南京工业大学矩阵论ch1 线性空间讲义
- 格式:doc
- 大小:809.00 KB
- 文档页数:17
矩阵论1、意义随着科学技术的发展,古典的线性代数知识己不能满足现代科技的需要,矩阵的理论和方法业巳成为现代科技领域必不可少的工具.有人认为:“科学计算实质就是矩阵的计算”.这句话概括了矩阵理论和方法的重要性及其使用的广泛性.因此,学习和掌握矩阵的基本理论和方法,对于理、工科研究生来说是必不可少的数学工具.2、内容《矩阵论》和工科《线性代数》课程在研究矩阵的内容上有较大的差异:线性代数:研究行列式、矩阵的四则运算(加、减、乘、求逆 ) 以及第一类初等变换 (非正交的)、对角标准形 (含二次型) 以及n阶线性方程组的解等基本内容.矩阵论:研究矩阵的几何理论(线性空间、线性算子、内积空间等)、第二和第三类初等变换(正交的)、分析运算(矩阵微积分和级数)、矩阵的范数和条件数、广义逆和分解、若尔当标准形以及几类特殊矩阵和特殊运算等,内容十分丰富.3、方法在研究的方法上,矩阵论和线性代数也有很大的不同:线性代数:引入概念直观,着重计算.矩阵论:着重从几何理论的角度引入矩阵的许多概念和运算,把矩阵看成是线性空间上线性算子的一种数量表示.深刻理解它们对将来正确处理实际问题有很大的作用.第1讲 线性空间内容: 1.线性空间的概念;2.基变换和坐标变换;3.子空间和维数定理;4.线性空间的同构线性空间和线性变换是矩阵分析中经常用到的两个极其重要的概念,也是通常几何空间概念的推广和抽象,线性空间是某类客观事物从量的方面的一个抽象.§1 线性空间的概念1. 群,环,域代数学是用符号代替数(或其它)来研究数(或其它)的运算性质和规律的学科,简称代数.代数运算:假定对于集A 中的任意元素a 和集B 中的任意元素b ,按某一法则和集C 中唯一确定的元素c 对应,则称这个对应为A 、B 的一个(二元)代数运算.代数系统:指一个集A 满足某些代数运算的系统.1.1群定义1.1 设V 是一个非空集合,在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”.即,对V 中给定的一个法则,对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.若在“+”下,满足下列四个条件,则称V 为一个群.1)V 在“+”下是封闭的.即,若,,V ∈βα有 V ∈+βα;2) V 在“+”下是可结合的.即,)()(γβαγβα++=++ ,V ∈γ;3)在V 中有一个元e ,若,V ∈β有 βββ=+=+e e ;e 称为单位元;4)对于,V ∈β有 e =+=+αββα.称α为β的逆元.注:对V 任意元素βα,,都有αββα+=+,则称V 为交换群或阿贝尔群.1.2 环定义1.2 设V 是一个非空集合,在集合V 的元素之间定义了两种代数运算,分别叫做加法、乘法,记为“+”和“*”.即,对V 中给定的一个法则,对于V 中任意元素α,β,在V 中都有惟一的一个元ν和他们对应,称ν为α,β的和和积,记为βαν+=(βαν*=).满足下列三个条件,则称V 为一个环. 1)V 在“+”下是阿贝尔群;2) V 在“*”下是可结合的.即,)()(νβανβα**=**;3)乘法对加法满足左、右分配律,即对于V 中任意元素α,β,ν,有 βνανβαν**)(*+=+,νβνανβα*+*=*+)(.注:对V 任意元素βα,,都有αββα*=*,则称V 为交换环.1.3 域定义 1.3 设V 满足环的条件,且在对“加法”群中去除单位元的集合对于“乘法”满足交换群的条件,则称V 为域.例:有理数集对于通常的数的加法和乘法运算构成域,称之为有理数域.最常见的数域有有理数域Q 、实数域R 、复数域C .实数域和复数域是工程上较常用的两个数域.此外,还有其它很多数域.如{}.,2)2(Q b a b a Q ∈+=,不难验证,)2(Q 对实数四则运算封闭的,所以)2(Q 也是一个数域.而整数集合Z 就不是数域. 数域有一个简单性质,即所有的数域都包含有理数域作为它的一部分.特别,每个数域都包含整数0和1. 2. 线性空间定义 1.4 设V 是一个非空集合,P 是一个数域.在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”:即,给出了一个法则对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.在数域P 和集合V 的元素之间还定义了一种代数运算,称为数量乘法(数乘),记为“∙”:即,对于数域P 中任一数k 和V 中任一元α,在V 中都有惟一的一个元δ和它们对应,称δ为k 和α的数乘,记为αδ∙=k .如果加法和数乘这两种运算在V 中是封闭的,且满足如下八条规则:⑴ 交换律αββα+=+;⑵ 结合律)()(γβαγβα++=++ ,V ∈γ;⑶ V V ∈∃∈∀0,α,有αα=+0,(0称为零元素);⑷ V V ∈∃∈∀βα,,有 0=+βα,(β称为的α负元素,记为α-); ⑸ P V ∈∈∀1,α,有 αα=∙1;⑹ αα∙=∙∙)()(kl l k ,P l k ∈,;⑺ ααα∙+∙=∙+l k l k )(;⑻ βαβα∙+∙=+∙k k k )(,则称集合V 为数域P 上的线性空间.当数域P 为实数域时,V 就称为实线性空间;P 为复数域,V 就称为复线性空间.例 1.按通常向量的加法和数乘运算,由全体实n 维向量组成的集合,在实数域R 上构成一个实线性空间,记为n R ;由全体复n 维向量组成的集合,在复数域C 上构成—个复线性空间,记为n C .例 2.按照矩阵的加法及数和矩阵的乘法,由数域P 上的元素构成的全体n m ⨯矩阵所成的集合,在数域P 上构成一个线性空间,记为n m P ⨯.而其中秩为)0(>r r 的全体矩阵所成的集合rR 则不构成线性空间,为什么?(事实上,零矩阵r R O ∉).例3.按通常意义的函数加法和数乘函数,闭区间[]b a ,上的连续函数的全体所成的集合,构成线性空间[]b a C ,.例4. 设+R ={全体正实数},其“加法”及“数乘”运算定义为xy y x =+, k x x k = 。
1.线性空间、维数、基与坐标第一章线性空间与内积空间(1)线性空间V 中存在加法和数乘运算,且加法和数乘运算满足8个条件;(2)线性空间V 中线性无关向量的最大个数n 称为V 的维数,记为dim (V ) = n ;V 中任意n 个线性无关向量称为V 的一组基;(3)如果是线性空间V 中的n 个线性无关向量,且V 中任一向量都可由其线性表示,则是V 的一组基且dim (V ) = n ;n ααα,,,21 n ααα,,,21(4)设是线性空间V 的一组基,是V 的n 个向量,则存在n 阶方阵T ,使得n εεε,,,21 n ',,','21εεε ,),,,()',,','(2121T n n εεεεεε =当且仅当T 可逆时,也是V 的一组基;n ',,','21εεε.2211n n x x x εεεα+++= (5)设是线性空间V 的基,则向量α在这组基下的坐标是如下线性组合的系数向量:n εεε,,,21 T n x x x ),,,(212.线性子空间(1)设V 是线性空间,W 是V 的非空子集,则W 是V 的子空间的充分必要条件是;,,,P W k W k ∈+⇒∈∀∈∀βααβα(3)设与是线性空间V 的两组向量,则的充分必要条件是与等价;s ααα,,,21 t βββ,,,21 ),,,(),,,(2121t s L L βββααα =s ααα,,,21 t βββ,,,21 (2)设是线性空间V 的一组向量,则W 是V 的子空间;s ααα,,,21 },P |{),,(221121∈+++==i s s s k k k k L W αααααα);,,,(rank )),,,dim(L(42121s s αααααα =)((5)设V 1, V 2是线性空间V 的两个子空间,则V 1∩V 2和V 1 +V 2也是V 的子空间;(6)如果V 1和V 2是线性空间V 的有限维子空间,则).(dim )(dim )(dim )(dim 212121V V V V V V ∩++=+3.直和的判别法(1)V 1 + V 2中任意向量的分解式唯一;};0{21=V V ∩(3)).dim()dim()dim(2121V V V V +=+(4)(2)V 1+ V 2中零向量的表法唯一;4.内积空间(1)内积是一种代数运算,满足共轭对称性,左侧可加性和齐次性以及非负性;;),(:Cauchy )2(βαβα≤不等式;:)3(βαβα+≤+三角不等式(4)线性无关的充分必要条件是Gram 矩阵非奇异;m ααα,,,21 ()mm i j m G ×=),(),,,(21ααααα (5)线性无关向量组一定可以标准正交化.5.标准正交基的性质(1)有限维内积空间V 的标准正交基一定存在;(2)有限维内积空间V 的任意一组标准正交向量可扩充为V 的一组标准正交基;(3)设是内积空间V 的一组标准正交基,且则n εεε,,,21 ,,1111n n n n y y x x εεβεεα++=++= .),(1∑===ni i i Hy x x y βα6.常见内积空间;),(,)1(1∑====ni i i Hn y x x y y x C V 内积;内积dx x g x f g f b a C V ba )()(),(],,[)2(∫==).(tr ),(,)3(A B B A C V Hn m ==×内积第二章线性映射与线性变换1.线性变换的定义设V 是数域P 的线性空间,A是V 到自身的一个映射,如果则称A是V 的线性变换.P ,),()(,),()()(∈∈∀=∈∀+=+kVkk VαααβαβαβαAA AAA2.线性变换的性质. ,, ,,的线性变换也是则的线性变换,是如果VkP kVAABB ABA+∈(1)设是线性空间V 的一组基,A 是V 的线性变换,则n εεε,,,21 ⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n n n n n a a a a a a a a a εεεεεεεεεεεε 22112222112212211111)()()(A A A 3.线性变换的矩阵表示;),,,(),,,(2121A n n εεεεεε =A 即(2)n 维线性空间的线性变换与n 阶矩阵一一对应;(3)同一个线性变换在不同基下的矩阵一定相似.4.线性变换的值域与核设A 是n 维线性空间V 的线性变换,是V 的一组基,A 在这组基下的矩阵是A ,则n εεε,,,21 (1)A 的核为};0)(|{)Ker(=∈=ααA A V };|)({)(V R ∈=ααA A (2)A 的值域为));(,),(),(()(321n L R εεεA A A A =)((4)dim(R (A )) = rank( A );(5)dim(R (A )) + dim(Ker(A )) = n .5.矩阵A 可对角化的充分必要条件(1)A 有n 个线性无关的特征向量;(2)设A 的全部互异特征值为,则r λλλ,,,21 ;)dim()dim()dim(21n V V V r =+++λλλ (3)A 的每一个特征值的几何重数等于代数重数;(4)A 的初等因子都是一次式;(5)A 的最小多项式m (λ) 没有重零点.6.酉变换和酉矩阵设A 是n 维酉空间V 的线性变换,则下列命题等价:(1)A 是酉变换,即;),())(),((βαβα=A A ,)()2(αα=A ;V ∈∀α的一组标准正交基,则是如果V n εεε,,,)3(21 )(,),(),(21n εεεA A A 的一组标准正交基;也是V (4)A 在V 的标准正交基下的矩阵是酉矩阵.(1)存在数字矩阵P 与Q ,使得;)(Q B I P A I −=−λλ(2)它们的特征矩阵λI -A 和λI -B 相抵;(4)它们有相同的行列式因子;1.数字矩阵A 与B 相似的条件第三章λ矩阵与矩阵的Jordan 标准形(5)它们有相同的初等因子.(3)它们有相同的不变因子;2. 矩阵的最小多项式(1)矩阵A 的最小多项式m (λ) 能整除A 的任一化零多项式;(2)矩阵A 的最小多项式能整除特征多项式f (λ);(3)是A 的特征值的充分必要条件是;0λ0)(0=λm (4)相似的矩阵具有相同的最小多项式;(5)矩阵A 的最小多项式为其最后一个不变因子.3.矩阵的不变因子、行列式因子和初等因子的求法(1)化λI -A 为Smith 标准形:)),(,),(),(diag(21λλλλn d d d A I ≅−则是A 的n 个不变因子;)(,),(),(21λλλn d d d ⎪⎪⎩⎪⎪⎨⎧===),()()()(),()()(),()(2121211λλλλλλλλλn n d d d D d d D d D (2)令则是A 的n 个行列式因子;)(,),(),(21λλλn D D D(3)将矩阵A 的不变因子进行标准分解,则全体一次因式的方幂)(,),(),(21λλλn d d d sn s n n )(,,)(,)(2121λλλλλλ−−− 即为A 的全部初等因子.4.Jordan 标准形的求法(1)求矩阵A 的初等因子;)(,,)(,)(2121sn s n n λλλλλλ−−− ).,,,(diag 21s J J J J =(3)A 的Jordan 标准形为(2)对A 的每个初等因子构造Jordan 块:in i )(λλ−;1001i i n n i i i i J ×⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛=λλλ第四章矩阵的因子分解1.满秩分解设m ×n 矩阵A 的秩为r≥1,则存在m ×r 列满秩矩阵B和r ×n 行满秩矩阵C,使得A = BC.2.三角分解(1)LU分解:设A 的各阶顺序主子式非零,则存在唯一的单位下三角矩阵L 和上三角矩阵U,使得A = LU.3.QR 分解(1)设A 是n 阶非奇异实矩阵,则存在酉矩阵Q 和非奇异上三角矩阵R ,使得A = QR ;(2)LDU 分解:设A 的各阶顺序主子式非零,则存在唯一的单位下三角矩阵L ,单位上三角矩阵U 和对角矩阵D = diag(d 1,d 2,…,d n ),使得A = LDU ,并且.,,2,)()(,1111n k A A d a d k k k =ΔΔ==−(2)设A 是m ×n 列满秩矩阵,则存在m ×n 列正交规范矩阵Q 和n 阶非奇异上三角矩阵R ,使得A = QR ;4.Schur 定理(正交分解)(1)设A 是n 阶复矩阵,则存在n 阶酉矩阵U 和n阶上三角矩阵R ,使得U H AU = R ;.,行满秩矩阵是列正交规范矩阵是其中n r R r m Q ××(3)设A 是矩阵且,则A 有分解式:n m ×,QR A =0)(rank >=r A (2)设A 是n 阶实矩阵,则存在n 阶正交矩阵Q 和n 阶块上三角矩阵R ,使得Q T AQ = R .5.奇异值分解.,,),,,(diag 11的正奇异值是且其中A r r σσσσ =Σ设A 是m ×n 实(复)矩阵,且rank (A ) = r ,则存在m 阶正交(酉)矩阵V 和n 阶正交(酉)矩阵U ,使得,000000⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛Σ=⎟⎟⎠⎞⎜⎜⎝⎛Σ=AU V AU V H T6.正规矩阵的性质(1)n 阶矩阵A 酉相似于对角矩阵的充分必要条件为A 是正规矩阵;(2)设A, B 均为n 阶正规矩阵且AB =BA,则存在n 阶酉矩阵U,使得U H AU与U H BU同时为对角矩阵;(3)若A是正规矩阵,则A 的属于不同特征值的特征向量正交;(4)若A是正规矩阵,则A 的奇异值是A 的特征值的模.第五章Hermite矩阵与正定矩阵1.Hermite矩阵的性质(1) 如果A 是Hermite矩阵,则对正整数k,A k也是Hermite矩阵;(2) 如果A 是可逆Hermite矩阵,则A-1是Hermite矩阵;(3) 若A, B 是Hermite矩阵,则AB 是Hermite矩阵的充分必要条件是AB = BA;(4) 若A 是Hermite矩阵,则对任意方阵S,S H AS 也是Hermite矩阵;(5)设A 为n 阶Hermite 矩阵,则A 的所有特征值全是实数;(6)设A 为n 阶Hermite 矩阵,则A 的属于不同特征值的特征向量互相正交;(7)A 为n 阶Hermite 矩阵的充分必要条件是存在酉矩阵U 使得),,,,(diag 21n H AU U λλλ =Λ=.,,,21均为实数其中n λλλ2. Hermite 矩阵正定的判别方法(1) A 的n 个特征值均为正数;(2) 存在n 阶可逆矩阵P ,使得P HAP = I ;(3) 存在n 阶可逆矩阵Q ,使得A = Q H Q ;(4) 存在n 阶可逆Hermite 矩阵S ,使得A = S 2;(5)A 的顺序主子式均为正数,即;,,1,0)(n k A k =>Δ(6)A 的所有主子式全大于零.3.正定矩阵的性质则其特征值为阶正定矩阵是设,,,,,21n n A λλλ 是正定矩阵;1)1(−A ;0,)2(>×AQ Q m n Q H 则列满秩矩阵是任一如果;,,2,1,)tr(;0)3(n i A A i =>>λ(4) 设A ,B 均为n 阶Hermite 矩阵,且B > 0,则存在可逆矩阵P ,使得.),,,,(diag 21I BP P AP P Hn H ==λλλ4. Hermite 矩阵半正定的判别方法(1)A 的n 个特征值均为非负数;;0002⎟⎟⎠⎞⎜⎜⎝⎛=r H I AP P P n 使得阶可逆矩阵)存在(;)3(Q Q A Q r H=使得的矩阵存在秩为;,Hermite 42S A S n r =使得矩阵阶的)存在秩为((5)A 的所有主子式均非负.5.矩阵不等式;0)1(≥−⇔≥B A B A ;,)2(Bx x Ax x C x B A H H n ≥∈∀⇔≥有都有阶可逆矩阵对任意P n B A B A ⇔>≥)()4();(BP P AP P BP P AP P H H H H >≥则设),,,(diag ),,,(diag )3(11n n b b B a a A ==);,,2,1)(()(n i b a b a B A B A i i i i =>≥⇔>≥(5)设A , B 均为n 阶Hermite 矩阵且A ≥0, B >0,则;1)(1≤⇔≥−AB A B ρ;1)(1<⇔>−AB A B ρ(6)设A 是n 阶Hermite 矩阵,则;)()(max min I A A I A λλ≤≤(8)设A , B 均为n 阶Hermite 矩阵,且AB = BA ,则;022B A B A ≥⇒≥≥;022B A B A >⇒>>.0,0,0)10(≥=≥≥AC CA AC C A 则且设;0,0,0)9(>=>>AC CA AC C A 则且设(7)设A 是Hermite 非负定矩阵,则A ≤tr(A ) I ;第六章范数与极限1.向量范数;2)2(21122⎟⎟⎠⎞⎜⎜⎝⎛=−∑=ni ix x 范数;1)1(11∑==−ni i x x 范数;max )3(1i ni x x ≤≤∞=−∞范数.1,)4(11>⎟⎟⎠⎞⎜⎜⎝⎛=−∑=p x xp pni pi p范数2.矩阵范数;||max 1)1(111∑=≤≤=−mi ij nj a A 范数;)]([2)2(21max 2A A A Hλ=−范数;||max )3(111Hnj ij mi Aa A ==−∞∑=≤≤∞范数().)(||)4(2121112A A tr a A F H m i nj ij F=⎟⎟⎠⎞⎜⎜⎝⎛=−∑∑==范数3.矩阵范数与向量范数的联系,则且设∞=∈×,2,1p CA nm .max 1p x p Ax A p==;)1(p ppB AAB≤;)2(22B A AB F ≤.)3(2F FB A AB≤4.矩阵范数的相容性则且设,,,2,1,,F p CB CA kn nm ∞=∈∈××;)3(p pppA UAVAVUA===;)1(p pTpHA AA==;)2(222A A A H=5.矩阵范数的性质.)4(122∞≤A A A 则是酉矩阵和设,,2,,F p V U CA nm =∈×6.矩阵的谱半径;)(,,)1(A A CC A nn nn ≤⋅∈××ρ有上的任一相容矩阵范数则对设;)(,,0,)2(ερε+≤⋅>∀∈××A A CCA nn nn 使得上存在相容矩阵范数在则设.,)(,)3(R A CR A CA nn nn <⋅<∈××使得存在相容矩阵范数上的充分必要条件是在则设ρ7.矩阵序列与矩阵级数;0lim lim lim )1()()()(=−⇔=⇔=∞→∞→∞→A Aa a A Ak k ij k ijk k k ;,;,发散则如果绝对收敛则如果的收敛半径为设级数∑∑∑∞=∞=∞=><0)(,)()2(k kk k kkk kk A c R A A cR A R z c ρρ;0lim 1)()3(0=⇔<⇔∞→∞=∑kk k kA A Aρ收敛矩阵幂级数.,1,)4(1可逆则的相容矩阵范数且上是,是非奇异矩阵设E A E A CCE CA nn nn nn +<⋅∈∈−×××1.加号逆的定义;1A AGA =)(;2G GAG =)(;)(3AG AG T=)(.)(4GA GA T=)(设A ∈R m ×n ,则G =A +的充分必要条件是:第八章广义逆矩阵2.加号逆在方程组中的应用;)1(b b AA b Ax ==+相容的充要条件是方程组则其通解是相容若,)2(b Ax =是则其最小二乘解的通式不相容若,)4(b Ax =;,)3(是其极小范数解则相容若b A x b Ax +==;,)(nR y y A A I b A x ∈∀−+=++;,)(nR y y A A I b A x ∈∀−+=++.,)5(b A x b Ax +==则其极小最小二乘解是不相容若3.加号逆在矩阵方程中的应用;C B CB AA =++(1)矩阵方程AXB = C 有解的充分必要条件是.,Y AYBB A Y CB A X ∀−+=++++(2)如果AXB = C 有解,则其通解是4.加号逆的计算;)(,)1(1TT A A A A A −+=则列满秩若;)(,)2(1−+=T T AA A A A 则行满秩若(3)设A 的满秩分解为A = BC ,则.)()(11TTT TB B B CC C B C A −−+++==。
目录第一章线性空间和线性变换 (1)§1.1引言 (1)§1.2线性空间 (4)§1.3线性空间的基和维数 (11)§1.4子空间、直和 (17)§1.5线性映射 (24)§1.6同构 (34)§1.7线性映射的矩阵表示 (36)§1.8内积空间 (49)§1.9正交变换 (68)第二章特征值和特征向量 (86)§2.1引言 (86)§2.2特征值、特征多项式和最小多项式 (87)§2.3特征矢量和特征子空间 (103)§2.4约当标准型 (113)§2.5特征值的分布 (128)§2.6几个例子 (138)第三章H阵 (152)§3.1二次型 (152)§3.2H阵、Rayleigh商 (157)§3.3正定阵 (165)§3.4正规阵(或称规范阵) (174)第四章矩阵函数 (186)§4.1范数 (186)§4.2几个收敛定理 (206)§4.3矩阵函数At (216)第五章广义逆及最小二乘解 (233)§5.1矩阵的酉交分解、满秩分解和奇值分解 (233)§5.2广义逆 (238)§5.3方程组的最小二乘解 (248)第六章K积及一些常见的矩阵方程 (257)§6.1K积 (258)§6.2拉伸算子V ec (264)§6.3几个常见的矩阵方程 (271)参考目录 (275)第一章线性空间和线性变换§1.1引言我们假定读者已经具有下述基本知识:集合论的初步常识,行列式、矩阵及其代数运算,线性方程组等等。
如果不够熟悉,学习中可准备一本工程数学——线性代数随手翻阅。
在讨论过程中,我们会尽可能地介绍清楚基本概念:它们的由来、发展及其作用。
第一章 线性空间线性空间是我们以前学习过的n 维向量空间的推广和抽象,它不仅在线性代数和矩阵的有关理论中占有重要的地位,而且它的理论和方法已经渗透到自然科学和工程技术的许多领域。
§1.1 线性空间的定义和性质为下面讨论需要,先引入数域的概念。
定义1 设P 是由一些复数组成的集合,如果它包含0与1,且P 中任意两个数的和、差、积、商(除数不为零)仍然属于P ,则称P 为一个数域。
显然,有理数集Q 、实数集R 和复数集C 都是数域,分别称为有理数域、实数域和复数域。
另外,数集},3{)3(Q b a b a Q ∈+=也是一个数域,但整数集不是数域。
我们知道n 维向量空间n R 就是全体n 维向量组成的集合,在其中定义了加法运算和实数与向量的数乘运算,并且这二种运算满足八条规律。
另外,在全体n m ⨯阶实矩阵组成的集合n m R ⨯中,也定义了矩阵的加法运算和实数与矩阵的数乘运算,且这二种运算满足八条规律。
还有很多这样的例子,从这些例子中可见,所考虑的对象虽然完全不同,但它们有一个共同点,即它们都具有两种运算:一种是两个元素之间的加法运算;另一种运算是数与元素之间的数乘运算,且满足八条规律。
我们撇开这些对象的具体含义,加以抽象化,得到线性空间的概念。
定义2 设P 是一个数域,V 是一个非空集合,如果1. V 中元素具有可加性 对任意V ∈βα,,在V 中总存在唯一元素γ与它们对应,γ称为α与β的和,记作βαγ+=,并且对任意V ∈γβα,,满足:(1)交换律 αββα+=+(2)结合律 )()(γβαγβα++=++(3)在V 中存在零元素0,使对任意V ∈α,都有αα=+0;(4)对任意V ∈α,存在V 中的元素β,使得0=+βα(β称为α的负元素,记为-α);2. V 中元素与数域P 中的数具有可乘性 对任意P k ∈和任意V ∈α,在V 中总存在唯一元素δ与之对应,δ称为数k 与α的数量乘法(简称数乘),记为αδk =,并且对任意P l k ∈,,任意V ∈α,满足(5)αα=1;(6)结合律 αα)()(kl l k =;(7)左分配律 αααl k l k +=+)(;(8)右分配律 βαβαk k k +=+)(;则称非空集合V 为数域P 上的一个线性空间。
在本书中,我们主要讨论实数域或复数域上的线性空间,分别简称为实线性空间或复线性空间。
例1 全体n 维实向量构成的向量空间},,,),,,{(2121R a a a a a a R n n n ∈= ,对于通常的向量的加法及数与向量的乘法满足定义2中的八条规律,因此n R 是一实线性空间;同样},,,),,,{(2121C c c c c c c C n n n ∈= 对于通常的向量加法及数与向量的乘法构成一复线性空间,也可构成一实线性空间。
例2 全体n m ⨯阶实矩阵构成的集合n m R⨯,对于矩阵的加法及数与矩阵的乘法,构成一实线性空间。
例3 所有实系数一元多项式构成的集合][x R ,对于通常的多项式的加法及实数与多项式的乘法构成一实线性空间;同样,次数小于n 的所有实系数一元多项式添上零多项式对于][x R 中的加法与数乘也构成实线性空间, 记为n x R ][.例4 实数区间],[b a 上的所有实值连续函数构成的集合],[b a C ,对于通常函数的加法及实数与函数的乘法构成实线性空间,称之为连续函数空间。
记)(R C 为由所有定义在实数R 上的连续函数组成的空间。
线性空间是从向量空间推广而抽象出来的,因此线性空间的元素也称为向量,线性空间也称向量空间。
从以上例题可看出,构成线性空间的向量可以是数组、矩阵,也可以是多项式、函数等,它的含义比原来n 维向量要广泛得多。
从线性空间的定义,可推导出它的一些简单性质。
(1)零元素是唯一的;(2)负元素是唯一的;(3)ααα-=-==)1(,00,00k ;(4)若0=αk ,则0=k 或0=α。
证明 这里仅证明(1)、(3),其余的证明留作练习。
(1) 设0和10都是零元素,则由定义中的规律(3)有:10+0=10,0+10=0,又 10+0=0+10,∴10=0 ,∴零元素是唯一的。
(3) 先证00=α(注意等号两边的“0”代表不同的对象);对任意V ∈α,ααααααα==+=+=+1)01(010;∴α0是V 中的零元素,根据零元素的唯一性得 00=α。
再证αα-=-)1(;00))1(1()1(==-+=-+αααα ,α)1(-∴是α的负元素,根据负元素的唯一性得 αα-=-)1(;最后证 00=k ;αααααα)1()())((0-+=-+=-+=k k k k k k00))(()(==-+=-+=ααααk k k k 。
§1.2 线性空间的基、维数与向量的坐标在线性代数中讨论n 维向量时,我们曾引进了线性组合、线性相关(无关)、等价向量组、极大无关组等许多重要概念, 而这些概念仅与n 维向量的加法及数乘有关,所以不难将它们推广到一般的数域P 上的线性空间V 。
定义3 设V r ∈ααα,,,21 ,P k k k r ∈,,,21 ,则向量rr k k k αααα+++= 2211称为向量组r ααα,,,21 的一个线性组合,或称α是r ααα,,,21 的线性表示。
定义4 设r ααα,,,21 (1)s βββ,,,21 (2)是V 中两个向量组。
如果(1)中每个向量都可以用向量组(2)线性表示,则称向量组(1)可用向量组(2)线性表示。
如果(1)与(2)可以互相线性表示,则称向量组(1)与(2)等价。
定义5 设r ααα,,,21 是V 中的向量组,若存在不全为0的数P k k k r ∈,,,21使得02211=+++r r k k k ααα (3)则称向量组r ααα,,,21 是线性相关的,反之,仅当021====r k k k 时,才有(3)式成立,则称r ααα,,,21 是线性无关的。
例5 在连续函数空间C (R )中,讨论向量组x x 2cos ,2cos ,1的线性相关性。
解 1cos 22cos 2-=x x 0cos )2(2cos 12=-++∴x x∴ 根据定义5,向量组x x 2cos ,2cos ,1是线性相关的,但向量组x x 2cos ,2cos ,1中任意两个都是线性无关的。
例6 在多项式空间[]x R 中,讨论向量组12,,,,1-n x x x 的线性相关性。
解 若0112210=++++--n n xk x k x k k ,则必有01210=====-n k k k k 。
∴12,,,,1-n x x x 是线性无关的。
仿照以前的证明,可得以下常用的一些结论。
1. 单个向量α是线性相关的充要条件是α=0; 两个以上的向量r ααα,,,21 线性相关的充要条件是其中一个向量可用其余向量线性表示。
2. 若向量组r ααα,,,21 线性无关,但向量组r ααα,,,21 ,β线性相关,则β可由r ααα,,,21 唯一地线性表示。
3. 若向量组r ααα,,,21 线性无关,而且可以被s βββ,,,21 线性表示,则s r ≤。
由此推出,两个等价的线性无关向量组必定含有相同个数的向量。
有了以上的准备之后,我们可以引入下列定义。
定义6 设V 是数域P 上的线性空间,若V n ∈ααα,,,21 满足(1)n ααα,,,21 是线性无关的;(2)V 中任意向量α都可表示为n ααα,,,21 的线性组合:n n x x x αααα+++= 2211则n ααα,,,21 称为线性空间的一个基(或一组基),n 称为线性空间V 的维数,记为n V =dim ,而n x x x ,,,21 称为α在基n ααα,,,21 下的坐标,记为(n x x x ,,,21 )或),,,(21'n x x x 。
注意:1. 若线性空间V 只含有一个零向量,则称V 是零空间,并称零空间的维数为0。
2. 若V 中有任意多个线性无关的向量,则称V 是无限维的。
例如实多项式空间][x R 中,对任意正整数12,,,,1,-n x x x n 都是线性无关,从而][x R 是无限维的。
本课程主要讨论有限维线性空间,不讨论无限维线性空间。
3. 若V 有一个基,则基是不唯一的。
但由于V 的不同基是等价的,从而不同基含有相同个数的向量,因此V 的维数是唯一确定。
另外,根据前面的结论2,α在V 的一个基n ααα,,,21 下的坐标(n x x x ,,,21 )是唯一的。
例7 求复数集C 分别作为实线性空间和复线性空间(对于通常的加法与数乘)的一个基、维数及任一复数bi a +=α在对应基下的坐标。
解(1)C 看成实线性空间,则可验证1,i 是V 的一个基,其维数2dim =C ,复数bi a +=α在基i ,1下的坐标为),(b a 。
(2) C 看成复线性空间,则可验证1是V 的一个基,其维数1dim =C ,复数bi a +=α在基1下的坐标为bi a +。
例8 求实线性空间}.3,2,1,,)({2222=∈==⨯⨯j i R a a A R ij ij 的一个基、维数及任意矩阵22)(⨯=ij a A 在这个基下的坐标。
解 设⎪⎪⎭⎫ ⎝⎛=000111E ,⎪⎪⎭⎫ ⎝⎛=001012E , ⎪⎪⎭⎫ ⎝⎛=010021E ,⎪⎪⎭⎫ ⎝⎛=100022E 若有实数4321,,,k k k k ,使得0224213122111=+++E k E k E k E k则容易推得04321====k k k k ,故22211211,,,E E E E 是22⨯R 中线性无关组,又对任意22)(⨯=ij a A 22⨯∈R,有2222212112121111E a E a E a E a A +++=∴22211211,,,E E E E 是22⨯R 的—个基,4dim 22=⨯R ,任意矩阵A 在这个基下的坐标为(22211211,,,a a a a )。
例9 求实线性空间n x R ][的一个基、维数及多项式1110)(--+++=n n x a x a a x f 在这个基下的坐标。
解 由例6可知,1,,,1-n x x 是线性无关的,且任意1110)(--+++=n n x a x a a x f n x R ][∈可由1,,,1-n x x 线性表示,所以1,,,1-n x x 为n x R ][的一个基,其维数n x R n =][dim ,)(x f 在这个基下的坐标为(110,,,-n a a a )。
另外,容易验证121)(,,,1--=-==n n a x a x ααα (a 为任一实数)也是n x R ][的一个基。