两个重要极限的证明
- 格式:doc
- 大小:129.50 KB
- 文档页数:2
两个重要的极限1.证明:0sin lim 1x x x→= 证明:如图(a )作单位圆。
当0<x<2π时,显然有ΔOAD 面积<扇形OAD 面积<ΔOAB 面积。
即111sin 222x x <<tgx ,sinx<x<tgx 。
除以sinx ,得到11sin cos x x x<< 或sin 1cos x x x >>。
(1) 由偶函数性质,上式对02x π-<<时也成立。
故(1)式对一切满足不等式0||2x π<<的x 都成立。
由0lim x →cosx=1及函数极限的迫敛性定理立刻可得0lim x →sin 1x x=。
函数f(x)=sin x x的图象如图(b )所示。
2.证明:1lim(1)n n n →∞+存在。
证明:先建立一个不等式,设b>a>0,于是对任一自然数n 有 11(1)n n n b a n b b a++-<+-或11(1)()n n n b a n b b a ++-<+-,整理后得不等式1[(1)]n n a b n a nb +>+-。
(1) 令a=1+11n +,b=1+1n ,将它们代入(1)。
由于11(1)(1)(1)(1)11n a nb n n n n +-=++-+=+, 故有111(1)(1)1n n n n ++>++,这就是说1{(1)}n n+为递增数列。
再令a=1,b=1+12n代入(1)。
由于11(1)(1)(1)22n a nb n n n +-=+-+=,故有111(1)22n n >+,12(1)2n n >+。
不等式两端平方后有214(1)2n n >+,它对一切自然数n 成立。
联系数列的单调性,由此又推得数列1{(1)}n n +是有界的。
于是由单调有界定理知道极限1lim(1)n n n→∞+是存在的。
极限存在准则两个重要极限公式首先,我们来介绍极限保号公式。
设函数f(x)在点a的一些邻域内有定义,如果存在常数M>0,使得对于任意的x∈(a-h,a+h)(h>0),都有,f(x),≤M,则称M为f(x)在点a处的一个保号常数。
现在我们来证明极限保号公式:假设f(x)在其中一点a的一些邻域内有定义,并且存在常数M>0,使得对于任意的x∈(a-h,a+h)(h>0),都有,f(x),≤M。
如果limx→af(x)=L存在,那么L也满足,L,≤M。
证明:由于limx→a f(x)=L存在,那么对于任意的ε>0,存在δ>0,使得对于任意的x∈(a-h,a+h)(h>0),如果0<,x-a,<δ,那么有,f(x)-L,<ε。
现在我们取ε=M,那么存在δ>0,使得对于任意的x∈(a-h,a+h),如果0<,x-a,<δ,那么有,f(x)-L,<M。
这说明,对于任意的x∈(a-h,a+h),如果0<,x-a,<δ,那么有,f(x),=,f(x)-L+L,≤,f(x)-L,+,L,<M+,L。
我们再取任意的x∈(a-h,a+h),如果0<,x-a,<δ,那么有,f(x),≤M+,L,但是我们已经知道,在点a的一些邻域内存在保号常数M>0,使得对于任意的x∈(a-h,a+h),都有,f(x),≤M。
所以有,L,≤M。
这就是极限保号公式的证明。
接下来我们来介绍夹逼准则。
设函数f(x)、g(x)、h(x)在点a的一些邻域内有定义,并且对于任意的x∈(a-h,a+h)(h>0),都有g(x)≤f(x)≤h(x)。
如果limx→a g(x)=limx→a h(x)=L存在,那么limx→a f(x)=L也存在。
证明:对于任意的ε>0,由于limx→a g(x)=L存在,那么存在δ1>0,使得对于任意的x∈(a-h,a+h),如果0<,x-a,<δ1,那么有,g(x)-L,<ε。
§4 两个重要的极限一、证明0sin lim 1x xx→=证 如图:由OAC OAB OAB S S S ∆∆<<扇形可导出如下不等式(20π<<x ).除以,得到x x x cos 1sin 1<<,由此得 )1(sin cos xxx x <<在(1)式中用代替时,(1)式不变,故(1)式当02<<-x π时也成立,从而它对一切满足不等式20π<<x 的 都成立.由1cos lim 0=→x x及函数极限的迫敛性,即得1sin lim 0=→xx x . 函数xxy sin =的图象如下所示例1.求sin limx xx ππ→-.例2.求201cos lim x xx →-.注:利用归结原则,可求数列极限。
如求1sin1limlim sin 1n n n n nn→∞→∞=,直接利用0sin lim 1x x x →=是不严格的;但已知0sin lim1x x x →=,故取,(1,2,)n x n n π== ,则0()n x n →→∞,从而由归结原则1sinlim ()lim01n n n n f x n →∞→∞==. 例3.求0lim x tgxx→.二、证明e xxx =+∞→)11(lim 或. e =+→ααα10)1(lim 证 所求证的极限等价于同时成立以下两个极限e xx x =++∞→)11(lim (2)e xx x =+-∞→)11(lim (3)先利用数列极限e nn n =+∞→)11(lim证明(2)式成立.为此,作定义在上),1[+∞的两个阶梯函数如下:nn x f )111()(++=,,1)11()(++=n nx g,,易见f 增(第二章§3习题4)且有上界,g 减(第二章§3习题9)且有下界.故据上节习题2,)(lim x f x +∞→与)(lim x g x +∞→皆存在.于是,由归结原则(取}{}{n x n =)得到e n xf nn x =++=∞→+∞→)111(lim )(lim e nx g n n x =+=+∞→+∞→1)11(lim )(lim 另一方面,当时有nx n 1111111+<+<++以及1)11()11()111(++<+<++n x n nx n,即有)()11()(x g xx f x<+<,),1[+∞∈x .从而根据迫敛性,定理(2)式得证. 现证(3)式.为此作代换y x-=,则y y x y y x )111()11()11(-+=-=+-,且当-∞→x 时+∞→y ,从而有e y y x yy y y x x =-+=-=++∞→-+∞→-∞→)111(lim )11(lim )11(lim 以后还常用到e 的另一种极限形式:e =+→αα1)1(lim(4)事实上,令x1=α,则0→⇔∞→αx ,所以e xxx =+=+→∞→ααα10)1(lim )11(lim例1.求()10lim 12xx x →+.例2.求()10lim 1xx x →-.例3.求211lim(1)nn n n →∞+-.作业:p58. 1(2), (5), (8), (9), (10) , 2(1), (3), (5), (6), 3.。
第三章函数极限4 两个重要的极限一、证明:limx→0sin xx=1.证:∵sinx<x<tanx(0<x<π2),∴1<xsin x<1cos x(0<x<π2),∴cosx<sin xx<1(0<x<π2),又cos-x=cosx,sin−x−x =sin xx,∴对0<|x|<π2,有cosx<sin xx<1.由limx→0cosx=1,根据极限的迫敛性,limx→0sin xx=1.例1:求limx→πsin x π−x.解:令t=π-x,则sinx=sin(π-t)=sint,且当x→π时,t→0,∴limx→πsin xπ−x=limt→0sin tt=1.例2:求limx→01−cos xx2.解:limx→01−cos xx2=limx2→012sin x2x22=12,二、证明limx→∞1+1xx=e.证:设f(x)=1+1n+1n, g(x)=1+1nn+1, n≤x<n+1, n=1,2,…,则f(x)递增且有上界,g(x)递减且有下界,∴limx→+∞f x与limx→+∞g x都存在,取{x n}={n},由归结原则得lim x→+∞f x=limn→+∞1+1n+1n=e,limx→+∞g x=limn→+∞1+1nn+1=e,又1+1n+1<1+1x≤1+1n,则1+1n+1n<1+1xx<1+1nn+1,根据迫敛性定理得limx→+∞1+1xx= e.设x=-y,则1+1x x=1−1y−y=1+1y−1y,且当x→-∞,y→+∞,从而有lim x→−∞1+1xx=limy→+∞1+1y−1y−1·1+1y−1=e.∴limx→∞1+1xx=e.注:e的另一种形式:lima→01+a1a=e.证:令a=1x ,则当a→0时,1x→∞,∴lima→01+a1a=lim1x→∞1+1xx=e.例3:求limx→01+2x1x.解:limx→01+2x1x=lim12x→∞1+2x12x2=e2.例4:求limx→01−x1x.解:limx→01−x1x=lim−1x→∞1[1+(−x)]−1x=1e.例5:求limn→∞1+1n−1n2n.解:1+1n −1n2n<1+1nn→e(n→∞),又当n>1时有1+1n −1n2n=1+n−1n2n2n−1−nn−1≥1+n−1n2n2n−1−2→e(n→∞,即n−1n2→0).由迫敛性定理得:limn→∞1+1n−1n2n=e.习题1、求下列极限: (1)lim x →0sin 2x x;(2)limx →0sin x 3 (sin x)2;(3)lim x →π2cos xx −π2;(4)limx →0tan x x;(5)limx →0tan x −sin xx 3;(6)limx →0arctan xx;(7)lim x →+∞x sin 1x;(8)limx →asin 2 x −sin 2 ax −a;(9)limx → x +1−1(10)limx →0 1−cos x 21−cos x.解:(1)limx →0sin 2x x=lim2x →02sin 2x 2x=2;(2)lim x →0sin x 3(sin x)2=limx →0 x 3sin x 3x 3(sin x )2=limx 3→0sin x 3x3·lim x 2→0xsin x 2·lim x →0x =0; (3)lim x →π2cos x x −π2=lim x −π2→0−sin x −π2x −π2= -1;(4)limx →0tan x x=limx →0sin x x·limx →01cos x=1;(5)lim x →0tan x −sin xx 3=limx →0sinx 1cos x −1x 3=limx →0sin x·1−cos xcos x x 3=limx →02sinx 2cos x 2·2 sin x 2 2cos xx3=limx →04 sinx 2 3·cos x2cos x x3=limx →0sin x 2 3·cos x2cos x 2 x 23=lim x2→0sinx 2x 23·lim x 2→0cosx 22lim x →0cos x =12;(6)令arctan x=y ,则x=tany ,且x →0时,y →0, ∴limx →0arctan xx=limy →0ytan y =limy →0cos ysin y y=1;(7)lim x →+∞x sin 1x =lim 1x→0sin1x1x =1;(8)lim x →asin 2 x −sin 2 ax −a =limx →a sin x −sin a (sin x+sin a)x −a=limx →a2cosx +a 2 sin x −a2x −a·2sin a=limx −a2→0sinx −a2x −a 2·cos a ·2sin a= sin2a ;(9)limx →x +1−1lim x →0( x+1+1)sin 4xx=8lim4x →0sin 4x 4x=8;(10)lim x →0 1−cos x 21−cos x=limx →0 2sin x 222 sin x 22= 2limx →0sinx 22 x 22 sinx 2x 22= 2.2、求下列极限:(1)limx→∞1−2x−x;(2)limx→01+ax1x(a为给定实数);(3)limx→01+tan x cot x;(4)limx→01+x1−x1x;(5)limx→+∞3x+23x−12x−1;(6)limx→+∞1+αxβx(α,β为给定实数)解:(1)limx→∞1−2x−x=lim−x2→∞1+1−x2−x22=e2;(2)limx→01+ax1x=lima x→01+ax1axa=e a;(3)limx→01+tan x cot x=limtan x→01+tan x1tan x=e;(4)limx→01+x1−x1x=limx→01+x1x1−x1x=limx→01+x1xlim−x→0[1+−x]1−x−1=e2;(5)limx→+∞3x+23x−12x−1=limx→+∞1+33x−16x−33=lim33x−1→0+1+33x−123x−1−13=lim33x−1→0+1+33x−123x−13lim33x−1→0+1+33x−113=e2;(6)limx→+∞1+αxβx=limx→+∞1+αxαβxα=limαx→0+1+αxxααβ=eαβ.3、证明:limx→0limn→∞cos xcos x2cos x22…cos x2n=1.证:∵cos xcos x2cos x22…cos x2n=2n+1cos xcos x2cos x22…cos x2nsin x2n2n+1sin x2n=sin 2x2n+1sin x2n=sin 2x2xsin x2nx2n=x2nsin x2n·sin 2x2x;∴当x≠0时,limn→∞ cos xcos x2cos x22…cos x2n=limx2n→0x2nsin x2n·sin 2x2x=sin 2x2x;lim x→0limn→∞cos xcos x2cos x22…cos x2n=lim2x→0sin 2x2x=1.当x=0时,cos xcos x2cos x22…cos x2n=1,∴limx→0limn→∞cos xcos x2cos x22…cos x2n=1.4、利用归结原则计算下列极限:(1)limn→∞n sinπn;(2)limn→∞1+1n+1n2n.解:(1)∵limx→∞x sinπx=limx→∞sinπxπx·x=limπx→0sinπxπx·limx→∞x=0根据归结原则,limn→∞n sinπn=0.(2)∵当x>0时,1+1x +1x2x>1+1xx→e(x→+∞),又1+1x +1x2x=1+x+1x2x2x+1+xx+1<1+x+1x2x2x+1→e(x→+∞,即x+1x2→0),∴limx→+∞1+1x+1x2x=e根据归结原则,limn→∞1+1n+1n2n=e.。
两个重要极限的简化证明
1、limsinx/x=1(x-\ue0)当x→0时,sin/x的极限等于1;
2、lim(1+1/x)^x=e
(x→∞)当x→∞时,(1+1/x)^x的极限等于e或当x→0时,(1+x)^(1/x)的极限等于e。
极限的求法有很多种:
1、已连续初等函数,在定义域范围内谋音速,可以将该点轻易代入得极限值,因为连续函数的极限值就等同于在该点的函数值。
2、利用恒等变形消去零因子。
(针对于0/0型)
3、利用无穷大与无穷小的关系谋音速。
4、利用无穷小的性质求极限。
5、利用等价无穷小替代谋音速,可以将原式化简排序。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
两个重要极限的证明两个重要极限的证明两个重要极限的证明那么,数列的极限存在,且。
证明:因为,所以对,当时,有,即,对,当时,有,即,又因为,所以当时,有,即有: ,即,所以。
准则I′如果函数满足下列条件:当时,有。
当时,有。
那么当时,的极限存在,且等于。
第一个重要极限:作为准则I′的应用,下面将证明第一个重要极限: 。
证明:作单位圆,如下图: 设为圆心角,并设见图不难发现: ,即: ,即,当改变符号时,及1的值均不变,故对满足的一切,有。
又因为,所以而,证毕。
【例1】。
【例2】。
【例3】。
【例4】。
准则?:单调有界数列必有极限如果数列满足: ,就称之为单调增加数列;若满足: ,就称之为单调减少数列;同理亦有严格单增或单减,以上通称为单减数列和严格单减数列。
如果,使得: ,就称数列为有上界;若,使得: ,就称有下界。
准则?′:单调上升,且有上界的数列必有极限。
准则?″: 单调下降,且有下界的数列必有极限。
注1:由前已知,有界数列未必有极限,若加单调性,就有极限。
2:准则?,?′,?″可推广到函数情形中去,在此不一一陈述了。
第二个重要极限:作为准则?的一个应用,下面来证明极限是不存在的。
先考虑取正整数时的情形: 对于,有不等式: ,即: ,即: 现令,显然,因为将其代入,所以,所以为单调数列。
又令,所以,即对,又对所以{ }是有界的。
由准则?或?′知存在,并使用来表示,即注 1:关于此极限存在性的证明,书上有不同的方法,希望同学自己看!2:我们可证明: ,具体在此不证明了,书上也有,由证明过程知: 。
3:指数函数及自然对数中的底就是这个常数。
【例1】【例2】【例3】【例4】二、课堂练习:三、布置作业:。
两个重要极限证明过程嘿,咱今天来聊聊两个重要极限证明过程哈!这可是数学里相当关键的玩意儿呢!先来说说第一个重要极限,那就是当 x 趋近于 0 的时候,sinx/x 的极限等于 1。
你想想看,这就好像是一场追逐游戏,sinx 和 x 在趋近于0 的道路上你追我赶。
为啥这个极限是 1 呢?咱可以通过巧妙的构造和分析来搞明白。
咱可以画个单位圆呀,在圆上找个角度对应的弧长和对应的弦长,然后比较比较。
这不就发现,当角度很小的时候,弧长和弦长几乎差不多嘛!这就好比你走在路上,离得近的时候看两根线好像都重合了一样。
这样不就慢慢能理解为啥 sinx/x 在 x 趋近于 0 的时候极限是 1了嘛!再讲讲第二个重要极限,就是当 x 趋近于无穷大的时候,(1+1/x)^x 的极限等于 e。
哎呀呀,这个可有点神奇呢!就好像一个东西在不断地变化、成长。
咱可以通过一些计算和推导来搞清楚。
你就想啊,随着x 越来越大,那个式子里面的 1/x 就越来越小,但是经过那么一运算,最后竟然趋近于一个固定的值 e!这就好像你看着一颗小种子,一点点长大,最后变成了一棵大树,多奇妙呀!这两个重要极限证明过程可不简单呐,就像爬山一样,得一步步往上爬,一点点去理解。
它们在数学里的作用可大了去了,好多问题都得靠它们来解决呢!你要是不把它们搞清楚,那数学的大门可就没那么容易进咯!比如说在求一些极限的时候,你一下子就想到这两个重要极限,然后就像找到了钥匙一样,“咔嚓”一下门就开了。
如果没有它们,那可就像在黑暗里摸索,找不到方向啦!而且呀,这两个重要极限还和好多其他的数学知识紧密相连呢!就像一张大网,它们就是网上的关键节点。
你掌握了它们,就能把这张网织得更结实,更完整。
所以啊,大家可得好好去研究研究这两个重要极限证明过程,别嫌麻烦,别嫌困难。
等你真的搞懂了,你就会发现数学的世界原来这么精彩,这么有趣!就像打开了一扇通往奇妙世界的大门,里面有无尽的宝藏等你去挖掘呢!加油吧!。
两个重要的极限
1.证明:0sin lim 1x x x
→= 证明:如图(a )作单位圆。
当0<x<
2
π时,显然有ΔOAD 面积<扇形OAD 面积<ΔOAB 面积。
即111sin 222x x <<tgx ,sinx<x<tgx 。
除以sinx ,得到11sin cos x x x
<< 或sin 1cos x x x >>。
(1) 由偶函数性质,上式对02x π-<<时也成立。
故(1)式对一切满足不等式0||2x π<<的x 都成立。
由0lim x →cosx=1及函数极限的迫敛性定理立刻可得0lim x →sin 1x x
=。
函数f(x)=sin x x
的图象如图(b )所示。
2.证明:1lim(1)n n n →∞+存在。
证明:先建立一个不等式,设b>a>0,于是对任一自然数n 有 11
(1)n n n b a n b b a
++-<+-或11(1)()n n n b a n b b a ++-<+-,整理后得不等式1[(1)]n n a b n a nb +>+-。
(1) 令a=1+11
n +,b=1+1n ,将它们代入(1)。
由于11(1)(1)(1)(1)11n a nb n n n n +-=++-+=+, 故有111(1)(1)1n n n n ++>++,这就是说1{(1)}n n
+为递增数列。
再令a=1,b=1+12n
代入(1)。
由于11(1)(1)(1)22n a nb n n n +-=+-+=,故有111(1)22n n >+,12(1)2n n >+。
不等式两端平方后有214(1)2n n >+
,它对一切自然数n 成立。
联系数列的单调性,由此又推得数列1{(1)}n n +是有界的。
于是由单调有界定理知道极限1lim(1)n n n
→∞+是存在的。
3.证明:1lim(1)x x e x
→∞+=。
证明:所求证的极限等价于同时成立下述两个极限:
1lim (1)x x e x →+∞+= (1) 1lim (1)x x e x →-∞+= (2)
现在先应用2中数列极限1lim(1)n n e n
→∞+=,证明(1)式成立。
设n≤x<n+1,则有1111111n x n +<+≤++及1111(1)(1)(1)1n x n n x n
++<+<++, (3) 作定义在[1,+)∞上的阶梯函数。
1()(1)1n f x n =++,n≤x<n+1,11()(1)n g x n
+=+,n≤x<n+1。
由(3)有f(x)<1(1)()x g x x +<,x ∈[1,)+∞。
由于11(1)11lim ()lim(1)lim 1111
n n x n n n f x e n n +→+∞→∞→∞++=+==+++
图(a )
1111lim ()lim(1)lim(1)(1)n n x n n g x e n n n
+→+∞→∞→∞=+=++=,根据迫敛性定理便得(1)式。
现在证明(2)式。
为此作代换x=-y ,则111111(1)(1)(1)(1)(1)111
x y y y x y y y y --+=-=+=++--- 因为当x→-∞时,有y-1→+∞,故上式右端以e 为极限,这就证得1lim (1)x x e x
→-∞+=。
以后还常常用到e 的另一种极限形式10lim(1)a a a e →+= (4) 因为,令1a x
=,则x→∞和a→0是等价的,所以,101lim(1)lim(1)x a x a a x →∞→+=+。