图K42-1,长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为1,则异面直线AD 1和C 1D 所成角的余弦值是( )图K42-1 A.55 B .-55 C.15 D.256.在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,将它沿对角线AC 折起,使AB 和CD 成60°角(如图K43-2),则B 、D 间的距离为( )图K42-2A.1 B.2 C. 2 D.2或 27.三棱锥的三条侧棱两两互相垂直,长度分别为6,4,4,则其顶点到底面的距离为( )A.143B.217 C.62211D.21738.在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别为棱AA1、BB1的中点,G为棱A1B1上的一点,且A1G=λ(0≤λ≤1),则点G到平面D1EF的距离为( )A. 3B.22C.2λ3D.55图K42-39.如图K42-3,四棱锥P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=AD=1,AB=2,点E是AB上一点,当二面角P-EC-D的平面角为π4时,AE=( )A.1 B.12C.2- 2 D.2- 310.已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,E为OC的中点,且OA=1,OB=OC=2,则平面EAB与平面ABC夹角的余弦值是________.11.如图K42-4,已知四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为a的正方形,侧棱AA1长为b,且AA1与A1B1,A1D1的夹角都是60°,则AC1的长等于________.K42-4图K42-512.如图K42-5,AO⊥平面α,BC⊥OB,BC与平面α的夹角为30°,AO=BO=BC=a,则AC=________.13.如图K42-6,正方体ABCD-A1B1C1D1的棱长为2,M,N分别是C1D1,CC1的中点,则直线B1N与平面BDM所成角的正弦值为________.图K42-614.(10分)如图K42-7,放置在水平面上的组合体由直三棱柱ABC-A1B1C1与正三棱锥B-ACD组成,其中,AB⊥BC.它的正视图、俯视图、侧视图的面积分别为22+1,22+1,1.(1)求直线CA1与平面ACD所成角的正弦值;(2)在线段AC1上是否存在点P,使B1P⊥平面ACD?若存在,确定点P的位置;若不存在,说明理由.图K42-715.(13分) 如图K42-8,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求直线BF和平面BCE所成角的正弦值.图K42-816.(12分如图K42-9,已知正三棱柱ABC-A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC上,且不与点C重合.1(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tanθ的最小值.图K42-9。
专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。
立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
§8.8 立体几何中的向量方法(二)——求空间角和距离1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .60°或30°2.(2016·广州模拟)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.224.(2016·长春模拟)在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,P A =2,则直线P A 与平面DEF 所成角的正弦值为( ) A.15 B.255 C.55 D.255.如图,△ABC 是等腰直角三角形,其中∠A =90°,且DB ⊥BC ,∠BCD =30°,现将△ABC 折起,使得二面角A -BC -D 为直角,则下列叙述正确的是( )①BD →·AC →=0;②平面BCD 的法向量与平面ACD 的法向量垂直;③异面直线BC 与AD 所成的角为60°;④直线DC 与平面ABC 所成的角为30°.A .①③B .①④C .①③④D .①②③④6.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为( )A.52 B .-14 C.14 D .-527.(2016·合肥模拟)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则直线D 1C 1与平面A 1BC 1所成角的正弦值为________.8.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值等于________.9.(2017·石家庄月考)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.10.(2016·南昌模拟)如图(1),在边长为4的菱形ABCD 中,∠DAB =60°,点E ,F 分别是边CD ,CB 的中点,AC ∩EF =O ,沿EF 将△CEF 翻折到△PEF ,连接P A ,PB ,PD ,得到如图(2)的五棱锥P -ABFED ,且PB =10.(1)求证:BD ⊥平面POA ;(2)求二面角B -AP -O 的正切值.11.(2016·四川)如图,在四棱锥P ABCD 中,AD ∥BC ,∠ADC =∠P AB=90°,BC =CD =12AD .E 为棱AD 的中点,异面直线P A 与CD 所成的角为90°.(1)在平面P AB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(2)若二面角PCDA 的大小为45°,求直线P A 与平面PCE 所成角的正弦值.12.(2016·潍坊模拟)如图,边长为2的正方形ADEF 与梯形ABCD 所在的平面互相垂直.已知AB ∥CD ,AB ⊥BC ,DC =BC =12AB =1,点M 在线段EC 上.(1)证明:平面BDM ⊥平面ADEF ;π(2)判断点M的位置,使得平面BDM与平面ABF所成的锐二面角为3.答案精析1.C 2.C 3.B 4.C 5.B 6.B 7.13 8.23 9.2310.(1)证明 ∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF .∵菱形ABCD 的对角线互相垂直,∴BD ⊥AC ,∴EF ⊥AC ,∴EF ⊥AO ,EF ⊥PO .∵AO ⊂平面POA ,PO ⊂平面POA ,AO ∩PO =O ,∴EF ⊥平面POA ,∴BD ⊥平面POA .(2)解 设AO ∩BD =H ,连接BO .∵∠DAB =60°,∴△ABD 为等边三角形,∴BD =4,BH =2,HA =23,HO =PO =3,在Rt △BHO 中,BO =HB 2+HO 2=7.在△PBO 中,BO 2+PO 2=10=PB 2,∴PO ⊥BO .∵PO ⊥EF ,EF ∩BO =O ,EF ⊂平面BFED ,BO ⊂平面BFED ,∴PO ⊥平面BFED .以O 为原点,OF 所在直线为x 轴,AO 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系Oxyz ,如图所示,则A (0,-33,0),B (2,-3,0),P (0,0,3),H (0,-3,0),∴AP →=(0,33,3),AB →=(2,23,0).设平面P AB 的法向量为n =(x ,y ,z ),由n ⊥AP →,n ⊥AB →,得⎩⎨⎧ 33y +3z =0,2x +23y =0.令y =1,得z =-3,x =- 3.∴平面P AB 的一个法向量为n =(-3,1,-3).由(1)知平面P AO 的一个法向量为BH →=(-2,0,0),设二面角B -AP -O 的平面角为θ,则cos θ=|cos 〈n ,BH →〉|=n ·BH →|n ||BH →|=2313×2=3913, ∴sin θ=1-cos 2θ=13013, tan θ=sin θcos θ=303, ∴二面角B -AP -O 的正切值为303. 11.解 (1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面P AB ),点M 即为所求的一个点.理由如下:由已知,BC ∥ED 且BC =ED .所以四边形BCDE 是平行四边形,从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE ,所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点)(2)方法一 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A ,所以CD ⊥平面P AD ,从而CD ⊥PD .所以∠PDA 是二面角PCDA 的平面角,所以∠PDA =45°,设BC =1,则在Rt △P AD 中,P A =AD =2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH ,易知P A ⊥平面ABCD ,从而P A ⊥CE ,且P A ∩AH =A ,于是CE ⊥平面P AH .又CE ⊂平面PCE ,所以平面PCE ⊥平面P AH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE ,所以∠APH 是P A 与平面PCE 所成的角.在Rt △AEH 中,∠AEH =45°,AE =1,所以AH =22. 在Rt △P AH 中,PH =P A 2+AH 2=322. 所以sin ∠APH =AH PH =13.方法二 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A ,所以CD ⊥平面P AD .于是CD ⊥PD .从而∠PDA 是二面角PCDA 的平面角.所以∠PDA =45°.由∠P AB =90°,且P A 与CD 所成的角为90°,可得P A ⊥平面ABCD .设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD →,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0).所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2).设平面PCE 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧ n ·PE →=0,n ·EC →=0,得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2, 解得n =(2,-2,1).设直线P A 与平面PCE 所成角为α,则sin α=|cos 〈n ,AP →〉|=|n ·AP →||n ||AP →|=22×22+(-2)2+12=13. 所以直线P A 与平面PCE 所成角的正弦值为13. 12.(1)证明 ∵DC =BC =1,DC ⊥BC ,∴BD =2,又AD =2,AB =2,∴AD 2+BD 2=AB 2,∴∠ADB =90°,∴AD ⊥BD .又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,∴BD ⊥平面ADEF ,又BD ⊂平面BDM ,∴平面BDM ⊥平面ADEF .(2)解 在平面DAB 内过点D 作DN ⊥AB ,垂足为N ,∵AB ∥CD ,∴DN ⊥CD ,又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,DE ⊥AD ,∴ED ⊥平面ABCD ,∴DN ⊥ED ,以D 为坐标原点,DN 所在的直线为x 轴,DC 所在的直线为y 轴,DE 所在的直线为z 轴,建立空间直角坐标系如图所示.∴B (1,1,0),C (0,1,0),E (0,0,2),N (1,0,0),设M (x 0,y 0,z 0),EM →=λEC →(0≤λ<1),∴(x 0,y 0,z 0-2)=λ(0,1,-2), ∴x 0=0,y 0=λ,z 0=2(1-λ),∴M (0,λ,2(1-λ)).设平面BDM 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·DM →=0,n 1·DB →=0, 又DM →=(0,λ,2(1-λ)),DB →=(1,1,0), ∴⎩⎨⎧ λy +2(1-λ)z =0,x +y =0, 令x =1,得y =-1,z =λ2(1-λ), 故n 1=(1,-1,λ2(1-λ))是平面BDM 的一个法向量. ∵平面ABF 的一个法向量为DN →=(1,0,0),∴|cos 〈n 1,DN →〉|= 11+1+λ22(1-λ)2=12,得λ=23, ∴M (0,23,23), ∴点M 在线段CE 的三等分点且靠近点C 处.。
立体几何空间距离与角高一立体几何是研究空间中点、线、面、体之间的位置关系与数量关系的一门数学学科。
在立体几何中,距离是一个重要的概念,它是指两个点之间的长度,可以用于测量空间中的物体之间的远近关系。
而角高是指一个立体体的顶点到它所在的底面的垂直距离。
本文将介绍立体几何空间中的距离与角高的计算方法和应用。
空间距离在立体几何中,空间距离是指两点之间的直线距离。
对于平面上的点,我们可以直接计算其距离,而在空间中,我们需要考虑三维坐标系中的点之间的距离计算。
常用的空间距离计算方法有以下几种:欧氏距离欧氏距离是最常见的空间距离计算方法,它是指两点之间的直线距离。
在三维坐标系中,欧氏距离的计算公式如下:d = sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)其中,(x1, y1, z1)和(x2, y2, z2)分别是两点的坐标。
曼哈顿距离曼哈顿距离是指两点之间的垂直距离加水平距离。
在三维坐标系中,曼哈顿距离的计算公式如下:d = |x2 - x1| + |y2 - y1| + |z2 - z1|切比雪夫距离切比雪夫距离是指两点之间的最大距离。
在三维坐标系中,切比雪夫距离的计算公式如下:d = max(|x2 - x1|, |y2 - y1|, |z2 - z1|)根据不同的应用需求,选择合适的距离计算方法可以提高计算的准确性和效率。
角高角高是指一个立体体的顶点到它所在的底面的垂直距离。
在立体几何中,角高通常用于计算体积和表面积等问题。
角高的计算方法取决于不同的几何体类型,下面将介绍几种常见几何体的角高计算方法。
圆柱的角高圆柱是一种常见的几何体,它由一个圆面和一个平行于圆面的矩形面组成。
圆柱的角高等于它的顶点到底面的垂直距离,即圆柱的高度。
圆柱的角高计算方法非常简单,只需直接测量圆柱的高度即可。
锥体的角高锥体是一种类似于圆柱的几何体,它由一个圆锥面和一个平行于圆锥面的底面组成。
立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010例2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( ) A.3 B.22 C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
标准文档立体几何题型归类总结一、考点解析基本图形1.棱柱——有两个面互相平行,其他各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
斜棱柱① 棱柱底面是正多形正棱柱★棱垂直于底面直棱柱其他棱柱②四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体底面为矩形长方体底面为正方形正四棱柱侧棱与底面边长相等正方体E'D'F'C'侧面A'B'l底面侧棱高S极点侧面侧棱E D底面F C斜高AB D CO HA B2.棱锥棱锥——有一个面是多边形,其他各面是有一个公共极点的三角形,由这些面所围成的几何体叫做棱锥。
★正棱锥——若是有一个棱锥的底面是正多边形,并且极点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
3.球球面球的性质:球心轴①球心与截面圆心的连线垂直于截面;半径★② r R2 d 2(其中,球心到截面的距离为d、O球的半径为R、截面的半径为 r)★球与多面体的组合体:球与正周围体,球与长方体,R d球与正方体等的内接与外切.D'C'A'C'A'B'rAO1BO OD CA BA c注:球的有关问题转变成圆的问题解决.球面积、体积公式: S球 4 R2 ,V球4R3(其中R为球的半径)平行垂直基础知识网络★★★平行与垂直关系可互相转变平行关系垂直关系1. a,b a // b2. a,a // b b平面几何知识平面几何知识3. a,a//4.//,a a5.//,线线平行线线垂直判断判断推论判断性质性质性质面面垂直定义判断判断线面平行面面平行线面垂直面面垂直异面直线所成的角,线面角,二面角的求法★★★1.求异面直线所成的角0 ,90:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其订交;( 2)可将两条一面直线同时平移至某一特别地址。
立体几何中的向量方法(二)——求空间角和距离讲义一、知识梳理1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则 l 1与l 2所成的角θ a 与b 的夹角β 范围]2,0(π[0,π] 求法cos θ=|a ·b ||a ||b | cos β=a ·b |a ||b | 2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |. 3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).注意:利用空间向量求距离(供选用)(1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |. 二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( )(3)两个平面的法向量所成的角是这两个平面所成的角.( )(4)两异面直线夹角的范围是]2,0(π,直线与平面所成角的范围是]2,0[π,二面角的范围是[0,π].( ) (5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( ) 题组二 教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90°3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.题组三:易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110B.25C.3010D.225.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为__ __.6.过正方形ABCD 的顶点A 作线段P A ⊥平面ABCD ,若AB =P A ,则平面ABP 与平面CDP 所成的角为______.二、典型例题题型一:求异面直线所成的角典例 如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.思维升华:用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练如图所示,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.(1)求证:BD⊥平面ACFE;(2)当直线FO与平面BED所成的角为45°时,求异面直线OF与BE所成角的余弦值的大小.题型二:求直线与平面所成的角典例如图,四棱锥P ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD 上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.思维升华:利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.跟踪训练如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.题型三:求二面角典例 如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.思维升华:利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.跟踪训练 (2017·天津)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)求二面角C -EM -N 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 题型四:求空间距离(供选用)典例 如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =23,求点A 到平面MBC 的距离.思维升华:求点面距一般有以下三种方法:(1)作点到面的垂线,点到垂足的距离即为点到平面的距离.(2)等体积法.(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.跟踪训练 如图所示,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点.(1)求直线PB 与平面POC 所成角的余弦值;(2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为63若存在,求出PQ QD的值;若不存在,请说明理由.注意:利用空间向量求解空间角典例 (12分)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.四、反馈练习1.在正方体A 1B 1C 1D 1—ABCD 中,AC 与B 1D 所成角的大小为( )A.π6B.π4C.π3D.π22.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为( )A.52 B .-14 C.14 D .-523.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.224.已知六面体ABC —A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,则直线CC 1与平面AB 1D 所成的角为( )A .45°B .60°C .90°D .30°5.设正方体ABCD —A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.32B.22C.223D.2336.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°7.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是____________.8.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值为________.9.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF与平面ABC 所成的锐二面角的正切值为________.10.设二面角α—CD —β的大小为45°,A 点在平面α内,B 点在CD 上,且∠ABC =45°,则AB 与平面β所成角的大小为________.11.已知三棱锥A —BCD ,AD ⊥平面BCD ,BD ⊥CD ,AD =BD =2,CD =23,E ,F 分别是AC ,BC 的中点,P 为线段BC 上一点,且CP =2PB .(1)求证:AP ⊥DE ;(2)求直线AC 与平面DEF 所成角的正弦值.12.如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,底面ABCD 是直角梯形,∠ADC =90°,AD ∥BC ,AB ⊥AC ,AB =AC =2,点E 在AD 上,且AE =2ED .(1)已知点F 在BC 上,且CF =2FB ,求证:平面PEF ⊥平面P AC ;(2)当二面角A —PB —E 的余弦值为多少时,直线PC 与平面P AB 所成的角为45°?13已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32B.155C.105D.3314.已知三棱锥S —ABC 中,SA ,SB ,SC 两两垂直,且SA =SB =SC =2,Q 是三棱锥S —ABC 外接球上一动点,则点Q 到平面ABC 的距离的最大值为________.15.已知三棱锥P —ABC 的所有顶点都在表面积为16π的球O 的球面上,AC 为球O 的直径.当三棱锥P —ABC 的体积最大时,二面角P —AB —C 的大小为θ,则sin θ等于( )A.23B.53C.63D.7316.如图,已知正四面体D —ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,BQ QC =CR RA=2,分别记二面角D —PR —Q ,D —PQ —R ,D —QR —P 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α。
高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。
在立体几何中,空间角和空间距离是非常关键的概念。
本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。
一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。
空间角的大小是依据两个向量的夹角计算得来的。
2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。
设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。
接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。
二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。
2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。
设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。
三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。
比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。
在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。
在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。
§7.7 立体几何中的向量方法(二)——求空间角和距离【导学目标】:1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角.5.运用空间向量求距离 【知识梳理】:1.两条异面直线的夹角(1)定义:设a ,b 是两条异面直线,在直线a 上任取一点作直线a ′∥b ,则a ′与a 的夹角叫做a 与b 的夹角.(2)范围:两异面直线夹角θ的取值范围是_______________________________________. (3)向量求法:设直线a ,b 的方向向量为a ,b ,其夹角为φ,则有cos θ=________ 2.直线与平面的夹角(1)定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.(2)范围:直线和平面夹角θ的取值范围是________________________________________. (3)向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=__________ 3.二面角(1)二面角的取值范围是____________. (2)二面角的向量求法:①若AB 、CD 分别是二面角α—l —β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①) .②设n 1,n 2分别是二面角α—l —β的两个面α,β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③),则cos θ=________ 4.利用空间向量求距离 (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=______________________________. (2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=______. 【自我检测】1.两平行平面α,β分别经过坐标原点O 和点A (2,1,1),且两平面的一个法向量n =(-1,0,1),则两平面间的距离是( )A.32B.22 C.3 D .3 2 2.已知向量m ,n 分别是直线l 和平面α的方向向量、法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为 ( ).A .30°B .60°C .120°D .150°3.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( ).A.1010B.3010C.21510D.310104.已知直二面角αl β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足,若AB =2,AC =BD =1,则CD =( ).A .2 B. 3 C. 2 D .1 5.如图,在四面体ABCD 中,AB =1,AD =23,BC =3,CD =2.∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为( ).A.π6 B.π3 C.5π3D.5π66.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A. 2B. 3 C .2D.22【课堂活动】题型一 求直线与平面所成的角例2 (2014·北京)如图,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点,在五棱锥P -ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H . (1)求证:AB ∥FG ;(2)若P A ⊥底面ABCDE ,且P A =AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.题型二求二面角(2014·课标全国Ⅰ)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.题型三求空间距离例4如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=23,求点A到平面MBC的距离.【课后练习】(2015·湖南)如图,在四棱台1111D C B A ABCD -的上、下底面分别是边长为3和6的正方形,61=AA ,且⊥1AA 底面ABCD ,点P ,Q 分别在棱1DD ,BC 上.(Ⅰ) 若点P 是1DD 的中点,证明:PQ AB ⊥1;(Ⅱ) 若//PQ 平面11A ABB ,二面角A QD P --的余弦值为73,求四面体ADPQ 的体积.BDQ。
高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。
直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。
注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。
平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。
二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。
一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。
考点专练38:立体几何中的向量方法一、选择题1.在三棱锥A-BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2.若〈n 1,n 2〉=π3,则二面角A-BD-C 的大小为( ) A .π3 B .2π3 C .π3或2π3 D .π6或π32.如图,点A ,B ,C 分别在空间直角坐标系Oxyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2, 1, 2),设二面角C-AB-O 的大小为θ,则cos θ等于( )A .43B .53C .23D .-233.如图,在长方体ABCD-A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A .33535B . 277C .33D .244.在正方体ABCD-A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12B .23C .33D .225.在直三棱柱ABC-A 1B 1C 1中,AA 1=2,二面角B-AA 1-C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A .7B .6C .5D .26.(多选)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱V A 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P-AC-B的平面角为γ,则α,β,γ大小关系正确的是() A.α>β B.α=βC.γ>β D.γ≥β二、填空题7.如图,在正方形ABCD中,EF∥AB.若沿EF将正方形折成一个二面角后,AE∶ED∶AD=1∶1∶2,则AF与CE所成角的余弦值为________→8.正四棱锥P-ABCD,底面四边形ABCD是边长为2的正方形,PA=5,其内切球为球G,平面α过AD与棱PB,PC分别交于点M,N,且与平面ABCD所成二面角为30°,则平面α截球G所得的图形的面积为___________三、解答题9.(2021·全国甲卷)已知直三棱柱ABC -A1B1C1中,侧面AA1B1B为正方形,AB =BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?10.如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E的余弦值为63,求a的值;(3)在(2)的条件下求直线PA与平面EAC所成角的正弦值.11.如图所示,在四棱锥P-ABCD中,四边形ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=3,AC=2,点E是PD的中点.(1)求证:PB∥平面AEC.(2)在线段PB上(不含端点)是否存在一点M,使得二面角M-AC-E的余弦值为10 10若存在,确定M的位置;若不存在,请说明理由.12.如图,已知△ABC是以AC为底边的等腰三角形,将△ABC绕AB转动到△PAB位置,使得平面PAB⊥平面ABC,连接PC,E,F分别是PA,CA的中点.(1)证明:EF⊥AB;(2)在①S△ABC=33,②点P到平面ABC的距离为3,③直线PB与平面ABC所成的角为60°这三个条件中选择两个作为已知条件,求二面角E-BF-A的余弦值.13.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB⊥BC,②FC与平面ABCD所成的角为π6,③∠ABC=π3.如图,在四棱锥P ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA =AB=2,PD的中点为F.(1)在线面AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB 上的位置并给以证明;若不存在,请说明理由.(2)若________,求二面角F-AC-D的余弦值.参考答案:一、选择题1.C2.C3.A4.B5.A6.AC 二、填空题7.答案:45 8.答案:π3 三、解答题9.(1)证明:因为侧面AA 1B 1B 为正方形,所以A 1B 1⊥BB 1.又BF ⊥A 1B 1,而BF ∩BB 1=B ,BF ⊂平面BB 1C 1C ,BB 1⊂平面BB 1C 1C ,所以A 1B 1⊥平面BB 1C 1C .又ABC -A 1B 1C 1是直三棱柱,BC =AB ,所以平面BB 1C 1C 为正方形. 取BC 中点为G ,连接B 1G ,EG . 因为F 为CC 1的中点,所以BF ⊥B 1G . 又BF ⊥A 1B 1,且EG ∥A 1B 1,所以BF ⊥EG .又B 1G ∩EG =G ,B 1G ⊂平面EGB 1D ,EG ⊂平面EGB 1D ,所以BF ⊥平面EGB 1D . 又DE ⊂平面EGB 1D ,所以BF ⊥DE .(2)解:因为侧面AA 1B 1B 是正方形,所以AB ∥A 1B 1,由(1)知,A 1B 1⊥平面BB 1C 1C , 所以AB ⊥平面BB 1C 1C .又BC ⊂平面BB 1C 1C ,所以AB ⊥BC .设B 1D =x ,以B 为原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则E(1,1,0),F(0,2,1),D(x,0,2),所以EF →=(-1,1,1),FD →=(x ,-2,1).易知,平面BB 1C 1C 的一个法向量可为n 1=(1,0,0).设平面DFE 的法向量n 2=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·FD →=0,即⎩⎪⎨⎪⎧-x 1+y 1+z 1=0,xx 1-2y 1+z 1=0.不妨取z 1=1,则x 1=32-x ,y 1=x +12-x,即n 2=⎝⎛⎭⎫32-x ,x +12-x ,1.设〈n 1,n 2〉=θ,则cos θ=⎪⎪⎪⎪⎪⎪32-x⎝⎛⎭⎫32-x 2+⎝⎛⎭⎫x +12-x 2+1=11+⎝⎛⎭⎫32-x -12⎝⎛⎭⎫32-x 2+1⎝⎛⎭⎫32-x 2.令32-x=t ,则cos θ=11+(t -1)2t 2+1t2=12t 2-2t+2=12()1t -122+32.当1t =12时,(cos θ)max =23=63,此时(sin θ)min =33. 故当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.10.(1)证明:因为PC ⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥PC . 因为AB =4,AD =CD =2,所以AC =22, 取AB 的中点为N ,则可得CN ∥AD ,则CN ⊥AB ,所以BC =CN 2+NB 2=22,所以AC 2+BC 2=AB 2,所以AC ⊥BC . 又BC ∩PC =C ,所以AC ⊥平面PBC .因为AC ⊂平面EAC ,所以平面EAC ⊥平面PBC .(2)解:以点C 为原点,CN →,CD →,CP →分别为x 轴、y轴、z 轴正方向,建立空间直角坐标系,则C(0,0,0),A(2,2,0),B(2,-2,0),设P(0,0,2a)(a>0),则E(1,-1,a),CA →=(2,2,0),CP →=(0,0,2a),CE →=(1,-1,a).设m =(x 0,y 0,z 0)为平面PAC 的法向量,则m ·CA →=m ·CP →=0,即⎩⎪⎨⎪⎧2x 0+2y 0=0,2az 0=0,取m =(1,-1,0).设n =(x ,y ,z)为平面EAC 的法向量,则n ·CA →=n ·CE →=0,即⎩⎪⎨⎪⎧x +y =0,x -y +az =0,取x =a ,y =-a ,z =-2,则n =(a ,-a ,-2). 依题意|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2. (3)解:由(2)可得n =(2,-2,-2),PA →=(2,2,-4).设直线PA 与平面EAC 所成角为θ,则sin θ=|〈PA →,n 〉|=|PA →·n ||PA →||n |=23,即直线PA 与平面EAC 所成角的正弦值为23.11.(1)证明:连接BD 交AC 于点F ,连接EF .在△PBD 中,由已知得EF ∥PB . 又EF ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)解:由题意知,AC ,AB ,AP 两两垂直,所以以A 为坐标原点,AC ,AB ,AP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Axyz .则C(2,0,0),D(2,-3,0),P(0,0,3),B(0,3,0),E ⎝⎛⎭⎫1,-32,32. 设M(x 0,y 0,z 0),PM →=λ PB →(0<λ<1),则(x 0,y 0,z 0-3)=λ(0,3,-3),得M(0,3λ,3-3λ). 设平面AEC 的法向量为n 1=(x 1,y 1,z 1),由n 1·AE →=0,n 1·AC →=0,AE →=⎝⎛⎭⎫1,-32,32,AC →=(2,0,0),得⎩⎪⎨⎪⎧x 1-32y 1+32z 1=0,2x 1=0,取y 1=1,得n 1=(0,1,1).设平面MAC 的法向量为n 2=(x 2,y 2,z 2).由n 2·AM →=0,n 2·AC →=0,AM →=(0,3λ,3-3λ),AC →=(2,0,0),得⎩⎪⎨⎪⎧3λy 2+(3-3λ)z 2=0,2x 2=0,取z 2=1,得n 2=⎝⎛⎭⎫0,1-1λ,1.设二面角M-AC-E 的大小为θ.因为二面角M-AC-E 的余弦值为1010,所以θ为锐角,则cos θ=|n 1·n 2||n 1||n 2|=2-1λ2·⎝⎛⎭⎫1-1λ2+1=1010, 化简得9λ2-9λ+2=0,解得λ=13或λ=23.易知当λ=23时,θ为钝角,所以λ=13,所以PM →=13PB →.故存在点M ,当PM →=13PB →时,二面角M-AC-E 的余弦值为1010.12.(1)证明:如图(1),过点E 作ED ⊥AB ,垂足为D ,连接DF .由题意知,△PAB ≌△CAB ,易证△EDA ≌△FDA ,所以∠EDA =∠FDA =π2,即FD ⊥AB .因为ED ⊥AB ,ED ∩FD =D ,所以AB ⊥平面EFD . 又因为EF ⊂平面EFD ,所以EF ⊥AB .图(1)(2)解:过点P 作PO ⊥AB ,垂足为O ,连接CO ,则CO ⊥AB .因为平面PAB ⊥平面ABC ,所以PO ⊥平面ABC .以O 为坐标原点,以OA ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图(2)所示的空间直角坐标系.图(2)设AB =a ,∠ABC =θ,由条件①得S △ABC =12a 2sin θ=33,由条件②得PO =asin θ=3,由条件③得∠PBO =60°,即θ=120°.若选条件①②,可求得a =23,B(3,0,0),A(33,0,0),P(0,0,3),C(0,3,0). 因为E ⎝⎛⎭⎫332,0,32,f ⎝⎛⎭⎫332,32,0,所以BF →=⎝⎛⎭⎫32,32,0,BE →=⎝⎛⎭⎫32,0,32.设平面BEF 的一个法向量m =(x ,y ,z),由⎩⎪⎨⎪⎧m ·BF →=0,m ·BE →=0,得⎩⎨⎧32x +32y =0,32x +32z =0,取m =(-3,1,1),又易知平面BFA 的一个法向量n =(0,0,1), 故cos 〈m ,n 〉=m ·n |m ||n |=15=55,所以二面角E-BF-A 的余弦值为55.若选①③或②③均可求得a =23,下同.13.解:(1)在线段AB 上存在点G ,使得AF ∥平面PCG ,且G 为AB 的中点. 证明如下:设PC 的中点为H ,连接FH ,GH ,如图.易证四边形AGHF 为平行四边形, 则AF ∥GH .又GH ⊂平面PCG ,AF ⊄平面PGC ,所以AF ∥平面PGC . (2)选择①.因为PA ⊥平面ABCD ,所以PA ⊥AB ,PA ⊥AD . 由题意可知,AB ,AD ,AP 两两垂直,故以A 为坐标原点,AB →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(2,2,0),D(0,2,0),P(0,0,2),F(0,1,1), 所以AF →=(0,1,1),CF →=(-2,-1,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧u ·AF →=0,u ·CF →=0,即⎩⎪⎨⎪⎧y +z =0,-2x -y +z =0.令y =1,则x=-1,z =-1,则u =(-1,1,-1). 易知平面ACD 的一个法向量为v =(0,0,2),设二面角F AC D 的平面角为θ,则cos θ=|u·v ||u||v |=33,即二面角F AC D 的余弦值为33. 选择②.设BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥PA ,且FM =1. 因为PA ⊥平面ABCD ,所以FM ⊥平面ABCD ,FC 与平面ABCD 所成的角为∠FCM , 故∠FCM =π6.在直角三角形FCM 中,CM =3.又因为CM =AE ,所以AE 2+BE 2=AB 2, 所以BC ⊥AE ,所以AE ,AD ,AP 两两垂直.故以A 为坐标原点,AE →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(3,1,0),D(0,2,0),P(0,0,2),F(0,1,1),所以AF →=(0,1,1),CF →=(-3,0,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧u ·AF →=0,u ·CF →=0,即⎩⎨⎧y +z =0,-3x +z =0.令x =3,则y =-3,z =3,则u =(3,-3,3).易知平面ACD 的一个法向量为v =(0,0,2). 设二面角F AC D 的平面角为θ,则cos θ=|u·v ||u||v |=217,即二面角FACD 的余弦值为217. 选择③.因为PA ⊥平面ABCD ,所以PA ⊥BC . 取BC 中点E ,连接AE .因为底面ABCD 是菱形,∠ABC =π3,所以△ABC 是正三角形.又E 是BC 的中点,所以BC ⊥AE ,所以AE ,AD ,AP 两两垂直.故以A 为坐标原点,AE →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(3,1,0),D(0,2,0),P(0,0,2),F(0,1,1),所以AF →=(0,1,1),CF →=(-3,0,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧ u ·AF →=0,u ·CF →=0,即⎩⎨⎧y +z =0,-3x +z =0.令x =3,则y =-3,z =3,则u =(3,-3,3). 易知平面ACD 的一个法向量为v =(0,0,2),设二面角FAC D 的平面角为θ,则cos θ=|u·v ||u||v |=217,即二面角F AC D 的余弦值为217。
空间向量与立体几何教材分析在必修2中,我们已经学习了空间中线面、面面平行与垂直的判定定理和性质定理,但必修2中没有证明空间中的距离,点点距、点线距、点面距等、空间中的角,包括异面直线所称的角、线面教、二面角,在必修2中也都只介绍了有关概念,以及很简单的求解题.为了能更好的解决空间中的几何元素的位置、距离、角度问题,教材在这里引入了空间向量.用空间向量处理某些几何问题,为我们提供新的视角,在空间特别是空间直角坐标系中引入空间向量,可以为解决三维图形的形状、大小及位置关系的几何问题增加一种理想的代数工具,从而提高学生的空间想象能力和学习效率.向量知识的引进,使我们能用代数的观点和方法解决立体几何问题,用计算代替逻辑推理和空间想象,用数的规范性代替形的直观性,具体、可操作性强,从而大大降低了立体几何的求解难度.本章是选修2-1的第3章,包括空间向量的基本概念和运算,以及用空间向量解决直线、平面的位置关系的问题等内容.通过本章的学习,我们要体会向量方法在研究几何图形中的作用,进一步培养我们的空间想象能力.在空间向量的学习中,我们要注意类比、推广、特殊化、化归等思想方法的应用,充分利用空间向量与平面向量之间的内在联系,通过类比,将平面向量中的概念、运算以及处理问题的方法推广到空间,既使相关的内容相互沟通,又学习了类比、推广、特殊化、化归等思想方法,体会数学探索活动的基本规律,提高对向量的整体认识水平.空间向量的引进、运算、正交分解、坐标表示、用空间向量表示空间中的几何元素等,都是通过与平面向量的类比完成的.在空间向量运算中,还要注意与数的运算的对比.另外,通过适当的例子,对解决空间几何问题的三种方法,即向量方法、解析法、综合法进行比较,对各自的优势以及面临问题时应当如何做出选择进行正确的分析.本章突出了用空间向量解决立体几何问题的基本思想.根据问题的特点,以适当的方式(例如构造基向量、建立空间直角坐标系)用空间向量表示空间图形中的点、线、面等元素,建立空间图形与空间向量的联系,然后通过空间向量的运算,研究相应元素之间的关系(平行、垂直、角和距离等),最后对运算结果的几何意义作出解释,从而解决立体几何的问题.教材还通过例题,引导学生对解决例题几何问题的三种方法(向量方法、解析法、综合法)进行了比较,分析各自的优势,因题而异作出适当的选择,从而提高综合运用数学知识解决问题的能力.《普通高中数学课程标准》对《空间向量与立体几何》内容的要求如下:(1)空间向量及其运算①经历向量及其运算由平面向空间推广的过程.②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.③掌握空间向量的线性运算及其坐标表示.④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.(2)空间向量的应用①理解直线的方向向量与平面的法向量.②能用向量语言表述线线、线面、面面的垂直、平行关系.③能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理)(参见例1、例2、例3).④能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用.通过一定的训练,我们应该达到以下意识和习惯:凡能用向量解决的立体几何问题尽可能用向量解决;另外在解题过程中必须写出规范的格式和必要的步骤,例如建立空间直角坐标系的表述、有关向量的坐标表示等.本章课时安排:3.1空间向量及其运算5课时;3.2立体几何中的向量方法5课时;章末复习课1课时.共11课时。
立体几何专题:空间角和距离的计算一 线线角 1。
直三棱柱A1B 1C1-A BC,∠BCA =900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值。
B 12.在四棱锥P —AB CD 中,底面AB CD是直角梯形,∠B AD=900,AD ∥BC ,A B=BC=a,AD=2a ,且PA ⊥面ABC D,P D与底面成300角,(1)若A E⊥P D,E为垂足,求证:BE ⊥PD ;(2)若AE ⊥PD ,求异面直线AE 与C D所成角的大小;D二.线面角1.正方体ABCD -A 1B 1C1D1中,E,F 分别为BB 1、CD 的中点,且正方体的棱长为2,(1)求直线D 1F 和AB 和所成的角;(2)求D1F 与平面AED 所成的角。
12.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,A B=4,C 1B 1=3,∠ABB 1=600,求A C1与平面BCC 1B 1所成角的大小。
B 1三。
二面角1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点,(1)证明AB 1∥平面DBC 1;(2)设AB 1⊥BC 1,求以B C1为棱,DB C1与CBC 1为面的二面角的大小。
B 12.A BCD 是直角梯形,∠A BC=900,SA ⊥面ABC D,SA=AB=BC=1,AD =0.5,(1)求面SC D与面SB A所成的二面角的大小;(2)求SC 与面ABCD 所成的角.BC3.已知A 1B1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B—AA 1—C的大小。
1四 空间距离计算(点到点、异面直线间距离)1.在棱长为a的正方体AB CD -A 1B 1C 1D1中,P 是BC 的中点,DP 交AC 于M,B1P 交B C1于N ,(1)求证:MN 上异面直线A C和B C1的公垂线;(2)求异面直线AC 和BC 1间的距离;C1A(点到线,点到面的距离)2.点P 为矩形 ABCD所在平面外一点,PA ⊥面A BCD ,Q 为线段AP 的中点,A B=3,CB=4,PA=2,求(1)点Q 到直线BD 的距离;(2)点P到平面BDQ 的距离;3.边长为a的菱形AB CD中,∠ABC=600,PC ⊥平面AB CD,E 是PA 的中点,求E 到平面PB C的距离.(线到面、面到面的距离)4。
已知斜三棱柱A 1B1C1-A BC 的侧面A 1ACC 1与底面ABC 垂直,∠ABC=900,BC =2,AC=23,且A A1⊥A 1C ,AA 1=A 1C,(1)求侧棱AA 1与底面ABC 所成角的大小;(2)求侧面A 1AB B1与底面A BC 所成二面角的大小;(3)求侧棱B 1B 和侧面A1ACC 1距离;B 1C 1BACA 15。
正方形AB CD 和正方形ABEF 的边长都是1,且平面ABCD 、ABF E互相垂直,点M 在AC 上移动,点N 在BF上移动,若CM=NB=a(20<<a ),(1)求MN 的长;(2)当a 为何值时,MN 的长最小;立体几何中的向量问题空间角与距离基础自测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为。
答案45°或135°2.二面角的棱上有A、B 两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB。
已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为.答案60°3。
如图所示,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点,那么异面直线OE和FD1所成角的余弦值等于。
15答案54。
如图所示,在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′D′,A′C的中点E与AB的中点F的距离为。
2答案a25.(2008·福建理,6)如图所示,在长方体ABCD—A1B1C1D1中,AB=BC=1,则BC1与平面BB1D1D所成角的正弦值为 .=2,AA110答案5例1(2008·海南理,18)如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线BD′上,∠PDA=60°.(1)求DP与CC′所成角的大小;(2)求DP与平面AA′D′D所成角的大小.解如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz。
则DA=(1,0,0),CC =(0,0,1)。
连接BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H。
设DH=(m,m,1) (m>0),由已知<DH,DA〉=60°,由DA·DH=|DA||DH|cos〈DH, DA〉,可得2m=122+m .解得m=22,所以DH =(22,22,1)。
(1)因为cos 〈DH ,C C '〉=2111022022⨯⨯+⨯+⨯=22, 所以〈DH ,C C '〉=45°,即DP与CC ′所成的角为45°。
(2)平面A A′D ′D的一个法向量是DC =(0,1,0)。
因为co s<DH ,DC >=2101122022⨯⨯+⨯+⨯=21,所以<DH ,DC >=60°,可得D P与平面AA ′D′D 所成的角为30°。
例2 在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,S A=S C=23,M 、N分别为AB 、SB 的中点,如图所示。
求点B 到平面CM N的距离。
解 取A C的中点O,连接OS 、OB. ∵SA=SC,AB=BC ,∴A C⊥SO ,AC ⊥BO 。
∵平面SA C⊥平面AB C, 平面S AC∩平面ABC=AC ,∴SO ⊥平面ABC ,∴SO ⊥BO。
如图所示,建立空间直角坐标系O-xy z, 则B(0,23,0),C(—2,0,0),S (0,0,22),M(1,3,0),N(0,3,2)。
∴CM =(3,3,0),MN =(—1,0,2),MB =(-1,3,0).设n=(x ,y,z )为平面CMN 的一个法向量,则⎪⎩⎪⎨⎧=+=⋅=+=⋅020z -x 33x n n MN y CM ,取z=1,则x=2,y=-6,∴n =(2,—6,1).∴点B到平面CMN 的距离d =324=⋅nn MB . 例3 (16分)如图所示,四棱锥P —ABCD 中,底面ABCD 是矩形,PA⊥底面ABC D,P A=AB=1,A D=3,点F是PB的中点,点E 在边BC上移动。
(1)点E 为BC 的中点时,试判断EF 与平面PAC 的位置关系,并说明理由; (2)求证:无论点E 在BC 边的何处,都有PE ⊥AF ;(3)当BE 为何值时,PA 与平面PDE 所成角的大小为45°. (1)解 当点E 为BC 的中点时,EF 与平面PAC 平行.∵在△P BC中,E 、F 分别为BC 、P B的中点,∴E F∥PC. 又EF ⊄平面P AC,而PC ⊂平面P AC , ∴EF ∥平面P AC 。
ﻩﻩﻩ ﻩ ﻩ ﻩﻩﻩ 4分 (2)证明 以A 为坐标原点建立如图所示的空间直角坐标系则P (0,0,1),B (0,1,0), F (0,21,21),D(3,0,0)。
设BE=x ,则E(x ,1,0),PE·AF =(x,1,—1)·(0,21,21)=0,∴PE ⊥AF 。
ﻩﻩ ﻩ ﻩ ﻩﻩ ﻩ ﻩ10分 (3)解 设平面PDE 的法向量为m =(p ,q ,1), 由(2)知PD =(3,0,—1),PE =(x,1,-1)由⎪⎩⎪⎨⎧=⋅=⋅00PE PD m m ,得m =⎪⎪⎭⎫⎝⎛-1,31,31x 。
ﻩ ﻩ ﻩ ﻩ12分而AP =(0,0,1),依题意P A与平面PDE 所成角为45°, ∴sin 45°=22=APAP m m ⋅,∴1313112+⎪⎪⎭⎫ ⎝⎛-+x =21, ﻩ ﻩﻩ ﻩﻩ 14分得BE=x=3-2或BE=x=3+2>3(舍去).故BE=3-2时,PA 与平面PDE 所成角为45°。
ﻩﻩﻩﻩﻩ16分1。
如图所示,AF 、DE 分别是⊙O、⊙O 1的直径,AD 与两圆所在的平面均垂直,AD=8。
BC 是⊙O 的直径,AB=AC =6, OE ∥AD 。
(1)求二面角B —AD-F 的大小;(2)求直线BD 与EF 所成的角的余弦值。
解 (1)∵A D与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF,故∠BAF 是二面角B—AD-F 的平面角. 依题意可知,ABF C是正方形, ∴∠BA F=45°.即二面角B —AD-F的大小为45°;(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示), 则O (0,0,0), A(0,—32,0),B (32,0,0),D(0,-32,8), E (0,0,8),F(0,32,0), ∴BD =(—32,—32,8),EF =(0,32,-8). co s〈BD ,EF 〉=EFBD EF BD ⋅ =8210064180⨯--=-1082. 设异面直线BD 与EF 所成角为α,则 cos α=|c os<BD ,EF 〉|=1082. 即直线BD 与EF所成的角的余弦值为1082。
2.已知:正四棱柱AB CD —A 1B 1C 1D1中,底面边长为22,侧棱长为4,E、F 分别为棱A B、BC 的中点。
(1)求证:平面B 1EF⊥平面BD D1B 1; (2)求点D 1到平面B 1EF 的距离。
(1)证明 建立如图所示的空间直角坐标系,则D(0,0,0), B(22,22,0),E(22,2,0), F(2,22,0),D1(0,0,4), B1(22,22,4).EF=(—2,2,0),DB =(22,22,0),1DD =(0,0,4),∴EF ·BD =0,EF ·1DD =0.∴EF⊥DB ,EF ⊥DD 1,DD 1∩BD=D , ∴EF ⊥平面B DD 1B1.又EF ⊂平面B1EF,∴平面B 1EF ⊥平面BD D1B 1. (2)解 由(1)知11B D =(22,22,0),EF=(-2,2,0),E B 1=(0,—2,-4).设平面B1EF 的法向量为n ,且n =(x,y ,z ) 则n ⊥EF ,n ⊥E B 1即n·EF =(x,y ,z )·(—2,2,0)=-2x+2y=0,n ·E B 1=(x,y,z)·(0,-2,—4)=—2y-4z =0,令x=1,则y=1,z=—42,∴n=(1,1,— 42)∴D 1到平面B 1EF 的距离 d=nn ⋅11B D =22242112222⎪⎪⎭⎫ ⎝⎛-+++=171716。