(完整版)600MW凝汽式机组全厂原则性热力系统计算
- 格式:doc
- 大小:418.00 KB
- 文档页数:13
600MW凝汽式机组全厂原则性热力系统计算概述本文基于600MW凝汽式机组全厂原则性热力系统计算,主要介绍了热力参数的计算方法以及计算结果的分析。
采用了热力学循环分析方法对系统进行模拟,通过分析计算结果来确定燃料消耗量、水冷却量、蒸汽流量和电力输出等相关参数。
计算方法1.假设热力系统中的所有参数都满足理想状态,且没有能量损失。
2.将热力系统划分为不同的部分进行计算。
3.对热力系统中的各个部分进行热力学循环分析,确定各个部分的功率、燃料消耗量、水冷却量等参数。
4.建立数学模型,对热力参数进行计算和模拟。
5.根据计算结果进行分析和评估。
热力系统的主要部分1.热力系统的主要部分包括锅炉、汽轮机、冷凝器和再热器。
2.锅炉的主要作用是将燃料转化为蒸汽,提供动力输出。
3.汽轮机的主要作用是将蒸汽转化为机械能,提供动力输出。
4.冷凝器的主要作用是将蒸汽冷却成水,回收能量。
5.再热器的主要作用是提高热效率,增加动力输出。
热力参数的计算1.锅炉热效率的计算方法:燃料消耗量 = 机组额定电功率 / 热效率 / 燃料低位发热量。
其中,热效率可以通过对热力系统进行分析得到。
2.汽轮机等热机的热效率的计算方法:热效率 = 1 - 净排气比 * (热容比- 1)/ 等压热效率。
其中,等压热效率可以通过对热力系统进行分析得到。
3.再热器的热效率的计算方法:热效率 = (蒸汽流量 * (H2 - H3) - 再热器热损失)/ 燃料消耗量 * 燃料低位发热量。
其中,H2和H3分别表示再热器进口蒸汽的焓值和出口蒸汽的焓值。
4.冷凝器的热效率的计算方法:热效率 = (冷却水流量 * (H3’ - H4))/ 蒸汽流量 * (H1 - H2)。
其中,H3’表示冷却水进口的温度对应的蒸汽的焓值,H4表示冷却水出口的温度对应的蒸汽的焓值。
结论根据以上计算方法和分析结果,我们可以得到600MW凝汽式机组全厂原则性热力系统的相关参数。
通过对这些参数进行评估和分析,我们可以有效地提高系统的热效率和动力输出,减少能源消耗。
热力发电厂课程设计****:****:**班级:12-1600MW 凝汽式机组原则性热力系统热经济性计算计算数据选择为A3,B2,C11.整理原始数据的计算点汽水焓值已知高压缸汽轮机高压缸进汽节流损失:δp 1=4%,中低压连通管压损δp 3=2%,则 )(MPa 232.232.24)04.01('p 0=⨯-=; p ’4=(1-0.02)x0.9405=0.92169;由主蒸汽参数:p 0=24.2MPa ,t 0=566℃,可得h0=3367.6kJ/kg;由再热蒸汽参数:热段: p rh =3.602MPa ,t rh =556℃, 冷段:p 'rh =4.002MPa ,t 'rh =301.9℃,可知h rh =3577.6kJ/kg ,h'rh =2966.9kJ/kg ,q rh =610.7kJ/kg 。
1.2编制汽轮机组各计算点的汽水参数(如表4所示)1.1绘制汽轮机的汽态线,如图2所示。
1.假设给水泵加压过程为等熵过程;2.给水泵入口处水的温度和密度与除氧器的出口水的温度和密度相等;3.给水泵入口压力为除氧器出口压力与高度差产生的静压之和。
2.全厂物质平衡计算已知全厂汽水损失:D l=0.015D b(锅炉蒸发量),锅炉为直流锅炉,无汽包排污。
则计算结果如下表:(表5)3.计算汽轮机各级回热抽汽量假设加热器的效率η=1 (1)高压加热器组的计算由H1,H2,H3的热平衡求α1,α2,α3063788.0)3.11068.3051()10791.1203(111fw 1=--⨯==ητααq 09067.06.9044.2967)6.9043.1106(063788.0/1)1.8791079(1h h-212fw 221=--⨯--⨯=-=q dw dw )(αηταα154458.009067.0063788.0212=+=+=αααs045924.02.7825.3375)2.7826.904(154458.0/1)1.7411.879(h h -332s23fw 3=--⨯--=-=q ddw w )(αηταα200382.0154458.0045924.02s 33=+=+=αααs(2)除氧器H4的计算进除氧器的份额为α4’;176404.0587.43187.6)587.4782.2(200382.0/1)587.4741.3(h h -453s34fw 4=--⨯--=-=q w w d)(’αηταα 进小汽机的份额为αt根据水泵的能量平衡计算小汽机的用汽份额αt1.31)(4t =-pu mx t h h ηηα即056938.09.099.0)8.25716.3187(1.31=⨯⨯-=t α0.1011140.0569380.044173t 44=+=+=ααα’ 根据除氧器的物质平衡,求αc4αc4+α’4+αs3=αfw 则αc4=1-α’4-αs3=0.755442表6 小汽机参数表(3)低压加热器H5,H6,H7的计算048127.01)3.4508.2972()7.4264.587(755442.0554c 5=⨯--⨯==ητααq 024228.04.3692.2731)4.3693.450(048127.0/1)8.3457.426(755442.0h h -66556c46=--⨯--⨯=-=q dd w w )(αηταα072355.0024228.0048127.0656s =+=+=ααα035755.01.2438.2651)1.2434.369(072355.0/1)7.2198.345(755442.0h h -776s67c47=--⨯--⨯=-=q ddw w )(αηταα108110.0035755.0072355.07s6s7=+=+=ααα(4)低压加热器H8与轴封加热器SG 的计算为了便于计算将H8与SG 作为一个整体考虑,用图所示的热平衡范围来列出物质平衡的热平衡式。
600MW汽轮机原则性热力系统设计计算目录毕业设计...............错误! 未定义书签。
内容摘要 . .. (3)1.本设计得内容有以下几方面: . (3)2.关键词 (3)一.热力系统 . (4)二.实际机组回热原则性热力系统 (4)三.汽轮机原则性热力系统 (4)1.计算目的及基本公式 (5)1.1 计算目的 . (5)1.2 计算的基本方式 (6)2.计算方法和步骤 (7)3.设计内容 (7)3.1整理原始资料 (9)3.2计算回热抽气系数与凝气系数 (9)回热循环 (10)3.2.1混合式加热器及其系统的特点 (10)3.2.2表面式加热器的特点: (11)3.2.3表面式加热器的端差θ及热经济性 (11)3.2.4抽气管道压降p j及热经济性 (12)3.2.5蒸汽冷却器及其热经济性 (12)3.2.6表面式加热器的疏水方式及热经济性 (13)3.2.7设置疏水冷却段的意义及热经济性指标 (14)3.2.8除氧器 . (18)3.2.9除氧器的运行及其热经济性分析 (19)3.2.10除氧器的汽源连接方式及其热经济性 (19)3.3新汽量 D0计算及功率校核 (23)3.4热经济性的指标计算 (26)3.5各汽水流量绝对值计算 (27)致谢. (32)参考文献 . (33)600MW汽轮机原则性热力系统设计计算内容摘要1.本设计得内容有以下几方面:1)简述热力系统的相关概念;2)回热循环的的有关内容(其中涉及到混合式加热器、表面式加热器的特点,并对其具有代表性的加热器作以细致描述。
表面式加热器的端差、设置疏水冷却段、蒸汽冷却段、疏水方式及热经济性、除氧器的运行及其热经济性分析、除氧器的汽源连接方式及其热经济性)3)原则性热力系统的一般计算方法2.关键词除氧器、高压加热器、低压加热器一.热力系统热力系统的一般定义为:将热力设备按照热力循环的顺序用管道和附件连接起来的一个有机整体。
《热力发电厂》课程设计指导书(1)设计题目: 600MW 凝汽式机组全厂原则性热力系统设计计算一、课程设计的目的和任务本课程设计是《热力发电厂》课程的具体应用和实践,是热能工程专业的各项基础课和专业课知识的综合应用,其重点在于将理论知识应用于一个具体的电厂生产系统介绍实际电厂热力系统的方案拟定、管道与设备选型及系统连接方式的选择,详细阐述实际热力系统的能量平衡计算方法和热经济性指标的计算与分析。
完成课程设计任务的学生应熟练掌握系统能量平衡的计算,可以应用热经济性分析的基本理论和方法对各种热力系统的热经济性进行计算、分析,熟练掌握发电厂原则性热力系统的常规计算方法,了解发电厂原则性热力系统的组成。
二、计算任务1 .根据给定的热力系统数据,在 h - s 图上绘出蒸汽的汽态膨胀线(要求出图占一页);2 .计算额定功率下的汽轮机进汽量 D0,热力系统各汽水流量 D j;3 .计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组汽耗率、机组热耗率、绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率);4 .按《火力发电厂热力系统设计制图规定》绘出全厂原则性热力系统图,并将所计算的全部汽水流量标在图中(手绘图 A2 )。
汽水流量标注: D ×××,以 t/h 为单位三、计算类型:定功率计算采用常规的手工计算法。
为便于计算,凡对回热系统有影响的外部系统,如辅助热力系统中的锅炉连续排污利用系统、对外供热系统等,应先进行计算。
因此全厂热力系统计算应按照“先外后内,由高到低”的顺序进行。
计算的基本公式是热平衡式、物质平衡式和汽轮机功率方程式,具体步骤如下:1、整理原始资料根据给定的原始资料,整理、完善及选择有关的数据,以满足计算的需要。
(1)将原始资料整理成计算所需的各处汽、水比焓值,如新蒸汽、抽汽、凝气比焓。
加热器出口水、疏水、带疏水冷却器的疏水及凝汽器出口水比焓,再热热量等。
600MW凝汽式机组原则性热力计算引言凝汽式机组是现代化火力发电厂的主流形式之一,在我国的电力工业中发挥着重要的作用。
其中,600MW凝汽式机组是一种规模较大、效率较高的机组类型。
本文将针对600MW凝汽式机组的原则性热力计算方法进行探讨,以帮助读者了解凝汽式机组的基本热力特性及其影响因素。
热力计算基本原理凝汽式机组的原理是将高温高压的水蒸气冷凝成水,同时释放出大量的热量。
在凝汽式机组内部,燃煤产生的热量将水氧化反应,产生高温高压的水蒸气,然后通过汽轮机运转,产生功率。
在完成功率输出后,水蒸气进入凝汽器,被冷却并转化为水,然后回流到锅炉,循环利用。
600MW凝汽式机组的热力计算原理性参数下面列举了600MW凝汽式机组的原理性参数:•炉膛压力:25MPa•炉膛温度:550℃•出口压力:7.9kPa•入口温度:31℃•凝汽器排出温度:45℃•火电厂高温再热式汽轮机:三次再热、四次抽汽热力参数计算方法根据上述原理性参数,我们可以计算出下列热力参数:1.蒸汽周期;2.汽轮机效率;3.一次进汽流量;4.一次再热汽流量;5.两次再热汽流量;6.三次再热汽流量;7.一次抽汽流量;8.二次抽汽流量;9.三次抽汽流量;10.四次抽汽流量;11.进口给水的流量;12.循环水的流量。
计算方法较复杂,将不在此一一列举。
热力计算应用热力计算在凝汽式机组的设计和运行管理中扮演着重要角色。
其应用包括:•优化锅炉和汽轮机的运行参数,提高机组效率;•诊断问题和解决故障,确保机组稳定运行和生产安全;•评估机组性能和可靠性,为预测和规划运行管理提供依据。
总结本文介绍了600MW凝汽式机组的原则性热力计算方法及其应用。
通过计算流量、温度、压力等参数,我们可以对机组的热力特性进行评估和优化,以提高机组的效率和性能。
在实践中,热力计算在机组的设计、建设、检修和运维中都发挥着重要作用。
600MW凝汽式机组全厂原则性热力系统计算凝汽式机组是一种常见的发电机组,其热力系统是整个机组运行的核心。
本文将对600MW凝汽式机组全厂原则性热力系统进行计算,以探讨其热力性能。
首先,我们需要了解凝汽式机组的基本原理。
在凝汽式机组中,燃煤或燃气的燃料在锅炉中燃烧,产生高温的燃烧气体。
燃烧气体通过锅炉中的热交换器传热给水,将水蒸汽产生。
蒸汽经过扩张机进行膨胀,驱动发电机运转,然后蒸汽进入凝汽器,冷却成水并凝结,然后被泵送回锅炉中进行再次加热。
根据以上原理,我们可以计算600MW凝汽式机组的热力系统。
首先,我们需要确定机组的热效率。
热效率是指机组产生的电能与供给机组的燃料能量之间的比值。
我们可以根据燃煤或燃气的热值和机组的实际发电量来计算机组的热效率。
其次,我们需要计算机组的热损失。
热损失是指机组在能量传递和转换过程中未能被充分利用而流失掉的热量。
机组的热损失可以从锅炉、发电机、凝汽器以及其他相关设备中产生。
我们可以通过测量这些设备的热损失来估计整个机组的热损失。
然后,我们需要计算机组的热功率。
热功率是指机组所能够产生的热量。
热功率可以从锅炉中的蒸汽量以及蒸汽的压力来计算。
我们可以根据锅炉的设计参数以及实际运行数据来计算热功率。
最后,我们需要计算机组的热耗率。
热耗率是指机组所需要的热量与发电机输出的电量之间的比值。
我们可以根据热耗率来评估机组的热利用效率。
综上所述,600MW凝汽式机组全厂原则性热力系统计算涉及到热效率、热损失、热功率和热耗率的计算。
通过对这些参数的计算,可以评估机组的热力性能,并找出可能存在的问题和改进空间,提高机组的热利用效率。
国产600MW 凝汽式机组全厂原则性热力系统设计计算1 课程设计的目的及意义:电厂原则性热力系统计算的主要目的就是要确定在不同负荷工况下各部分汽水流量及参数、发电量、供热量及全厂的热经济性指标,由此可衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性。
如根据最大负荷工况计算的结果,可作为发电厂设计时选择锅炉、热力辅助设备、各种汽水管道及附件的依据。
2 课程设计的题目及任务:设计题目:国产600MW 凝汽式机组全厂原则性热力系统设计计算。
计算任务:㈠ 根据给定的热力系统数据,在h - s 图上绘出蒸汽的汽态膨胀线 ㈡ 计算额定功率下的汽轮机进汽量0D ,热力系统各汽水流量j D㈢ 计算机组和全厂的热经济性指标(机组进汽量、机组热耗量、机组汽耗率、机组热耗率、 绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率) ㈣ 按《火力发电厂热力系统设计制图规定》绘制出全厂原则性热力系统图3 已知数据:汽轮机型式及参数机组型式:亚临界、一次中间再热、四缸四排汽、单轴、凝汽式汽轮机;锅炉型式及参数锅炉型式英国三井2027-17.3/541/541额定蒸发量Db:2027t/h额定过热蒸汽压力P b17.3MPa额定再热蒸汽压力 3.734MPa额定过热蒸汽温度541℃额定再热蒸汽温度541℃汽包压力:P du18.44MP锅炉热效率92.5%汽轮机进汽节流损失4%中压缸进汽节流损失2%轴封加热器压力P T98kPa疏水比焓415kJ/kg汽轮机机械效率98.5%发电机效率99%补充水温度20℃厂用电率0.074 计算过程汇总:㈠原始资料整理:㈡ 全厂物质平衡方程① 汽轮机总汽耗量 0D ② 锅炉蒸发量D 1= 全厂工质渗漏+厂用汽=65t/h (全厂工质损耗)0D =D b - D 1= D b -65③ 锅炉给水量Dfw= D b +D 1b -D e = D b -45=0D +20④ 补充水量D ma =D l + D b =95t/h㈢ 计算回热系统各段抽汽量 回热加热系统整体分析本机组回热加热系统由三个高压加热器、一个除氧器、四个低压加热器共八个加热器组成。
600MW汽轮机原则性热力系统设计计算目录毕业设计............... 错误!未定义书签。
内容摘要 (3)1.本设计得内容有以下几方面: (3)2.关键词 (3)一.热力系统 (4)二.实际机组回热原则性热力系统 (4)三.汽轮机原则性热力系统 (4)1.计算目的及基本公式 (5)1.1计算目的 (5)1.2计算的基本方式 (6)2.计算方法和步骤 (7)3.设计内容 (7)3.1整理原始资料 (9)3.2计算回热抽气系数与凝气系数 (9)回热循环 (10)3.2.1混合式加热器及其系统的特点 (10)3.2.2表面式加热器的特点: (11)3.2.3表面式加热器的端差θ及热经济性 (11)3.2.4抽气管道压降Δp j及热经济性 (12)3.2.5蒸汽冷却器及其热经济性 (12)3.2.6表面式加热器的疏水方式及热经济性 (13)3.2.7设置疏水冷却段的意义及热经济性指标 (14)3.2.8除氧器 (18)3.2.9除氧器的运行及其热经济性分析 (19)3.2.10除氧器的汽源连接方式及其热经济性 (19)3.3新汽量D0计算及功率校核 (23)3.4热经济性的指标计算 (26)3.5各汽水流量绝对值计算 (27)致谢 (32)参考文献 (33)600MW汽轮机原则性热力系统设计计算内容摘要1.本设计得内容有以下几方面:1)简述热力系统的相关概念;2)回热循环的的有关内容(其中涉及到混合式加热器、表面式加热器的特点,并对其具有代表性的加热器作以细致描述。
表面式加热器的端差、设置疏水冷却段、蒸汽冷却段、疏水方式及热经济性、除氧器的运行及其热经济性分析、除氧器的汽源连接方式及其热经济性)3)原则性热力系统的一般计算方法2.关键词除氧器、高压加热器、低压加热器一.热力系统热力系统的一般定义为:将热力设备按照热力循环的顺序用管道和附件连接起来的一个有机整体。
通常回热加热系统只局限在汽轮机组的范围内。
国产600MW 凝汽式机组全厂原则性热力系统设计计算1 课程设计的目的及意义:电厂原则性热力系统计算的主要目的就是要确定在不同负荷工况下各部分汽水流量及参数、发电量、供热量及全厂的热经济性指标,由此可衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性。
如根据最大负荷工况计算的结果,可作为发电厂设计时选择锅炉、热力辅助设备、各种汽水管道及附件的依据。
2 课程设计的题目及任务:设计题目:国产600MW 凝汽式机组全厂原则性热力系统设计计算。
计算任务:㈠ 根据给定的热力系统数据,在h - s 图上绘出蒸汽的汽态膨胀线 ㈡ 计算额定功率下的汽轮机进汽量0D ,热力系统各汽水流量j D㈢ 计算机组和全厂的热经济性指标(机组进汽量、机组热耗量、机组汽耗率、机组热耗率、 绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率) ㈣ 按《火力发电厂热力系统设计制图规定》绘制出全厂原则性热力系统图3 已知数据:汽轮机型式及参数机组型式:亚临界、一次中间再热、四缸四排汽、单轴、凝汽式汽轮机;锅炉型式及参数锅炉型式英国三井2027-17.3/541/541额定蒸发量Db:2027t/h额定过热蒸汽压力P b17.3MPa额定再热蒸汽压力 3.734MPa额定过热蒸汽温度541℃额定再热蒸汽温度541℃汽包压力:P du18.44MP锅炉热效率92.5%汽轮机进汽节流损失4%中压缸进汽节流损失2%轴封加热器压力P T98kPa疏水比焓415kJ/kg汽轮机机械效率98.5%发电机效率99%补充水温度20℃厂用电率0.074 计算过程汇总:㈠原始资料整理:㈡ 全厂物质平衡方程① 汽轮机总汽耗量 0D ② 锅炉蒸发量D 1= 全厂工质渗漏+厂用汽=65t/h (全厂工质损耗)0D =D b - D 1= D b -65③ 锅炉给水量Dfw= D b +D 1b -D e = D b -45=0D +20④ 补充水量D ma =D l + D b =95t/h㈢ 计算回热系统各段抽汽量 回热加热系统整体分析本机组回热加热系统由三个高压加热器、一个除氧器、四个低压加热器共八个加热器组成。
600MW凝汽式机组全厂原则性热力系统计算凝汽式发电机组是一种常见的发电装置,通过在燃烧室中燃烧燃料,从而产生高温高压的燃气。
这些燃气经过涡轮机的推动,从而驱动发电机发电。
在这个过程中,燃气能量被转化为机械能,然后转化为电能。
在全厂原则性热力系统计算中,我们需要计算凝汽式发电机组全厂的能量转换过程,以及各组件的能量损失情况。
下面是一个示例的计算步骤:1.燃气流程:首先,我们需要计算燃气在燃烧室中的燃烧过程。
这个过程中,燃料和空气混合在一起,产生高温高压的燃气。
我们需要计算燃气的热输入、质量流量以及热力特性。
2.涡轮机流程:接下来,我们需要计算涡轮机的工作过程。
涡轮机通过燃气的压力和温度来驱动转子转动,从而转化为机械能。
我们需要计算转子的转速以及转动功。
3.发电机流程:涡轮机转动的机械能需要通过发电机转化为电能。
我们需要计算发电机的效率以及电能产生的功率。
4.蒸汽循环流程:在涡轮机工作后,燃气经过凝汽器冷却成为水蒸汽。
然后,水蒸汽被再次加热,在高温高压下再次进入涡轮机。
我们需要计算蒸汽循环的效率以及各组件的能量损失。
5.辅助系统:除了核心的凝汽式发电机组,还有很多辅助系统,如冷却水系统、泵站等。
我们需要计算这些系统的能量损失以及效率。
在进行以上计算时,我们需要使用一些基本的热力学公式和参数。
例如,燃气的热输入可以通过燃料的高位发热值和燃料消耗量计算得到。
涡轮机的转速可以通过流量和进口出口压力计算得到。
发电机的效率可以通过实验测量或者理论计算得到。
总结起来,凝汽式机组全厂原则性热力系统计算是一个包括燃气流程、涡轮机流程、发电机流程、蒸汽循环流程以及辅助系统的计算过程。
通过对这些过程的能量转换和损失进行计算,可以评估凝汽式机组的热力性能,并提供相应的改进和优化建议。
1 绪 论 ..................................................................................................................................................... 1 2 热力系统与机组资料. (4)2.1. 热力系统简介................................................................................................................................ 4 2.2. 原始资料 ....................................................................................................................................... 4 3 原则性热力系统计算. (8)3.1. 汽水平衡计算................................................................................................................................ 8 3.2. 汽轮机进汽参数计算 .................................................................................................................... 9 3.3. 辅助计算 ....................................................................................................................................... 9 3.4. 各加热器进、出水参数计算 ...................................................................................................... 12 3.5. 高压加热器组抽汽系数计算 ...................................................................................................... 13 3.6. 除氧器抽汽系数计算 .................................................................................................................. 15 3.7. 低压加热器组抽汽系数计算 (15)3.8. 凝汽系数c α计算 ........................................................................................................................ 17 3.9. 汽轮机内功计算 .......................................................................................................................... 18 3.10. 汽轮机内效率、热经济指标、汽水流量计算 ........................................................................ 19 3.11. 全厂性热经济指标计算 ............................................................................................................ 19 3.12反平衡校核 (22)锅炉输入热量r q .................................................................................................................................. 22 锅炉损失b q ∆ ....................................................................................................................................... 22 排污损失bl q ∆ ....................................................................................................................................... 22 全厂工质渗漏损失L q ∆ ....................................................................................................................... 22 厂用汽损失pl q ∆ .................................................................................................................................. 22 凝汽流冷源损失c q ∆............................................................................................................................ 22 小汽机冷源损失xj q ∆ ........................................................................................................................... 22 化学补充水冷源损失ma q ∆ .................................................................................................................. 22 轴封加热器疏水冷源损失sg d q ,∆ ........................................................................................................ 22 均压箱去热水井汽流的冷源损失c sg q ,∆ ............................................................................................ 22 暖风器损失nf q ∆ .................................................................................................................................. 23 管道散热损失p q ∆ ............................................................................................................................... 23 轴封汽散热损失 .. (23)4变工况(80%)热力系统计算 (8)4.1.4除氧器抽汽系数计算 (28)4.1.5低压加热器组抽汽系数计算 (28)计算 (30)4.1.6凝汽系数c4.1.7汽轮机内功计算 (30)4.1.8汽轮机内效率、热经济指标、汽水流量计算 (31)5 管道计算与选型 (32)5.1. 给水系统 (45)5.2. 凝结水系统 (46)5.3. 抽空气系统 (46)5.4. 旁路系统 (46)5.5. 补充水系统 (47)5.6. 阀门 (47)参考文献 (49)致谢 (50)1绪论火力发电厂简称火电厂,是利用煤炭、石油、天然气作为燃料生产电能的工厂。
国产600MW凝汽式机组全厂原则性热力系统计算(一)计算任务1.最大计算功率下的汽轮机进汽量D0,回热系统各汽水流量D j;2.计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组热耗率、绝对电效率、管道效率、全厂热耗率、全厂标准煤耗率、全厂热效率);3.按《火力发电厂热力系统设计制图规定》绘出全厂原则性热力系统图,并将所计算的全部汽水流量绘制成表格,绘制回热系统计算点汽水参数表格,并进行功率校核。
(二)计算类型:定功率计算(三)系统简介国产600MW凝汽式机组,机组为亚临界压力、一次中间再热、单轴、反动式、四缸四排汽机组。
汽轮机高、中、低压转子均为有中心孔的整锻转子。
汽轮机配HG-2008/18-YM2型亚临界压力强制循环汽包炉。
采用一级连续排污系统,扩容器分离出得扩容蒸汽送入除氧器。
该系统共有八级抽汽。
其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽汽分别供四台低压加热器,第四级抽汽作为除氧器的加热汽源。
八级回热加热器(除氧器除外)均装设了疏水冷却器,以充分利用本级疏水热量来加热本级主凝结水。
三级高压加热器均安装了内置式蒸汽冷却器,将三台高压加热器上端差分别减小为-1.7℃、0℃、0℃,从而提高了系统的热经济性。
四台低压加热器上端差均为2.8℃,八级加热器下端差(除氧器除外)均为5.5℃。
汽轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧器。
然后由汽动给水泵升压,经三级高压加热器加热,最终给水温度达到273.3℃,进入锅炉。
三台高加疏水逐级自流至除氧器;四台低加疏水逐级自流至凝汽器。
凝汽器为双压式凝汽器,汽轮机排汽压力0.0049MPa ,凝汽器压力下饱和水焓h’c=136.2 ( kJ/kg)与单压凝汽器相比,双压凝汽器由于按冷却水温度低、高分出了两个不同的汽室压力,因此它具有更低些的凝汽器平均压力,汽轮机的理想比焓降增大。
给水泵汽轮机(以下简称小汽机)的汽源为中压缸排汽(第4级抽汽),无回热加热,其排汽亦进入凝汽器。
热力发电厂课程设计计算书题目:600MW亚临界凝汽式机组全厂原则性热力系统计算专业:火电厂集控运行班级:热动核电1101班学号:姓名:王力指导教师:冯磊华目录1.本课程设计的目的热力发电厂课程设计的主要目的是要确定在不同负荷工况下各部分汽水流量及其参数、发电量、供热量及全厂性的热经济指标,由此衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性。
是学生在学习热力发电厂课程后的一次综合性的训练,是本课程的重要环节。
通过课程设计是学生进一步巩固、加深所学的理论知识并有所扩展;学习并掌握热力系统全面性计算和局部性分析的初步方法;培养学生查阅、使用国家有关设计标准、规范,进行实际工程设计,合理选择和分析数据的能力;锻炼提高运算、制图、计算机编程等基本技能;增强工程概念,培养学生对工程技术问题的严肃、认真和负责的态度。
2.计算任务1.根据给定的热力系统数据,在h—s图上汇出蒸汽的汽态膨胀线(要求出图占一页)。
2.计算额定功率下的汽轮机进汽量D0,热力系统各汽水流量Dj。
3.计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组热耗率、机组汽耗率、绝对电耗率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率)。
3.计算原始资料1.汽轮机形式及参数(1)机组形式:亚临界、一次中间再热、四缸四排气、单轴、凝汽式机组。
(2)额定功率:P e =600MW 。
(3)主蒸汽初参数(主汽阀前):P 0=,t 0=537℃。
(4)再热蒸汽参数(进汽阀前):热段:P rh =,t rh =537℃冷段:P ’rh =,t ’rh =315℃。
(5)汽轮机排气压力P c =,排气比焓h c =kg 。
2.回热加热系统参数(1)机组各级回热抽汽参数 表3-1(2)最终给水温度:t fw =℃。
(3)给水泵出口压力:P u =,给水泵效率:83%。
(4)除氧器至给水泵高差:。
(5)小汽机排汽压力:Pc=。
国产600MW凝汽式机组全厂原则性热力系统计算(一)计算任务1.最大计算功率下的汽轮机进汽量D0,回热系统各汽水流量D j;2.计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组热耗率、绝对电效率、管道效率、全厂热耗率、全厂标准煤耗率、全厂热效率);3.按《火力发电厂热力系统设计制图规定》绘出全厂原则性热力系统图,并将所计算的全部汽水流量绘制成表格,绘制回热系统计算点汽水参数表格,并进行功率校核。
(二)计算类型:定功率计算(三)系统简介国产600MW凝汽式机组,机组为亚临界压力、一次中间再热、单轴、反动式、四缸四排汽机组。
汽轮机高、中、低压转子均为有中心孔的整锻转子。
汽轮机配HG-2008/18-YM2型亚临界压力强制循环汽包炉。
采用一级连续排污系统,扩容器分离出得扩容蒸汽送入除氧器。
该系统共有八级抽汽。
其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽汽分别供四台低压加热器,第四级抽汽作为除氧器的加热汽源。
八级回热加热器(除氧器除外)均装设了疏水冷却器,以充分利用本级疏水热量来加热本级主凝结水。
三级高压加热器均安装了内置式蒸汽冷却器,将三台高压加热器上端差分别减小为-1.7℃、0℃、0℃,从而提高了系统的热经济性。
四台低压加热器上端差均为2.8℃,八级加热器下端差(除氧器除外)均为5.5℃。
汽轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧器。
然后由汽动给水泵升压,经三级高压加热器加热,最终给水温度达到273.3℃,进入锅炉。
三台高加疏水逐级自流至除氧器;四台低加疏水逐级自流至凝汽器。
凝汽器为双压式凝汽器,汽轮机排汽压力0.0049MPa ,凝汽器压力下饱和水焓h’c=136.2 ( kJ/kg)与单压凝汽器相比,双压凝汽器由于按冷却水温度低、高分出了两个不同的汽室压力,因此它具有更低些的凝汽器平均压力,汽轮机的理想比焓降增大。
给水泵汽轮机(以下简称小汽机)的汽源为中压缸排汽(第4级抽汽),无回热加热,其排汽亦进入凝汽器。
超临界压力600MW 中间再热凝汽式汽轮机在额定工况下的热经济指标计算。
已知:机组型号:N600-24.2/566/566汽轮机型式:超临界、单轴、三缸(高中压合缸)、四排汽、一次中间再热 凝汽式蒸汽初参数:MPa p 2.240=,5660=t ℃;MPa p 51546.00=∆,再热蒸汽参数:冷段压力MPa p in rh053.4=,冷段温度5.303=inrh t ℃;热段压 力MPa p out rh648.3=,热段温度0.566=outrh t ℃;MPa p rh 4053.0=∆, 排汽压力:kPa p c 4.5= (0.0054MPa )抽汽及轴封参数见表1。
给水泵出口压力MPa p pu 376.30=,凝结水泵出压 力为MPa 84.1。
机械效率、发电机效率分别取为99.0=m η,988.0=g η。
汽动给水泵用汽系数pu α为0.05177表1 N600-24.2/566/566型三缸四排汽汽轮机组回热抽汽及轴封参数解:1.整理原始资料(1)根据已知参数p 、t 在s h -图上画出汽轮机蒸汽膨胀过程线,得到新汽焓等。
0.33960=h kg kJ ,82.2970=in rhh kg kJ ,2425.3598=outrh h kg kJ ,9.62782.29702425.3598=-=rh q kg kJ 。
(2)根据水蒸汽表查的各加热器出口水焓wj h 及有关疏水焓'j h 或dwj h ,将机组回热系统计算点参数列于表2。
图1 超临界压力600MW三缸四排汽凝汽式机组蒸汽膨胀过程线2.计算回热抽汽系数与凝汽系数 采用相对量方法进行计算。
(1)1号加热器(H1) 由H1的热平衡式求1α()21111w w h dw h h h h -=-ηα ()()06322865.06.11094.305599.01.10859.120611211=--=--=d w hw w hh h h ηαH1的疏水系数0632287.011==ααd(2)2号加热器(H2)()()[]32211222w w h d w d w d d w h h h h h h-=-+-ηαα()()dw dw d w dl h w w h h h h h h 2221322----=αηα()()0897994.08.9013.29708.9016.11090632287.099.02.8881.1085=--⨯--=H2的疏水系数1530281.00897994.00632287.0212=+=+=αααd d再热蒸汽的系数8469719.01530281.01121=-=--=αααrh(3)3号加热器(H3)给水泵焓升puw h ∆的计算,设除氧器的水位高度为50m ,则给水泵的进口压力为MPa p in 5381.195.01032.10098.050=⨯+⨯=,取给水的平均比热容为kg m v aV 30011.0=、给水泵的效率83.0=pu η,则()puin out aV puwp p v hη-⨯=∆310()83.03911.1376.300011.0103-⨯⨯=18.38=()kg kJ由H3的热平衡式得()()[]()pu ww w h d w d w d d w h h h h h h h∆+-=-+-43322333ηαα()[]()dw dw d w d h pu w w w h h h h h h h 33322433---∆+-=αηα[]()0357077.03.7896.33733.7898.90115302801.099.08.7792.888=--⨯--=H3的疏水系数188736.00357077.015302801.0323=+=+=αααd d(4)除氧器(HD )第四段抽汽由除氧器加热蒸汽’4α和汽动给水泵用汽pu α两部分组成,即pu ααα+=’44由除氧器的物质平衡可知除氧器的进水系数4o α为’4341ααα--=d o由于除氧器的进出口水量不相等,4o α是未知数。
1。
本课程设计的目的热力发电厂课程设计的主要目的是要确定在不同负荷工况下各部分汽水流量及其参数、发电量、供热量及全厂性的热经济指标,由此衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性.是学生在学习热力发电厂课程后的一次综合性的训练,是本课程的重要环节。
通过课程设计是学生进一步巩固、加深所学的理论知识并有所扩展;学习并掌握热力系统全面性计算和局部性分析的初步方法;培养学生查阅、使用国家有关设计标准、规范,进行实际工程设计,合理选择和分析数据的能力;锻炼提高运算、制图、计算机编程等基本技能;增强工程概念,培养学生对工程技术问题的严肃、认真和负责的态度。
2.计算任务1。
根据给定的热力系统数据,在h—s图上汇出蒸汽的汽态膨胀线(要求出图占一页)。
2.计算额定功率下的汽轮机进汽量D0,热力系统各汽水流量D j。
3.计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组热耗率、机组汽耗率、绝对电耗率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率).3。
计算原始资料1。
汽轮机形式及参数(1)机组形式:亚临界、一次中间再热、四缸四排气、单轴、凝汽式机组。
(2)额定功率:P e=600MW.(3)主蒸汽初参数(主汽阀前):P0=16.7Mpa,t0=537℃。
(4)再热蒸汽参数(进汽阀前):热段:P rh=3。
234Mpa,t rh=537℃冷段:P'rh=3.56Mpa,t'rh=315℃。
(5)汽轮机排气压力P c=4.4/5。
39KPa,排气比焓h c=2333.8KJ/kg。
2.回热加热系统参数(1(2)最终给水温度:t fw=274。
1℃。
(3)给水泵出口压力:P u=20。
13Mpa,给水泵效率:83%。
(4)除氧器至给水泵高差:21.6m。
(5)小汽机排汽压力:Pc=6.27kPa。
小汽机排气焓:2422.6KJ/kg。
3。
锅炉型式及参数(1)锅炉形式:英国三井2027-17。
3/541/541.(2)额定蒸发量:D b:2027t/h。
(3)额定过热蒸汽压力P b=17.3Mpa。
额定再热蒸汽压力:3.734Mpa.(4)额定过热蒸汽温度:541℃。
额定再热蒸汽温度541℃。
(5)汽包压力:P du:18.44Mpa(6)锅炉热效率:92。
5%4.其他数据(1)汽轮机进汽节流损失4%,中压缸进汽节流损失2%。
(2)轴封加热器压力Pt:98Kpa,疏水比焓:415kJ/kg。
(3)(5)(6)补充水温度:20℃.(7)厂用电率0。
075. 计算简化条件(1)忽略加热器和抽汽管道散热损失;(2)忽略凝结水泵比焓升.4。
计算过程4.1全厂热力系统辅助性计算1. 汽轮机进汽参数计算1)主汽参数由主汽门前压力p 0 =16。
7Mpa ,温度t 0 =537℃ ,查水蒸汽焓熵图,得主汽比焓3393。
564 kJ/kg 。
主汽门后压力p 0’ =16.7(1—θp1 ) ,h o ’ =h o 由压力与焓值反查焓熵图得主汽门后温t 0’=534.5 ℃。
2)再热蒸汽参数由再热冷段p rh ’=3.56Mpa , t rh ’=315℃,查水蒸汽焓h rh '=3013。
626 kJ/kg . 中联门前压力p rh =3。
234Mp ,温度 t rh =537℃ , 查焓熵图,得水蒸汽比焓h rh =3535.38212kJ/kg 。
中联门后再热汽压p rh '’ =p 0(1- θp2)=3.169Mpa ,由h rh =h rh ’' ,查焓熵图,得中联门后再热汽温t rh ’’=536.7℃。
2. 轴封加热器计算用加权平均法计算轴封加热器的平均进汽焓h sg ,详细计算如下表:3。
jy4. 凝汽器平均排汽压力计算由p c1 =4.4kpa ,查水蒸汽性质表,得t c1 =30。
618℃ 由p c2 = 5。
39kpa ,查水蒸汽性质表,得t c2 =34. 218℃凝汽器平均温度tc =21(30。
618 +34。
218 )= 32。
418 ℃查水蒸汽性质表,得凝汽器平均压力 =4。
8737kpa ,将所得数据与表4-3一起,以各个抽起点为节点,在h-s 图上绘制出汽态膨胀线。
4.2原始数据整理及汽态线绘制整理原始资料,计算完数据记入表4-3中:表H1 H2 H3 H4 H5 H6 H7 H8 SG抽 汽参数 压力P j M p a 5。
894 3。
593 1.612 0.7447 0.3050 0。
130 0.0697 0。
022 ——温度t j ℃ 380。
9 316.9 429.1 323.6 233.2 137.8 88。
5 61.0蒸汽焓h j KJ/kg 3132。
9 3016 3317。
7 3108.2 2972.9 2749.5 2649.5 2491.1 2976.5加 热 器 水 温 水 焓出口水温t wj ℃ 274.152 242。
314 200。
267 165.374 129。
541 102.815 85。
6755 58.2126 32.76疏水焓h d w j KJ/kg 1075.16 879。
006 723.321 544.724 454.4 382.024 266.76 161.9 415 出口水焓h wj KJ/kg 1202.5 1050。
89 861。
503 698.853 545.414 432.247 360.158 245。
138 138。
7 进口水焓h wj+1 KJ/kg 4050.89 861。
503 724。
297 545.414 432。
247 360.158 245.138 138.7 136。
34。
3全厂汽水平衡1。
全厂补水率全厂汽水平衡如图4—1所示,各汽水流量见表3-1。
将各汽水流量用相对α表示。
由于计算前汽轮机进汽量D 0为未知,故预选D 0 =1849090 kg/h 进行计算,最后校核。
全厂工质渗漏系数αL=DL/D0=30000/1849090=0.01632 锅炉排污系数αbl=Dbl /D 0=10000/1849090=0。
005411 其余各量经计算为厂用汽系数αp l=0。
01082 ,减温水系数αsp =0.02974,暖风器疏水系数αnf =0。
01893由全厂物质平衡可知补水率αma =αpl+αL+αbl =0.03246 2 。
给水系数αfw如图4-1,1点物质平衡αb =αb +αL =1.016322点物质平衡αfw =αb +αb -αsp =1.01632+0。
005408-0。
02974=0。
9919 3。
各小汽流量系数 见表格3-2中。
4.4各回热抽汽量计算及汇总1.各级加热器汽水侧进、出口参数计算 首先计算高压加热器H1加热器压力P 1:MPa P P P 717.5894.5)03.01()1('111=⨯-=∆-=式中P ‘1—-——第一抽汽口压力;ΔP1----抽汽管道相对压损由MPa P 717.51=,查水蒸汽性质表得加热器饱和温度℃4.2721=s t ,得H1出口温度:℃1.274)7.1(4.27211,=--=-=t t t s w δ式中t δ———加热器上端差。
H1疏水温度℃8.2475.53.24311,'1,=+=+=t t t w d δ 式中1t δ-———加热器下端差,℃5.51=t δ1,'w t —--进水温度℃,其值从高压加热器H2的上端差t δ计算得到.已知加热器水侧压力P w =20.13Mpa ,由t 1=274。
1℃,查得H1出水比焓h w,1=1202.5KJ/kg 。
由t'w ,1=274.3℃,查得H1进水比焓h w ,2=1050。
9KJ/kg 。
由t d ,1=247.8℃,查得H1疏水比焓h d ,1=1075.2KJ/kg 。
至此高压加热器H1进、出口汽水参数已全部算出,同理可依次计算其余加热器各进出口汽水参数.将计算结果列于表4-3中.2.高压加热器组及除氧器抽汽系数计算 1.由高压加热器H1热平衡计算α1 高压加热器H1的抽气系数07308.016.10759.31320.1/)89.10505.1202(9919.0/)(1,12,1,1=--⨯=--=d hw w fw h h h h ηαα高压加热器H1的疏水系数αd,1:07308.011,==ααd 2。
由高压加热器H2热平衡计算α2、αrh 高压加热器H2的抽汽系数α2:0812.08793016)87916.1075(07289.00.1/)3.8579.1050(9919.0)(/)(2,22,1,1,3,2,2=--⨯--⨯=----=d d d d h w w fw h h h h h h αηαα高压加热器H2的疏水系数αd ,2:15428.00812.007308.011,2,=+=+=αααd d 再热器流量系数αrh :825.00003456.000005463.0001859.00003050.000004814.0001637.001636.00001444.00812.007308.011,,,1,1,1,,21=----------=----------=Msg N sg L sg M sg N sg L sg J B sg rh ααααααααααα3.由高压加热器H3热平衡计算α3 高压加热器和H3的抽汽系数α3:03885.07.7247.33177.7246.3536004008.07.724006.87915428.0)3.724503.861(9919.0)()(/)(3,33,,,3,2,2,3,3=--⨯--⨯--⨯=------=)()(d d k sg k sg d d d h pu w fw h h h h h h h h ααηαα高压加热器H3的疏水系数αd ,3:1971.0004008.003885.015428.0,32d 3d =++=++=ksg αααα,,4。
除氧器抽汽系数计算 除氧器出水流量系数αc ,4:0216.102974.09919.04,=+=+=sp fw c ααα抽汽系数α4:除氧器物质平衡与热平衡见图4-3,由于除氧器为混合式加热器,进水量αc,5是未知,但可由下式算出:()()04287.0)414.5453108/()]414.545687(1893.0)414.5453016(81859.0)414.5451.3328(001637.0)414.54532.723(1971.00.1/)414.545855.698(0216.1[)/()]()()(/[5,45,5,,,5,1,1,5,3,3,5,4,c,44=--⨯--⨯--⨯--⨯--⨯=----------=w w nf nf w L sg L sg w L sg L sg w d d h w w h h h h h h h h h h h h ααααηαα3。