高中数学2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示教案新人教A版必修4
- 格式:doc
- 大小:517.00 KB
- 文档页数:9
2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算学习目标 1.了解平面向量的正交分解,掌握向量的坐标表示(重点).2.掌握两个向量和、差及数乘向量的坐标运算法则(重点).3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来(易错点).预习教材P94-97完成下面问题:知识点1平面向量的坐标表示1.平面向量的正交分解:把一个平面向量分解为两个互相垂直的向量.2.基底:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.3.坐标:对于平面内的一个向量a,有且仅有一对实数x,y,使得a=x i+y j,则有序实数对(x,y)叫做向量a的坐标.4.坐标表示:a=(x,y).5.特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).【预习评价】思考根据下图写出向量a,b,c,d的坐标,其中每个小正方形的边长是1.答案a=(2,3),b=(-2,3),c=(-3,-2),d=(3,-3)知识点2平面向量的坐标运算设向量a=(x1,y1),b=(x2,y2),λ∈R,则有下表:文字描述符号表示加法两个向量和的坐标分别等于这两个向量相应坐标的和a+b=(x1+x2,y1+y2)减法两个向量差的坐标分别等于这两个向量相应a-b=(x1-x2,y1-y2)坐标的差数乘 实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标λa =(λx ,λy )重要 结论 一个向量的坐标等于表示此向量的有向线段的终点 的坐标减去起点 的坐标已知A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1)【预习评价】已知向量a =(2,4),b =(-1,1),则2a -b =________. 解析 2a -b =2(2,4)-(-1,1)=(5,7). 答案 (5,7)题型一 平面向量的坐标表示【例1】 如图,在直角坐标系xOy 中,OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA →=a ,AB →=b .四边形OABC 为平行四边形.(1)求向量a ,b 的坐标; (2)求向量BA →的坐标; (3)求点B 的坐标.解 (1)作AM ⊥x 轴于点M , 则OM =OA ·cos 45°=4×22=22, AM =OA ·sin 45°=4×22=22, ∴A (22,22),故a =(22,22). ∵∠AOC =180°-105°=75°,∠AOy =45°, ∴∠COy =30°.又OC =AB =3.∴C ⎝⎛⎭⎫-32,323,∴AB →=OC →=⎝⎛⎭⎫-32,323,即b =⎝⎛⎭⎫-32,323. (2)BA →=-AB →=⎝⎛⎭⎫32,-323. (3)OB →=OA →+AB →=(22,22)+(-32,323)=⎝⎛⎭⎫22-32,22+332.∴点B 的坐标为(22-32,22+332).规律方法 求点和向量坐标的常用方法(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置的坐标.(2)求一个向量的坐标时,可以首先求出这个向量的始点坐标和终点坐标,再运用终点坐标减去始点坐标得到该向量的坐标.【训练1】 已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为( ) A .(2,0) B .(-3,6) C .(6,2)D .(-2,0)解析 MN →=-3a =-3(1,-2)=(-3,6), 设N (x ,y ),则MN →=(x -5,y +6)=(-3,6),所以⎩⎪⎨⎪⎧ x -5=-3,y +6=6,即⎩⎪⎨⎪⎧x =2,y =0.选A .答案 A题型二 平面向量的坐标运算【例2】 (1)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)解析 设C (x ,y ),则AC →=(x ,y -1)=(-4,-3),即x =-4,y =-2,故C (-4, -2),则BC →=(-7,-4),故选A . 答案 A(2)若A ,B ,C 三点的坐标分别为(2,-4),(0,6),(-8,10),求AB →+2BC →,BC →-12AC →的坐标.解 因为AB →=(-2,10),BC →=(-8,4),AC →=(-10,14), 所以AB →+2BC →=(-2,10)+2(-8,4)=(-18,18),BC →-12AC →=(-8,4)-12(-10,14)=(-8,4)-(-5,7)=(-3,-3).规律方法 平面向量坐标运算的技巧(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行. (2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可完全类比数的运算进行.【训练2】 已知a =(-1,2),b =(2,1),求下列向量的坐标: (1)2a +3b ;(2)a -3b ;(3)12a -13b .解 (1)2a +3b =(-2,4)+(6,3)=(4,7). (2)a -3b =(-1,2)-(6,3)=(-7,-1). (3)12a -13b =(-12,1)-(23,13)=(-76,23).方向1 由相等的向量求参数的值【例3-1】 已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析 m a +n b =(2m ,m )+(n ,-2n )=(2m +n ,m -2n )=(9,-8),即⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,所以m -n =-3. 答案 -3方向2 向量运算与平面几何的综合应用【例3-2】 已知平面上三点的坐标分别为A (-2,1),B (-1,3),C (3,4),求点D 的坐标,使这四点构成平行四边形的四个顶点.解 当平行四边形为ABCD 时,设D (x ,y ),由AB →=(1,2),DC →=(3-x,4-y ),且AB →=DC →,得D (2,2).当平行四边形为ACDB 时,设D (x ,y ),由AB →=(1,2),CD →=(x -3,y -4),且AB →=CD →,得D (4,6).当平行四边形为ACBD 时,设D (x ,y ),由AC →=(5,3),DB →=(-1-x,3-y ),且AC →=DB →,得D (-6,0),故D 点坐标为(2,2)或(4,6)或(-6,0).规律方法 坐标形式下向量相等的条件及其应用 (1)条件:相等向量的对应坐标相等.(2)应用:利用坐标形式下向量相等的条件,可以建立相等关系,由此可以求出某些参数的值或点的坐标.【训练3】 已知A (2,4),B (-4,6),若AC →=32AB →,BD →=43BA →,则CD →的坐标为________.解析 设C (x 1,y 1),D (x 2,y 2),则(x 1-2,y 1-4)=32(-6,2)=(-9,3),则x 1=-7,y 1=7,(x 2+4,y 2-6)=43(6,-2)=(8,-83),∴x 2=4,y 2=103,则CD →=(11,-113).答案 (11,-113)课堂达标1.已知点A (-2,1),B (3,-2),则BA →的坐标是( ) A .(-5,3) B .(5,-3) C .(-5,-3)D .(5,3)解析 BA →=(-2,1)-(3,-2)=(-5,3). 答案 A2.若AB →=(3,5),AC →=(-1,2),则CB →等于( )A .(4,3)B .(-4,-3)C .(-4,3)D .(4,-3)解析 CB →=AB →-AC →=(3,5)-(-1,2)=(4,3). 答案 A3.已知平面向量a =(-2,0),b =(-1,-1),则12a -2b 等于( )A .(1,2)B .(-1,-2)C .(-1,2)D .(1,-2)解析 12a -2b =(-1,0)-(-2,-2)=(1,2).答案 A4.已知点A (2,1),B (-2,3),且AC →=12AB →,则点C 的坐标为________.解析 设C (x ,y ),则(x -2,y -1)=12(-4,2)=(-2,1),∴x =0,y =2. 答案 (0,2)5.已知A (2,0),a =(x +3,x -3y -5),若a =OA →,其中O 为原点,求x ,y 的值.解 由题意知⎩⎪⎨⎪⎧ x +3=2,x -3y -5=0,解得⎩⎪⎨⎪⎧x =-1,y =-2.课堂小结1.在平面直角坐标系中,平面内的点、以原点为起点的向量、有序实数对三者之间建立一一对应关系.关系图如图所示.2.向量的坐标和这个向量的终点的坐标不一定相同.当且仅当向量的起点在原点时,向量的坐标才和这个终点的坐标相同.3.向量坐标形式的计算,要牢记公式,细心计算,防止符号错误.基础过关1.给出下面几种说法: ①相等向量的坐标相同;②平面上一个向量对应于平面上唯一的坐标;③一个坐标对应于唯一的一个向量;④平面上一个点与以原点为始点、该点为终点的向量一一对应. 其中正确说法的个数是( ) A .1 B .2 C .3D .4解析 由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故③错误. 答案 C2.已知AB →=(5,-3),C (-1,3),CD →=2AB →,则点D 坐标是( ) A .(11,9) B .(4,0) C .(9,3)D .(9,-3)解析 设D (x ,y ),则(x +1,y -3)=(10,-6),∴x =9,y =-3,即点D 的坐标是(9,-3).答案 D3.已知向量a =(1,2),b =(2,3),c =(3,4),且c =λ1a +λ2b ,则λ1,λ2的值分别为( ) A .-2,1 B .1,-2 C .2,-1D .-1,2解析 由⎩⎪⎨⎪⎧ λ1+2λ2=3,2λ1+3λ2=4解得⎩⎪⎨⎪⎧λ1=-1,λ2=2.答案 D4.在平行四边形ABCD 中,若AB →=(2,4),AC →=(1,3),则AD →=________(用坐标表示). 解析 AD →=AC →-AB →=(1,3)-(2,4)=(-1,-1). 答案 (-1,-1)5.已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为________. 解析 ∵AB →=OB →-OA →=(4,-1)-(1,3)=(3,-4), ∴与AB →同方向的单位向量为A B →|AB →|=⎝⎛⎭⎫35,-45. 答案 ⎝⎛⎭⎫35,-45 6.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),求λμ的值.解 以向量a 和b 的交点为原点建立平面直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),根据c =λa +μb ⇒(-1,-3)=λ(-1,1)+μ(6,2),有-λ+6μ=-1,λ+2μ=-3,解之得λ=-2且μ=-12,故λμ=4.7.已知点A (3,-4)与B (-1,2),点P 在直线AB 上,且|AP →|=2|PB →|,求点P 的坐标. 解 设P 点坐标为(x ,y ),|AP →|=2|PB →|. 当P 在线段AB 上时,AP →=2PB →. ∴(x -3,y +4)=2(-1-x,2-y ), ∴⎩⎪⎨⎪⎧x -3=-2-2x ,y +4=4-2y ,解得⎩⎪⎨⎪⎧x =13,y =0.∴P 点坐标为(13,0).当P 在线段AB 延长线上时,AP →=-2PB →. ∴(x -3,y +4)=-2(-1-x,2-y ),∴⎩⎪⎨⎪⎧ x -3=2+2x ,y +4=-4+2y ,解得⎩⎪⎨⎪⎧x =-5,y =8. 综上所述,点P 的坐标为(13,0)或(-5,8).能力提升8.向量AB →=(7,-5),将AB →按向量a =(3,6)平移后得向量A ′B ′→,则A ′B ′→的坐标形式为( )A .(10,1)B .(4,-11)C .(7,-5)D .(3,6)解析 A ′B ′→与AB →方向相同且长度相等, 故A ′B ′→=AB →=(7,-5). 答案 C9.已知a =(3,1),若将向量-2a 绕坐标原点逆时针旋转120°得到向量b ,则b 的坐标为( )A .(0,4)B .(23,-2)C .(-23,2)D .(2,-23)解析 ∵a =(3,1),∴-2a =(-23,-2), 易知向量-2a 与x 轴正半轴的夹角α=150°(如图).向量-2a 绕坐标原点逆时针旋转120°得到向量b ,在第四象限,与x 轴正半轴的夹角β=30°,∴b =(23,-2),故选B .答案 B10.若向量a =(1,1),b =(1,-1),c =(-1,2),则c =________(用a ,b 表示).解析 设c =x a +y b ,即(-1,2)=(x ,x )+(y ,-y )=(x +y ,x -y ),即⎩⎪⎨⎪⎧x +y =-1,x -y =2,解得⎩⎨⎧x =12,y =-32,所以c =12a -32b .答案 12a -32b11.已知A (-1,-2),B (2,3),C (-2,0),D (x ,y ),且AC →=2BD →,则x +y =________. 解析 ∵AC →=(-2,0)-(-1,-2)=(-1,2), BD →=(x ,y )-(2,3)=(x -2,y -3), 又2BD →=AC →,即(2x -4,2y -6)=(-1,2),∴⎩⎪⎨⎪⎧2x -4=-1,2y -6=2, 解得⎩⎪⎨⎪⎧x =32,y =4,∴x +y =112.答案11212.已知点A (-1,2),B (2,8)及AC →=13AB →,DA →=-13BA →,求点C ,D 和CD →的坐标.解 设点C (x 1,y 1),D (x 2,y 2),由题意可得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). ∵AC →=13AB →,DA →=-13BA →,∴(x 1+1,y 1-2)=13(3,6)=(1,2),(-1-x 2,2-y 2)=-13(-3,-6)=(1,2),则有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2,解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.∴C ,D 的坐标分别为(0,4)和(-2,0), ∴CD →=(-2,-4).13.(选做题)已知点O (0,0),A (1,2),B (4,5),及OP →=OA →+tAB →. (1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限? (2)四边形OABP 能为平行四边形吗?若能,求t 值;若不能,说明理由. 解 (1)OP →=OA →+tAB →=(1,2)+t (3,3) =(1+3t,2+3t ),若点P 在x 轴上,则2+3t =0,∴t =-23. 若点P 在y 轴上,则1+3t =0,∴t =-13. 若点P 在第二象限,则⎩⎪⎨⎪⎧1+3t <0,2+3t >0, ∴-23<t <-13. (2)OA →=(1,2),PB →=OB →-OP →=(3-3t,3-3t ). 若四边形OABP 为平行四边形, 则OA →=PB →, ∴⎩⎪⎨⎪⎧ 3-3t =1,3-3t =2,该方程组无解. 故四边形OABP 不能成为平行四边形.。
§2.3.1平面向量基本定理一.知识点梳理1. 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e .2.对定理的解释:①1e ,2e 两个向量必须是不能共线的,也就说这两个向量不平行②在平面内,不管什么向量都可以表示成一个实数乘以一个向量与另一个实数 乘以另外一个向量再求和。
3.基底的概念:不共线的向量1e ,2e 叫做表示这一平面内所有向量的一组基底。
4.向量的夹角:两个非零向量a,b,做 =a, =b,则 叫做向量a 与b 的夹角。
说明:找两个向量的夹角时,必须将两个向量的起点放在一起。
5.向量的垂直:当两个向量的夹角为直角的时候,就称这两个向量垂直。
记做:a ⊥b二.例题讲解例1.如图,OA ,OB 不共线,AP =t AB (t ∈R),试用OA ,OB 表示OP .解:∵AP =t AB ∴OP =OA +AP =OA + t AB=OA + t(OB -OA )=OA + t OB -t OA =(1-t)OA + t OB .例2.设两个不共线的向量e 1、e 2,若向量a =2e 1-3e 2,向量b =2e 1+3e 2,向量c =2e 1-9e 2,问是否存在这样的实数λ、μ,使向量d =λa +μb 与向量c 共线?分析:要使d 与c 共线,则存在实数k 使d =k c ,如果能够找到这个实数,那么就存在,找不到就不存在。
解:因为d =λ(2e 1-3e 2)+μ(2e 1+3e 2)=(2λ+2μ)e 1+(3μ-3λ)e 2,要使d 与c 共线,则存在实数k 使d =kc,即(2λ+2μ)e 1+(3μ-3λ)e 2=2k e 1-9k e 2. 由2λ+2μ=2k 及3μ-3λ=-9k 得λ=-2μ.故存在这样的实数λ和μ,只要λ=-2μ就能使d 与c 共线.OAOBAOB θ∠=例3. 在△ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =31CA +λCB ,则λ等于( ) A.32 B.31 C.-31 D.-32分析:因为CD =31CA +λCB , 形式与平面向量基本定理类 C似,所以可以考虑使用平面向量基本定理,结合向量的加法, 减法的三角形法则一同考虑。
必修四第二章平面向量2.3.2 平面向量的坐标运算教师活动导入新课一、复习提问:1.复习向量相等的概念相等向量OA =BC ,方向相同,大小相等。
2.平面向量的基本定理(基底)a =λ11e +λ22e ,其实质:同一平面内任一向量都可以表示为两个不共线向量的线性组合。
二、新课:1.正交分解的物理背景及其概念图2.3-6(P105),光滑斜面上一个木块受到重力G 的作用,产生两个效果,一是木块受平行于斜面的F 1力的作用,沿斜面下滑;一是木块产生垂直于斜面的压力F 2,G =F 1+F 2,叫做把重力G 分解。
由平面向量的基本定理,对平面上任意向量a ,均可以分解为不共线的两个向量a =λ11e +λ22e 。
把一个向量分解为两个互相垂直的向量,叫做把向量正交分解。
2.平面向量的坐标表示取x 轴、y 轴上两个单位向量i ,j 作基底,则平面内作一向量a =x i +y j ,记作:a =(x , y ) 称作向量a 的坐标,这就叫做向量的坐标表示。
i =(1,0),j =(0,1),0=(0,0)例2 如图,分别用基底i ,j 表示向量a 、b 、c 、d ,并求出它们的坐标。
解:由图可知:12AA AA =+a =2i +3j,所以,a =(2,3),同理,有:b =-2i +3j =(-2,3),c =-2i -3j =(-2,-3),d =2i -3j =(2,-3)。
3.平面向量的坐标运算(1)已知a (x 1, y 1),b (x 2, y 2),求a + b ,a - b 的坐标;(2)已知a (x , y )和实数λ,求λa 的坐标。
解:a + b =(x 1 i +y 1 j )+( x 2 i +y 2 j )=(x 1+ x 2) i + (y 1+y 2) j即:a + b =(x 1+ x 2, y 1+y 2),同理:a - b =(x 1-x 2, y 1-y 2)。
2.3.2 平面向量的正交分解及坐标表示教学分析在平面向量基本定理的基础上,进一步学习向量的正交分解以及向量的坐标化。
在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果分别取与x轴、y轴方向相同的两个单位向量i、j作为基底时,这时,对于平面直角坐标系内的任意一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=x i+y j。
于是,平面内的任一向量a都可由x、y唯一确定。
这样将向量a都可由有序实数对(x,y)唯一表示,从而实现了向量的“量化”,体现了数学中的“数形结合”的思想,为向量的坐标的运算奠定了基础。
教学目标1、知识与技能:(1)理解平面向量的正交分解的概念;(2)理解和掌握平面向量的坐标表示的概念;(3)培养学生探究问题、解决问题的能力。
2、情感态度与价值观:通过平面向量的正交分解及坐标表示,揭示图形(向量)与代数(坐标)之间的联系。
重点难点教学重点:平面向量的正交分解、平面向量的坐标表示.教学难点: 平面向量的坐标的理解。
授课类型:新授课教具:课件教学过程:一、导入新课回忆:平面向量基本定理(利用课件动态演示平移过程,充分反应平面向量基本定理的实质,更好地为学生掌握这节课必备的知识做好准备)即:平面内的任意向量a,都可以用两个不共线向量1e,2e唯一表示。
物理问题:如图,在光滑的斜面上有一个木块,它受到的重力为G。
现在将重力G分解成两个力,下滑力F1,它的方向如何?木块对斜面的压力F2,它的方向又如何呢?那么这三个力有什么关系呢?请问F1与F2有何位置关系?G=F1+F2F1⊥F2(用课件动态做出三个力,展示力学中力的分解,从而引入本节课的第一个知识点:平面向量的正交分解)二、新课讲解:知识点一:平面向量的正交分解: 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.练习1:如图,向量i、j是两个互相垂直的单位向量,向量a与i 的夹角是30°,|a|=6,怎样用向量i、j表示向量a呢?(用课件将向量a进行分解,让学生更好地掌握平面向量的正交分解,为讲解向量的坐标打下基础)在平面上,如果我们选取互相垂直的两个向量作为基底,会给我们的问题带来很方便。
2.3.2 平面向量的正交分解及坐标表示2.3.3 平面向量的坐标运算教学目标:1、掌握平面向量的正交分解及坐标表示的概念,掌握平面向量的坐标运算。
2、经历观察、操作、交流等活动,增强学生观察能力,培养学生从一般到特殊的认知规律和数形结合的思想。
3、通过平面向量坐标的学习,让学生感受平面向量的正交分解与现实生活的联系,激发学生学习数学的兴趣,感受数学之美。
教学重点:平面向量的坐标运算。
教学难点:平面向量坐标表示的理解及坐标运算的准确性。
教学过程:一、复习回顾1.平面向量基本定理的内容?2.分别用给定的一组基底表示向量思考:从这个问题中,你认为选取哪组基底对向量进行分解比较简单?二、新知探究思考:1.光滑斜面上木块受到重力作用的分解特点?把一个向量分解为两个相互垂直的向量,叫做把向量正交分解思考:2.平面直角坐标系中点A可以用坐标来表示;平面向量是否也有类似的表示呢?课堂探究一:平面向量的坐标表示如图在直角坐标系中,已知A(1,0),B(0,1),C(3,4),D(5,7).设→→==jOBiOA,填空:(1)|i |_____,|j |______,|OC |______;=== (2)若用 →→j i , 来表示OD OC ,,则: (3)向量 CD 能否由 →→j i , 表示出来?知识点1:平面向量的坐标表示概念如图, →→j i ,分别是与x 轴、y 轴方向相同的单位向量,若以 →→j i ,为基底,则对于该平面内的任一向量→a ,有且只有一对实数x,y,使得→→→+=j y i x a这样,平面内的任一向量→a 都可由x ,y 唯一确定,我们把有序数对(x,y )叫做向量 →a 的坐标,记作()y x a ,=→显然,()()()0,00,1,0,0,1===→→→j i 。
知识点2:OA 的坐标就是点A 的坐标设 →→+=j y i x OA ,则向量OA 的坐标(x,y )就是终点A 的坐标;反过来,终点A 的坐标(x,y)也就是向量 OA 的坐标.例1.如图,分别用基底→→j i ,表示向量→→→→d c b a ,,,,并求出它们的坐标。
2.3.1 平面向量基本定理2.3.2平面向量的正交分解及坐标表示教材分析本节内容是数学必修4 第二章第三节的第一课,平面向量基本定理揭示了平面向量的基本关系和基本结构,是进一步研究向量问题的基础;是进行向量运算的基本工具,是解决向量或利用向量解决问题的基本手段. 掌握了平面向量基本定理及坐标表示,可以使向量的运算完全代数化,将数与形紧密地结合起来,这样许多几何问题就转化为学生熟知的数量运算,这也是中学数学课中学习向量的目的之一,所以我认为对平面向量基本定理的应用是本节课的重点.另外对向量基本定理的理解这一点对于初学者来说有一定难度,所以是本节的难点.课时分配本节内容用1课时的时间完成,主要讲解平面向量基本定理、向量的坐标表示.教学目标1.了解平面向量的基本定理及其意义,理解掌握平面向量的的正交分解及其坐标表示.2.经历平面向量基本定理的形成探究过程,掌握正交分解下向量的坐标表示,认识平面向量基本定理是实现向量由几何形式过渡到代数形式的桥梁.3.通过本节课的学习,了解先关数学知识的来龙去脉,认识其作用和价值,培养学生的探索研究能力.重点: 正交分解下向量的坐标表示.难点:平面向量的基本定理,正交分解下向量的坐标表示.知识点:平面向量的基本定理,正交分解下向量的坐标表示的理解.能力点:转化思想的理解与应用.教育点:通过介绍平面向量的基本定理,正交分解下向量的坐标表示.,给学生渗透转化思想的应用.几何问题代数化的理解与应用.自主探究点:平面向量基本定理的理解与广泛应用.考试点:向量的运算代数化,将数与形紧密地结合起来,这样几何问题就转化为学生熟知的数量运算.拓展点:转化思想的应用理解.教具准备多媒体课件和三角板课堂模式学案导学一、复习引入1.实数与向量的积:实数λ与向量的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)0λ>时λa与a方向相同;0λ<时λa 与a方向相反;0λ=时λa =02.运算定律结合律:λ(μ a)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ (a+b)=λa+λb3. 向量共线定理向量b与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa.问题1:向量与数量有什么联系和区别? 向量有哪几种表示? 问题2:什么叫向量的模?零向量、单位向量、平行向量分别是什么概念?4.G ,下滑力为F 1,木块 5..力也可以分解,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,就会形成一个新的数学理论.【设计意图】复习回顾,设置物理情境,便于学习新知.【设计说明】学生探究回答.二、探究新知探究一:平面向量基本定理思考1:给定平面内任意两个向量e 1,e 2,如何求作向量3e 1+2e 2和e 1-2e 2?【设计意图】使学生在已有知识的基础上,探索新知,引出本课题.【设计说明】教师引导大家回答演示.思考2能否在OA 、OB思考3OA,OB,OC不共线,能否在直线M P COB 上分别找一点M 、N ,使 OM ON OC ?【设计意图】从两个角度让学生感知体会任意向量可以在给定的方向上分解.【设计说明】教师引导同学回答并演示.思考4:若上述向量e 1,e 2,a 都为定向量,且e 1,e 2不共线,则实数λ1,λ2是否存在?是否唯一?思考5:若向量a 与e 1或e 2共线,a 还能用λ1e 1+λ2e 2表示吗?【设计意图】体会感知唯一性及普遍性. 【设计说明】师生互动探究,由浅入深,逐步引出主题. 思考6:根据上述分析,平面内任一向量a 都可以由这个平面内两个不共线的向量e 1,e 2表示出来,从而可形成一个定理.你能完整地描述这个定理的内容吗?若e 1,e 2是同一平面内的两个不共线向量,则对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.【设计意图】培养学生归纳总结规律与特点,并能做到言简意赅.【设计说明】教师引导,大家各抒己见,找同学发言.思考7:上述定理称为平面向量基本定理,不共线向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 那么同一平面内可以作基底的向量有多少组?不同基底对应向量a 的表示式是否相同?【设计意图】进一步探究几个关键点:(1) 我们把不共线向量e 1 ,e 2叫做表示这一平面内所有向量的a=λ1e 1+0e 2 a1e 1 e 2 aa =0e 1+λ2e 2一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a在给出基底e1,e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1 ,λ2是被a ,e1 ,e2唯一确定的数量..【设计说明】注意引导鼓励大家去发现,大家可能探究不是很全面,可以小组讨论.探究(二):平面向量的正交分解及坐标表示思考1:不共线的向量有不同的方向,对于两个非零向量a和b,作 a, b,如图.为了反映这两个向量的位置关系,称∠AOB为向量a与b的夹角.你认为向量的夹角的取值范围应如何约定为宜?思考2:如果向量a与b的夹角是90°,则称向量a与b垂直,记作a⊥b.互相垂直的两个向量能否作为平面内所有向量的一组基底?思考3:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如图,向量i、j是两个互相垂直的单位向量,向量a与i的夹角是30°,且|a|=4,以向量i、j为基底,向量a如何表示?应用.在不共线的两个向量中,垂直是一种重要的特殊情形,体会这样给问题研究带来的方便.【设计说明】引导大家自主探究.思考4:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,对于平面内的一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=x i+y j.我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y).其中x 叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量a的坐标表示.那么x、y的几何意义如何?OA=a,则OA= (x,y)【“有效能算”的思想.【设计说明】充分运用图形之间的几何关系,求向量的坐标..三、理解新知平面向量基本定理几个关键点:(1) 我们把不共线向量e1 ,e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a在给出基底e1,e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1 ,λ2是被a ,e1 ,e2唯一确定的数量.平面向量坐标表示给解决问题带来的一些方便,几何问题代数化,注意体会其中的思想与方法.【设计意图】进一步理解平面向量基本定理及其坐标表示.【设计说明】组织学生进行思考、交流,得到结论.四、运用新知例1 :如图,已知向量e1、e2,求作向量-2.5e1+3e2.a,b,c,d 并求解:由图可知a=AA AA2i+3j12所以a=(2,3).同理,b=-2i+3j=(-2,3);c=-2i-3j=(-2,-3);d=2i-3j=(2,-3).【设计意图】设置提问:引导学生看图分析,让学生能够通过这些问题,弄清向量的坐标表示及应用.【设计说明】师生共同分析,抓住关键,提问学生看图回答.五、课堂小结1.平面向量基本定理是建立在向量加法和数乘运算基础上的向量分解原理,同时又是向量坐标表示的理论依据,是一个承前起后的重要知识点.2.向量的夹角是反映两个向量相对位置关系的一个几何量,平行向量的夹角是0°或180°,垂直向量的夹角是90°.3.向量的坐标表示是一种向量与坐标的对应关系,它使得向量具有代数意义.将向量的起点平移到坐标原点,则平移后向量的终点坐标就是向量的坐标.教师总结:平面向量基本定理既是本节的重点又是本节的难点,告诉我们同一平面内任意向量都可以表示成两个不共线的向量的线性组合,注意理解体会.体会平面向量坐标表示给问题解决带来的方便,体会其中转化的思想。
人民教育出版社数学必修42。
3平面向量的基本定理及坐标表示2。
3。
1平面向量基本定理2.3.2平面向量的正交分解及坐标表示石家庄市第十五中学王真学生先独立思考,然后小组讨论,选代表上台前展示,并叙述自己的理由。
教师巡视,针对出现问题及时引导.讨论辨析结束后,教师归纳总结,体会由特殊到一般的思维方法探究2:若平面内的任一向量a 都可以用形如2211e e λλ+的向量来表示,则对于每个a ,21,λλ是否唯一?并说明理由.针对学生的回答,辅以几何画板的演示,帮助学生更深刻的理解“唯一性”由探究形成定理,由学生发现定理合作交流,得出结论(学生总结定理内容)平面向量基本定理 如果21e e 、是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数21,λλ,使2211e e a λλ+=.我们把不共线向量21e e 、叫做表示这一平面内所有向量的一组基底基底无数组,关键不唯一通过合作探究,学生总结归纳对定理的说明:(1) 基底不唯一,关键是不共线; (2) 由定理可将任一向量在给出基底的条件下进行分解;(3) 基底给定时,分解形式唯一。
是被 ,唯一确定的数量进一步完善定理关键内容几何画板演示促使学生再次体会定理的几个关键点1e 、2e 作为正交基底量a,由平面向量基本定理知,有且只有一对实数a=x 1e +y 我们把(x七、板书设计 2。
3平面向量的基本定理及坐标表示1.平面向量基本定理2.向量的夹角 注(1)同一平面内(2)21e e 、是不共线向量 3。
平面向量的坐标表示 (3)任一向量a(4)有且只有一对实数21,λλ,使2211e e aλλ+=。
2.3.1-----2.3.2平面向量基本定理、正交分解及坐标表示一、教材分析:本节课是在学生学习了向量的概念及表示向量的线性运算后对向量知识的进一步学习。
平面向量基本定理和坐标表示及综合前面的向量知识,同时又是后续向量的坐标运算奠定了基础,起到了承前启后的作用。
过程与方法借助于由特殊到一般的方式得出平面向量基本定理及坐标表示的过程,培养分析问题和解决问题的能力。
二、学习目标1、理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题。
2、理解平面向量的坐标的概念,掌握平面向量的正交分解及其坐标表示了。
情感态度价值观1、感受数学的精确性、概括性和同一性。
2、体会数形结合的思想 三、重点、难点教学重点:平面向量的基本定理及坐标表示[来源: 教学难点:平面向量的基本定理。
教学方法:引导探究式 教学手段:多媒体教学 四、教学过程:(一)复习提问:1.向量的加法运算(三角形法则、平行四边形法则)。
2.实数与向量的积3.向量共线定理设计意图:为让学生更好的理解问题做好铺垫。
(二)引入新知设计意图:使学生自然进入探索新知环节 (二)新课讲解1AB ,, 问题:已知非零向量那么对于同一平面内的任意向量是否能用线性表示?a a 2, 问题:如果平面内的向量不能由单个向量线性表示 又该如何具体表示呢?121233 、,问题:已知向量求作向量2e e e e向量的合成 向量的分解问题4、对于平面内任意向量,是不是都可以用 e 1 e 2 来表示呢 教师引导学生思考问题,引出本节课的教学内容并用幻灯片演示分解过程向量的合成与分解是互逆过程,向量的合成适用平行四边形法则,分解当然也适合平行四边形法则,进而引导学生用平行四边形分解向量。
设计意图:通过幻灯片演示分解过程;使学生理解平面内任意向量都可以按向量e1、e2进行分解 经过之前几节课的学习,学生已经基本掌握了向量的线性运算及加减法元算,此处的思考题意在使学生更深入地思考:是否任意的向量都可以用任意的两个向量来表示,进而说明了平面向量基本定理的必要性。
平面向量基本定理、平面向量的正交分解和坐标表示及运算教案东宁县绥阳中学教学目的:(1)了解平面向量基本定理;理解平面向量的坐标的概念;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理.教学难点:平面向量基本定理的理解与应用. 向量的坐标表示的理解及运算的准确性. 教学过程:一、复习引入:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =02.运算定律结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb 3. 向量共线定理向量b 与非零向量a 共线则:有且只有一个非零实数λ,使b =λa .二、讲解新课:1.思考:(1)给定平面内两个向量1e ,2e ,请你作出向量31e +22e ,1e -22e ,(2)同一平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示?平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e .2.探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量3.讲解范例:例1 已知向量1e ,2e 求作向量 2.51e +32e 例2 本题实质是4.练习1:1.设e 1、e 2是同一平面内的两个向量,则有( D )A.e 1、e 2一定平行B.e 1、e 2的模相等C.同一平面内的任一向量a 都有 a =λe 1+μe 2(λ、μ∈R) D.若e 1、e 2不共线,则同一平面内的任一向量a 都有 a =λe 1+ue 2(λ、u ∈R)2.已知向量 a =e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a+b 与c =6e 1-2e 2的关系(B)A.不共线B.共线C.相等D.无法确定3.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1不共线,a 与e 2不共线..),R (,OP OB OA t AB t AP OB OA 表示,用且不共线、如图,OA B P.1,n m OB n OA m OPAB P B A O 且上,则在直线若点三点不共线,、、已知。
《平面向量的正交分解及坐标表示》教学设计武山一中【教材内容地位】本课时的内容包括“向量的正交分解及坐标表示”,向量基本定理实际上是建立向量坐标的一个逻辑基础,因为只有确定了任意一个向量在两个不共线的基底上能进行唯一分解,建立坐标系才有了依据,同时,只有正确地构建向量的坐标才能有向量的坐标运算。
2.3节平面向量的基本定理及坐标表示主要四部分内容 1.平面向量的基本定理,2.平面向量的正交分解及坐标表示,3.平行向量的坐标运算,4.平面向量共线的坐标表示。
本节教学的内容是本单元的第2节。
【目标与目标解析】知识与技能:1.掌握向量的正交分解,理解向量坐标表示的定义,具体要求:(1)能写出给定向量的坐标;(2)给出坐标能画出表示向量的有向线段;2.掌握向量的坐标与表示该有向线段起、终点坐标的关系,具体要求:(1)知道起点在坐标原点时,向量的坐标就是终点的坐标;(2)i(1,0)=,j(0,1)=,0(0,0)=3.理解向量与坐标之间是一一对应关系。
过程与方法:学生经历向量的几何表示——线性表示——坐标表示的实现过程,从中体会由特殊到一般的研究问题的方法,体会由“形”到“数”的数形结合思想及与点与坐标关系的类比思想。
情感态度与价值观:在实现平面向量坐标表示的过程中,学生独立探索、参与讨论交流,从中加深对知识的理解,体验学习数学的乐趣。
重点:平面向量坐标表示的定义突破办法:渗透从特殊到一般的归纳,由“形”到“数”的数形结合的思想. 难点:对平面向量坐标表示生成过程的理解突破办法:设置情景问题,注意过程分析与引导,力求自然、合理【教学过程】 一、知识再现、学习准备平面向量基本定理:如果 是同一平面内的两个不共线非零向量,那么对于平面内的任一向量 ,有且只有一对实数 , 使 λ11e +λ22e 。
(1)我们把不共线向量叫做表示这一平面内所有向量的一组基底; (2)基底不唯一,关键是不共线;(3)由定理可将任一向量a 在给出基底 的条件下进行分解; (4)基底给定时,分解形式唯一. λ1,λ2是由 a , 唯一确定的数量。
2.3 平面向量的基本定理及其坐标表示2.3.1 平面向量基本定理 2.3.2 平面向量的正交分解及坐标表示一、教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果选取互相垂直的向量作为基底时,会给问题的研究带来方便.联系平面向量基本定理和向量的正交分解,由点在直角坐标系中的表示得到启发,要在平面直角坐标系中表示一个向量,最方便的是分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,这时,对于平面直角坐标系内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=x i+y j.于是,平面内的任一向量a都可由x、y唯一确定,而有序数对(x,y)正好是向量a的终点的坐标,这样的“巧合”使平面直角坐标系内的向量与坐标建立起一一映射,从而实现向量的“量化”表示,使我们在使用向量工具时得以实现“有效能算”的思想.二、教学目标1、知识与技能:了解平面向量的基本定理及其意义;理解平面里的任何一个向量都可以用两个不共线的向量来表示,掌握平面向量正交分解及其坐标表示。
2、过程与方法:初步掌握应用向量解决实际问题的重要思想方法;能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达。
3、情感态度与价值观:通过平面向量的正交分解及坐标表示,揭示图形(向量)与代数(坐标)之间的联系。
三、重点难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的运用.四、教学设想(一)导入新课思路 1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?又如一个放在斜面上的物体所受的竖直向下的重力G,可分解为使物体沿斜面下滑的力F1和使物体垂直于斜面且压紧斜面的力F2.我们知道飞机在起飞时若沿仰角α的方向起飞的速度为v,可分解为沿水平方向的速度vcosα和沿竖直方向的速度vsinα.从这两个实例可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.如果e1、e2是同一平面内的两个不共线的向量,a是这一平面内的任一向量,那么a与e1、e2之间有什么关系呢?在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.在平面上,如果选取互相垂直的向量作为基底,是否会给我们带来更方便的研究呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?(二)推进新课、新知探究、提出问题图1①给定平面内任意两个不共线的非零向量e1、e2,请你作出向量3e1+2e2、e1-2e2.平面内的任一向量是否都可以用形如λ1e1+λ2e2的向量表示呢?②如图1,设e1、e2是同一平面内两个不共线的向量,a是这一平面内的任一向量,我们通过作图研究a与e1、e2之间的关系.活动:如图1,在平面内任取一点O,作OA=e1,OB=e2,OC=a.过点C作平行于直线OB 的直线,与直线OA;过点C作平行于直线OA的直线,与直线OB交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得OM=λ1e1,ON=λ2e2.由于ONOC+=,所以OMa=λ1e1+λ2e2.也就是说,任一向量a都可以表示成λ1e1+λ2e2的形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e1、e2表示出来.当e1、e2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.定理说明:(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式唯一.讨论结果:①可以.②a=λ1e1+λ2e2.提出问题①平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?②对平面中的任意一个向量能否用两个互相垂直的向量来表示?活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:图2已知两个非零向量a 和b (如图2),作OA =a ,OB =b ,则∠AOB=θ(0°≤θ≤180°)叫做向量a 与b 的夹角.显然,当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.因此,两非零向量的夹角在区间[0°,180°]内.如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .由平面向量的基本定理,对平面上的任意向量a ,均可以分解为不共线的两个向量λ1a 1和λ2a 2,使a =λ1a 1+λ2a 2.在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G 沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.讨论结果:①存在夹角且两个非零向量的夹角在区间[0°,180°]内;向量与直线的夹角不一样.②可以. 提出问题①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?②在平面直角坐标系中,一个向量和坐标是否是一一对应的?图3活动:如图3,在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i、j 作为基底.对于平面内的一个向量a ,由平面向量基本定理可知,有且只有一对实数x 、y,使得a =x i+y j ①这样,平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a =(x,y) ②其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,②式叫做向量的坐标表示.显然,i=(1,0),j =(0,1),0=(0,0).教师应引导学生特别注意以下几点:(1)向量a 与有序实数对(x,y)一一对应.(2)向量a 的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,11B A 是表示a 的有向线段,A 1、B 1的坐标分别为(x 1,y 1)、(x 2,y 2),则向量a 的坐标为x=x 2-x 1,y=y 2-y 1,即a 的坐标为(x 2-x 1,y 2-y 1).(3)为简化处理问题的过程,把坐标原点作为表示向量a 的有向线段的起点,这时向量a 的坐标就由表示向量a 的有向线段的终点唯一确定了,即点A 的坐标就是向量a 的坐标,流程表示如下:讨论结果:①平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a =(x,y).②是一一对应的.(三)应用示例思路1 例1 如图4,ABCD,AB =a ,AD =b ,H 、M 是AD 、DC 之中点,F 使BF=31BC,以a ,b 为基底分解向量HF AM 和.图4活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励.解:由H 、M 、F 所在位置,有+=+=AD DMAD AMab AB AD DC 212121+=+=AB 21=b +21a .ADAD AB ADBC AH BF AB AH AF HF 21312131-+=-+-+=-==a 61-b .点评:以a 、b 为基底分解向量AM 与HF ,实为用a 与b 表示向量AM 与HF . 变式训练图5已知向量e 1、e 2(如图5),求作向量-2.5e 1+3e 2作法:(1)如图,任取一点O,作OA =-2.5e 1,OB =3e 2.(2)作OACB.故OC OC 就是求作的向量.图6例2 如图6,分别用基底i、j 表示向量a 、b 、c 、d ,并求出它们的坐标.活动:本例要求用基底i 、j 表示a 、b 、c 、d ,其关键是把a 、b 、c 、d 表示为基底i 、j 的线性组合.一种方法是把a 正交分解,看a 在x 轴、y 轴上的分向量的大小.把向量a 用i 、j 表示出来,进而得到向量a 的坐标.另一种方法是把向量a 移到坐标原点,则向量a 终点的坐标就是向量a 的坐标.同样的方法,可以得到向量b 、c 、d 的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a 与b 关于y 轴对称,a 与c 关于坐标原点中心对称,a 与d 关于x 轴对称等.由一个向量的坐标推导出其他三个向量的坐标.解:由图可知,a =1AA +2AA =x i +y j ,∴a =(2,3).同理,b =-2i +3j =(-2,3); c =-2i -3j =(-2,-3); d =2i -3j =(2,-3).点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标. 变式训练i ,j 是两个不共线的向量,已知AB =3i +2j ,CB =i +λj ,CD =-2i +j ,若A 、B 、D 三点共线,试求实数λ的值.解:∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j , 又∵A、B 、D 三点共线,∴向量AB 与BD 共线.因此存在实数υ,使得AB =υBD , 即3i +2j =υ[-3i +(1-λ)j ]=-3υi +υ(1-λ)j . ∵i 与j 是两个不共线的向量, 故⎩⎨⎧=-=-,2)1(,33λv v∴⎩⎨⎧=-=.3,1λv ∴当A 、B 、D 三点共线时,λ=3.例3 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A.①②B.②③C.①③D.①②③活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B点评:本题主要考查的是学生对平面向量定理的理解.思路2图7例1 如图7,M 是△A BC 内一点,且满足条件=++CM BM AM 320,延长CM 交AB 于N,令CM =a ,试用a 表示CN .活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0.推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a =a 1e 1+a 2e 2=b 1e 1+b 2e 2,则⎪⎩⎪⎨⎧==.,2211b a b a解:∵,,NM BN BM NM AN AM +=+=∴由CM BM AM 32++=0,得=++++CM NM BN NM AN 3)(2)(0. ∴CM BN NM AN 323+++=0. 又∵A、N 、B 三点共线,C 、M 、N 三点共线,由平行向量基本定理,设,,NM CM BN AN μλ==∴=+++NM BN NM BN μλ3230. ∴(λ+2)BN +(3+3μ)NM =0. 由于BN 和NM 不共线,∴⎩⎨⎧=+=+,033,02μλ∴⎩⎨⎧-=-=12μλ∴.MN NM CM =-=∴CM MN CM CN 2=+==2a .点评:这里选取NM BN ,作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形式来解决.变式训练设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ、μ满足λa +μb =5e 1-e 2,求λ、μ的值.解:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb =5e 1-e 2.由平面向量基本定理,知⎩⎨⎧-=+=-.154,523λλλλ解之,得λ=1,μ=-1.图8例2 如图8,△A BC 中,AD 为△A BC 边上的中线且AE=2EC,求GEBG GDAG 及的值.活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值.解:设μλ==GEBG GDAG ,∵BD =DC ,即AD -AB =AC -AD , ∴AD =21(AB +AC ).又∵AG =λGD =λ(AD -AG ), ∴AG=λλ+1AD=)1(2λλ+AB+)1(2λλ+AC.①又∵BG =μGE ,即AG -AB =μ(AE -AG ),∴(1+μ)AG =AB +μAG AE ,=AE AB μμμ+++111又AE =32AC ,∴AG =AB μ+11+)1(32μμ+AC . ②比较①②,∵AB 、AC 不共线,∴⎪⎪⎩⎪⎪⎨⎧+=++=+.)1(32)1(2,11)1(2μμλλμλλ解之,得⎪⎩⎪⎨⎧==23,4μλ∴.23,4==GE BG GD AG 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果. 变式训练过△O AB 的重心G 的直线与边OA 、OB 分别交于P 、Q,设OP =h OA ,OB k OQ =,试证:311=+k h解:设OA =a ,OB =b ,OG 交AB 于D,则OD =21(OB OA +)=21(a +b )(图略).∴OG =32OD =31(a +b ),OQ OG QG -==31(a +b )-k b =31a +331k -b ,OQ OP QP -==h a -k b .∵P、G 、Q 三点共线,∴QP QG λ=.∴31a +331k -b =λh a -λk b .∴⎪⎪⎩⎪⎪⎨⎧-=-=.331,31k k h λλ 两式相除,得.3311hk h k kh k=+⇒-=-,∴kh 11+=3.(四)知能训练1.已知G 为△A BC 的重心,设AB =a ,AC =b ,试用a 、b 表示向量AG .2.已知向量a =(x+3,x 2-3x-4)与AB 相等,其中A(1,2),B(3,2),求x.图9解答: 1.如图9,AG =32AD ,而=+=+=BC AB BD AB AD 21a +21(b -a )=21a +21b ,∴3232==AD AG (21a +21b )=31a +31b .点评:利用向量加法、减法及数乘的几何意义.2.∵A(1,2),B(3,2),∴AB =(2,0).∵a=AB ,∴(x+3,x 2-3x-4)=(2,0). ∴⎩⎨⎧=--=+043,232x xx 解得⎩⎨⎧=-=-=.41,1x x x 或∴x=-1.点评:先将向量AB 用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决. (五)课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图. (六)作业。