离散数学ch1[2讲义]命题演算
- 格式:ppt
- 大小:2.74 MB
- 文档页数:86
第一章命题演算及其形式系统1.1 命题与联结词内容提要1.1.1 命题我们把对确定的对象作出判断的陈述句称作命题(propositions),当判断正确或符合客观实际时,称该命题真(true),否则称该命题假(false)。
“真、假”常被称为命题的真值。
自然语言中“并非、或者、并且、如果…,那么…、当且仅当” 这样的联结词称为逻辑联结词(logical connectives)。
通常把不含有逻辑联结词的命题称为原子命题或原子(atoms),而把由原子命题和逻辑联结词共同组成的命题称为复合命题(compositive propositions)。
1.1.2 联结词否定词(negation)“并非”(not),用符号┐表示。
设p表示一命题,那么┐p表示命题p的否定。
p真时┐p假,而p假时┐p真。
┐p读作“并非p”或“非p”。
合取词(conjunction)“并且”(and),用符号∧表示。
设p,q表示两命题,那么p∧q表示合取p和q所得的命题,即p和q同时为真时p∧q真,否则p∧q为假。
p∧q读作“p并且q”或“p且q”。
析取词(disjunction)“或”(or)用符号∨表示。
设p,q表示两命题,那么p∨q表示p和q的析取,即当p和q有一为真时,p∨q为真,只有当p和q 均假时p∨q为假。
p∨q读作“p或者q”、“p或q”。
蕴涵词(implication)“如果……,那么……”(if…then…),用符号→表示。
设p,q表示两命题,那么p→q表示命题“如果p,那么q”。
当p真而q假时,命题p→q为假,否则均认为p→q为真。
p→q中的p称为蕴涵前件,q称为蕴涵后件。
p→q的读法较多,可读作“如果p则q”,“p蕴涵q”,“p是q的充分条件”,“q是p的必要条件”,“q当p”,“p仅当q”等等。
数学中还常把q→p,┐p→┐q,┐q→┐p分别叫做p→q的逆命题,否命题,逆否命题。
双向蕴涵词(two-way implication)“当且仅当”(if and only if),用符号表示之。
自考离散数学命题演算笔记一、命题演算的基本概念1. 命题:可以明确判断真假的陈述句称为命题。
2. 命题符号:用字母(如p、q、r等)表示的命题称为命题符号。
3. 命题演算:研究命题符号之间关系的数学分支。
二、命题演算的基本运算1. 否定(¬):表示对命题的否定,如¬p表示对p的否定。
2. 合取(∧):表示两个命题的合取,如p∧q表示p和q同时为真。
3. 析取(∨):表示两个命题的析取,如p∨q表示p和q至少有一个为真。
4. 蕴含(→):表示两个命题的蕴含关系,如p→q表示如果p为真,则q必为真。
5. 双条件(↔):表示两个命题的双条件关系,如p↔q表示p和q同时为真或同时为假。
三、命题演算的基本法则1. 双重否定律:¬¬p = p2. 假言三段论:p→q, ¬q→¬p3. 假言换位:p→q ↔ ¬q→¬p4. 交换律:p∧q ↔ q∧p, p∨q ↔ q∨p5. 结合律:p∧(q∧r) ↔ (p∧q)∧r, p∨(q∨r) ↔ (p∨q)∨r6. 分配律:p∧(q∨r) ↔ (p∧q)∨(p∧r), p∨(q∧r) ↔(p∨q)∧(p∨r)7. 吸收律:p∧(p∨q) ↔ p, p∨(p∧q) ↔ p8. 德摩根律:¬(p∧q) ↔ ¬p∨¬q, ¬(p∨q) ↔ ¬p∧¬q9. 互补律:p∨¬p ↔ 1, p∧¬p ↔ 010. 等幂律:p∧p ↔ p, p∨p ↔ p自考离散数学命题演算笔记四、命题逻辑函数命题逻辑函数是指对命题进行运算的函数,它将命题作为输入,输出也是一个命题。
常见的命题逻辑函数包括:1. 常函数:常函数的输出是一个固定的命题,无论输入是什么。
例如,常真函数T的输出始终为真,常假函数F的输出始终为假。
2. 投影函数:投影函数的输出是其输入之一。
第9章树[离散数学离散数学(第四版)清华出版社]第二章一阶逻辑(Predicate Logic)1、一阶逻辑基本概念2、一阶逻辑公式及解释3、一阶逻辑等值式1、一阶逻辑基本概念前两节介绍的命题与命题演算是命题逻辑的内容,其基本组成单位是原子命题。
一般地,原子命题作为具有真假意义的句子至少由主语和谓语两部分组成。
例如,电子商务是计算机技术的一个应用系统,这里“电子商务”是主语,而“是……”是谓语。
当主语改变为“电子政务”时就得到新的原子命题:电子政务是计算机技术的一个应用系统。
由此可知,主语是独立存在的个体,而谓语用来描述该个体的性质或个体间的关系,这里我们称其为谓词。
用P表示谓词“是……”。
则P(电子商务)或P(电子政务)分别等值于前述两个命题的表达。
将个体用变量(称为个体变量)x推广,则P(x)表示:x是计算机技术的一个新的应用系统。
这时该语句就不是一个命题,而是一个命题函数。
DEFINITION 1.一个谓词P连同相关的n(n≥0)个个体变量组成的表达式称为n元谓词(n-predicate),记P(x1, x2, …, x n),其中n是该表达式中不同个体变量的数目。
EXAMPLE 1设P(x)表示语句“x > 3.”,则P(4)和P(2)的真值是多少?P(4) = 1P(2) = 0EXAMPLE 2设Q(x, y)表示语句“x = y + 3.”,则Q(1, 2) 和Q(3, 0)的真值是多少?Q(1,2) = 0Q(3,0) = 1EXAMPLE 3设R(x, y, z) 表示语句“x+y=z.”,则R(1, 2, 3) 和R(0, 0, 1) 的真值是多少?R(1, 2, 3)= 1R(0, 0, 1)= 0当n>1时,通常P给出了xi(i=1,2,…,n)之间的关系。
例如,P(x,y,z)表示x位于y与z之间,是一个三元谓词。
当x,y,z分别用赤道、南半球、北半球代入时,得到命题:赤道位于南半球与北半球之间,其真值为1。