几种不同增长的函数模型 教案(2课时)
- 格式:docx
- 大小:17.86 KB
- 文档页数:4
3.2.1几类不同增长的函数模型(2)教学目的:使学生进一步了解三种函数模型:指数函数、对数函数以及幂函数的增长情况,通过函数图象对比它们的增长速度。
教学重难点:观察指数函数、对数函数、幂函数模型的图象,对比它们的增长速度,了解它们的增长情况。
教学过程一、复习提问指数函数、对数函数、幂函数的一般形式是什么?,哪个函数的增长速度最快?二、新课探究函数y=x2,y=2x,y=xlog的增长速度。
2教学中,用电子表格Excel列出下列表格,并画出函数图象:在区间(2,4),有x 2log <x 2<2x在区间(0,2)和(4,+∞)有x 2log <2x <x 2可以在更大范围内观察函数y =x 2,y =2x 的图象的增长情况。
一般地,对于指数函数y =x a (a >1)和幂函数y =n x (n >0),通过探索可以发现,在区间(0,+∞)上,无论n 比a 大多少,尽管x 在一定范围内,x a 会小于n x 但由于x a 的增长速度快于n x ,因此总存在一个0x ,当x >0x 时,就会有x a >n x 。
同样地,对于对数函数y =xa log (a >1)和幂函数y =n x (n >0),在区间 (0,+∞)上,随着x 的增大,x a log 增长得越来越慢,图象就像是渐渐地与x 轴平 行一样。
尽管x 在一定范围内,x a log 可能会大于n x ,但由于x a log 的增长慢于n x , 因此总存在一个0x ,当x >0x 时,就会有x a log <n x 。
综上所述,在区间(0,+∞)上,尽管函数y =x a (a >1)、y =x a log (a >1) 和y =n x (n >0)都是增函数。
但它们的增长速度不同,而且不在同一个“档次”上 随着x 的增大,y =x a (a >1)的增长速度越来越快,会超过并远远大于y =n x (n > 0)的增长速度,而y =x a log (a >1)的增长速度越来越慢。
几类不同增长的函数模型(2课时)引言在数学中,函数是描述事物之间关系的一种工具。
函数模型是数学中对实际问题进行建模的一种方法。
对于不同的实际问题,可以使用不同类型的函数模型来描述其增长规律。
本文将介绍一些常见的函数模型,并讨论它们的特点和应用。
1. 线性函数模型线性函数模型是最简单的函数模型之一。
线性函数的图像是一条直线,其特点是增长速度恒定且一致。
线性函数模型可以用来描述一些简单的增长规律,如常速行驶的汽车行驶距离与时间的关系。
线性函数的一般形式为:y=mx+b,其中m表示斜率(即增长速度),b表示截距(即初始状态)。
斜率决定了线性函数的斜率方向和增长率,截距决定了线性函数与y轴的交点。
线性函数模型在实际应用中非常广泛,例如在经济学中可以用来描述收入和消费之间的关系,在物理学中可以用来描述物体运动的速度和时间之间的关系等。
2. 指数函数模型指数函数模型是一种快速增长的函数模型。
指数函数的图像呈现指数增长的特点,即增长速度随着自变量的增大而迅速加快。
指数函数模型常用来描述人口增长、细菌繁殖等快速增长的现象。
指数函数的一般形式为:y=ab x,其中a表示初始状态,b(b>1)表示增长因子。
指数函数的增长率与自变量指数相关,指数越大增长速度越快。
指数函数模型在实际应用中有着广泛的应用,例如在金融学中可以用来描述复利计算,在生态学中可以用来描述物种数量的增长等。
3. 对数函数模型对数函数模型是指数函数模型的逆运算。
对数函数的图像呈现递减的特点,即增长速度随着自变量的增大而逐渐减慢。
对数函数模型常用来描述资源消耗、人口减少等递减的现象。
对数函数的一般形式为:$y = a \\log_b x$,其中a和b(b>1)均为正常数。
对数函数的增长率与自变量的对数成正比,对数越大增长速度越慢。
对数函数模型在实际应用中也有广泛的应用,例如在物理学中可以用来描述放射性物质的衰变,在经济学中可以用来描述边际效益递减的现象等。
几类不同增长的函数模型教学设计教学设计2.1 几类不同增长的函数模型整体设计教学分析函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幕函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的.通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.三维目标.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幕函数的增长差异..恰当运用函数的三种表示方法并借助信息技术解决一些实际问题..让学生体会数学在实际问题中的应用价值,培养学生的学习兴趣.重点难点教学重点:认识指数函数、对数函数、幕函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.教学难点:应用函数模型解决简单问题.课时安排课时教学过程第1课时林大华导入新思路1.一张纸的厚度大约为0.01c,一块砖的厚度大约为10c , 请同学们计算将一张纸对折n次的厚度和n块砖的厚度,列出函数关系式,并计算n= 20时它们的厚度.你的直觉与结果一致吗?解:纸对折n次的厚度:f = 0.01 ?2n, n块砖的厚度:g=10n , f 〜105, g= 2.也许同学们感到意外,通过对本节课的学习大家对这些问题会有更深的了解.思路2.请同学们回忆指数函数、对数函数以及幕函数的图象和性质,本节我们将通过实例比较它们的增长差异.推进新新知探究提出问题如果张红购买了每千克1元的蔬菜x千克,需要支付y 元,把y 表示为x的函数.正方形的边长为x,面积为y,把y表示为x的函数.某保护区有1单位面积的湿地,由于保护区的努力,使湿地面积每年以5%的增长率增长,经过x年后湿地的面积为y,把y表示为x的函数.分别用表格、图象表示上述函数.指出它们属于哪种函数模型.讨论它们的单调性.比较它们的增长差异.另外还有哪种函数模型与对数函数相关.活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.总价等于单价与数量的积.面积等于边长的平方.由特殊到一般,先求出经过1年、2年…列表画出函数图象.引导学生回忆学过的函数模型.结合函数表格与图象讨论它们的单调性.让学生自己比较并体会.其他与对数函数有关的函数模型.讨论结果:y = x.y = x2.y = x.如下表X123456y=X123456y=X2149162536y = x1.051.101.161.221.281.34它们的图象分别为图1,图2,图3.图1图2图3它们分别属于:y = x+ b, y = ax2 + bx + c, y= ax + b.从表格和图象得出它们都为增函数.在不同区间增长速度不同,随着x的增大y = x的增长速度越来越快,会远远大于另外两个函数.另外还有与对数函数有关的函数模型,形如y= logax + b,我们把它叫做对数型函数.应用示例例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:天回报10元,以后每天比前一天多回报10元;方案三:天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据.解:设第x天所得回报是y元,则方案一可以用函数y =40进行描述;方案二可以用函数y = 10x进行描述;方案三可以用函数y = 0.4 x 2x- 1进行描述.三个模型中,个是常数函数,后两个都是递增函数模型.要对三个方案做出选择,就要对它的增长情况进行分析.我们先用计算机计算一下三种所得回报的增长情况.x/天方案一方案二方案三y/元增加量/元y/元增加量/元y/元增加量/元0100.400XX0.80.40030101.60.840040103.21.640050106.43.2400601012.86.4400701025.612.8400801051.225.64009010102.451.2040010010204.8102.4040030010214748364.8107374182.4再作出三个函数的图象.图4由表和图4可知,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但方案二与方案三的函数的增长情况很不相同.可以看到,尽管方案一、方案二在第1天所得回报分别是方案三的100倍和25倍,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的,从第7天开始,方案三比其他两方案增长得快得多,这种增长速度是方案一、方案二无法企及的.从每天所得回报看,在第1〜3天,方案一最多;在第4天,方案一和方案二一样多,方案三最少;在第5〜8天,方案二最多;第9 天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元.下面再看累积的回报数.通过计算机或计算器列表如下:因此,投资1〜6天,应选择方案一;投资7天,应选择方案一或方案二;投资8〜10天,应选择方案二;投资11 天以上,则应选择方案三.针对上例可以思考下面问题:①选择哪种方案是依据一天的回报数还是累积回报数.②课本把两种回报数都列表给出的意义何在?③由此得出怎样的结论.答案:①选择哪种方案依据的是累积回报数.②让我们体会每天回报数的增长变化.③上述例子只是一种假想情况,但从中我们可以体会到,不同的函数增长模型,其增长变化存在很大差异变式训练某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟付话费0.4元;“神州行”不缴月基础费,每通话1分钟付话费0.6元,若设一个月内通话x分钟,两种通讯业务的费用分别为y1元和y2元,那么写出y1、y2与x之间的函数关系式;在同一直角坐标系中画出两函数的图象;求出一个月内通话多少分钟,两种通讯业务费用相同;若某人预计一个月内使用话费200元,应选择哪种通讯业务较合算.思路分析:我们可以先建立两种通讯业务所对应的函数模型,再通过比较它们的变化情况,为选择哪种通讯提供依据.全球通的费用应为两种费用的和,即月基础费和通话费,神州行的费用应为通话费用;运用描点法画图,但应注意自变量的取值范围;可利用方程组求解,也可以根据图象回答;求出当函数值为200元时,哪个函数所对应的自变量的值较大.解:y1 = 50 + 0.4x , y2 = 0.6x .图象如图5所示.图5根据图中两函数图象的交点所对应的横坐标为250,所以在一个月内通话250分钟时,两种通讯业务的收费相同.当通话费为200元时,由图象可知,y1所对应的自变量的值大于y2所对应的自变量的值,即选取全球通更合算.另解:当yi = 200 时有0.4x + 50= 200 ,••• x1 = 375;当y2 = 200 时有0.6x = 200, x2 = 10003.显然375 > 10003,•••选用“全球通”更合算.点评:在解决实际问题过程中,函数图象能够发挥很好的作用,因此,我们应当注意提高读图的能力.另外,本例题用到了分段函数,分段函数是刻画现实问题的重要模型.例2某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y随着利润x的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y = 0.25x , y = Iog7x + 1, y= 1.002x,其中哪个模型能符合公司的要求?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金不超过利润的25%由于公司总的利润目标为1000万元,所以人员销售利润一般不会超过公司总的利润.于是只需在区间[10,1000]上,检验三个模型是否符合公司要求即可.不妨先作出函数图象,通过观察函数的图象,得到初步结论,再通过具体计算,确认结果.解:借助计算器或计算机作出函数y = 0.25x , y = Iog7x+ 1 , y = 1.002x 的图象.图6观察函数的图象,在区间[10,1000]上,模型y = 0.25x , y = 1.002x的图象都有一部分在直线y = 5的上方,只有模型y = Iog7x + 1的图象始终在y = 5的下方,这说明只有按模型y = Iog7x + 1进行奖励时才符合公司的要求.下面通过计算确认上述判断.首先计算哪个模型的奖金总数不超过5万.对于模型y = 0.25x,它在区间[10,1000]上递增,而且当x = 20时,y = 5,因此,当x>20时,y>5,所以该模型不符合要求;对于模型y = 1.002x,由函数图象,并利用计算器,可知在区间内有一个点x0满足1.002x0 = 5,由于它在区间[10,1000]上递增,因此当x>x0时,y>5,所以该模型也不符合要求;对于模型y = Iog7x + 1,它在区间[10,1000]上递增,而且当x=1000时,y = Iog71000 + 1〜4.55 V5,所以它符合奖金总数不超过5万元的要求.再计算按模型y = Iog7x + 1奖励时,奖金是否不超过利润的25% 即当x € [10,1000]时,是否有yx = Iog7x + 1x< 0.25成立.图7令f = Iog7x + 1-0.25x , x € [10,1000].利用计算器或计算机作出函数f的图象,由函数图象可知它是递减的,因此f V f 〜一0.3167 V 0,即卩Iog7x + 1V 0.25x.所以当x € [10,1000]时,Iog7x + 1x V 0.25.说明按模型y = Iog7x + 1奖励,奖金不超过利润的25%. 综上所述,模型y = Iog7x + 1确实能符合公司的要求. 变式训练市场营销人员对过去几年某商品的价格及销售数量的关系做数据分析发现有如下规律:该商品的价格每上涨x%销售数量就减少X%.目前,该商品定价为a元,统计其销售数量为b 个.当=12时,该商品的价格上涨多少,就能使销售的总金额达到最大?在适当的涨价过程中,求使销售总金额不断增加时的取值范围.解:依题意,价格上涨x%后,销售总金额为y = a?b= ab10000[ - x2 + 100x + 10000].取=12, y = ab10000- 12x2 + 50x + 10000,所以x = 50,即商品价格上涨50% y最大为98ab.因为y = ab10000[ - x2 + 100x + 10000],此二次函数的开口向下,对称轴为x = 50,在适当涨价过程后,销售总金额不断增加,即要求此函数当自变量x在{x|x > 0}的一个子集内增大时,y也增大.所以50>0,解得0vv 1.点评:这类问题的关键在于列函数解析式建立函数模型,然后借助不等式进行讨论.知能训练光线通过一块玻璃,其强度要损失10%把几块这样的玻璃重叠起来,设光线原来的强度为,通过x块玻璃以后强度为y.写出y关于x的函数关系式;通过多少块玻璃以后,光线强度减弱到原来的13以下.解:光线经过1块玻璃后强度为=0.9 ;光线经过2块玻璃后强度为?0.9 = 0.92 ;光线经过3块玻璃后强度为?0.92 = 0.93 ;光线经过x块玻璃后强度为0.9x.••• y = 0.9x .由题意:0.9x v 3. •- 0.9x v 13.两边取以10为底的对数,xlg0.9 v lg13.••• Ig0.9 v 0,「. x> lg13lg0.9.•/ Ig13lg0.9 = lg31 - 2lg3 〜10.4 , • xin = 11.•••通过11块玻璃以后,光线强度减弱到原来的13以下.拓展提升某池塘中野生水葫芦的面积与时间的函数关系的图象.假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过302 ;③野生水葫芦从42蔓延到122只需1.5个月;④设野生水葫芦蔓延到22、32、62所需的时间分别为t1、t2、t3,则有t1 +12 = t3 ;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.哪些说法是正确的?图8解:①说法正确.•••关系为指数函数,「•可设y = ax .二由图知2= a1.••• a= 2,即底数为2.②••• 25= 32 > 30 ,•••说法正确.③•••指数函数增长速度越来越快,•••说法不正确.④t1 = 1, t2 = Iog23 , t3 = Iog26 ,「.说法正确.⑤•••指数函数增长速度越来越快,.••说法不正确.课堂小结活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.引导方法:从基本知识和基本技能两方面来总结.答案:建立函数模型;利用函数图象性质分析问题、解决问题.作业课本习题3.2A组1,2.设计感想本节设计由学生熟悉的素材入手,结果却出乎学生的意料,由此使学生产生浓厚的学习兴趣.课本中两个例题不仅让学生学会了函数模型的应用,而且体会到它们之间的差异;我们补充的例题与之相映生辉,其难度适中,是各地高考模拟经常选用的素材.其中拓展提升中的问题紧贴本节主题,很好地体现了指数函数的性质特点,是不可多得的素材.第2课时张建国导入新思路1.国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,……,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了 .假定千粒麦子的质量为40g,据查,目前世界年度小麦产量为6亿吨,但这仍不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、二次函数的增长差异.思路2.我们知道,对数函数y = logax ,指数函数y = ax与幕函数y = xn在区间上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、二次函数的增长差异.推进新新知探究提出问题在区间上判断y = Iog2x , y = 2x , y= x2的单调性.列表并在同一坐标系中画出三个函数的图象.结合函数的图象找出其交点坐标.请在图象上分别标出使不等式Iog2x v 2x v x2和Iog2xv x2 v 2x成立的自变量x的取值范围.由以上问题你能得出怎样的结论?讨论结果:在区间上函数y = Iog2x , y = 2x , y= x2均为增函数.见下表与图9.X0.20.61.01.41.82.22.63.03.4 …y = 2x1.1491.51622.6393.4824.5956.063810.556 …y = x20.040.3611.963.244.846.76911.56 …y = Iog2x — 2.322 —0.73700.4850.8481.1381.3791.5851.766 …图9从图象看出y = Iog2x的图象与另外两函数的图象没有交点,且总在另外两函数的图象的下方,y = 2x的图象与y =x2的图象有交点.不等式Iog2x v 2x v x2和Iog2x v x2v 2x成立的自变量x的取值范围分别是和U.我们在更大的范围内列表作函数图象,X012345678…y=2x1248163264128256 …y = XXX91625364964…图10容易看出:y = 2x的图象与y = x2的图象有两个交点和,这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x vx2,有时x2 v 2x.但是,当自变量x越来越大时,可以看到,y = 2x的图象就像与x轴垂直一样,2x的值快速增长,x2比起2x来,几乎有些微不足道,如图11和下表所示.X01020304050607080 …y = 2x110241.05E + 061.07E + 091.10E + 121.13E + 151.15E + 181.18E + 211.21E + 24 …y = XXX040090016002500360049006400 …图11一般地,对于指数函数y = ax和幕函数y = xn,通过探索可以发现,在区间上,无论n比a大多少,尽管在x的一定变化范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当x>x0时,就会有ax >xn.同样地,对于对数函数y = logax和幕函数y = xn ,在区间上,随着x 的增大,logax 增长得越来越慢,图象就像是 渐渐地与x 轴平行一样.尽管在x 的一定变化范围内,logax 可能会大于xn ,但由于logax 的增长慢于xn 的增长,因此 总存在一个 x0,当x >x0时,就会有logax v xn.综上所述,尽管对数函数y = logax ,指数函数y = ax 与 幕函数y = xn 在区间上都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着速度越来越快,会超过并远远大于=logax 的增长速度则会越来越慢.当x > x0时,就会有logax v xn v ax.虽然幕函数y = xn 增长 快于对数函数 y = logax 增长,但它们与指数增长比起来相 差甚远,因此指数增长又称“指数爆炸”.应用示例 例1某市的一家报刊摊点,从报社买进晚报的价格是每份0.20元,卖出价是每份 0.30元,卖不掉的报纸可以以每 份0.05元的价格退回报社.在一个月里,有 20天每天可卖 出400份,其余10天每天只能卖出250份,但每天从报社 买进的份数必须相同,这个摊主每天从报社买进多少份,才 能使每月所获的利润最大?并计算他一个月最多可赚得多 少元?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:x 的增大,y = ax 的增长 y = xn 的增长速度,而y 因此,总会存在一个x0,设摊主每天从报社买进x份,显然当x € [250,400]时,每月所获利润才能最大.而每月所获利润=卖报收入的总价-付给报社的总价.卖报收入的总价包含三部分:①可卖出400份的20天里,收入为20 X 0.30x ;②可卖出250份的10天里,收入为10X 0.30 X 250:③10天里多进的报刊退回给报社的收入为10 X 0.05 X.付给报社的总价为30 X 0.20x.解:设摊主每天从报社买进x份晚报,显然当x €[250,400]时,每月所获利润才能最大. 于是每月所获利润y 为y = 20 X 0.30x + 10 X 0.30 X 250 + 10 X 0.05 X- 30 X 0.20x = 0.5x + 625, x € [250,400].因函数y在[250,400]上为增函数,故当x = 400时,y 有最大值825元.图12例2某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y与时间t 之间近似满足如图12所示的曲线.写出服药后y与t之间的函数关系式;据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假若某病人一天中次服药时间为上午7:00,问一天中怎样安排服药的时间效果最佳?解:依题意,得y = 6t , 0< t < 1 , - 23t + 203, 1<t <10.设第二次服药时在次服药后t1 小时,则一23t1 + 203 = 4, t1 = 4.因而第二次服药应在11: 00;设第三次服药在次服药后t2小时,则此时血液中含药量应为两次服药量的和,即有一23t2 + 203 - 23 + 203 = 4,解得t2 = 9,故第三次服药应在16: 00;设第四次服药在次后t3小时,则此时次服进的药已吸收完,此时血液中含药量应为第二、三次的和,- 23 + 203 -23 + 203= 4,解得t3 = 13.5,故第四次服药应在20: 30.变式训练通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间:讲座开始时,学生兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散.分析结果和实验表明,用f表示学生接受概念的能力[f的值愈大,表示接受的能力愈强],x表示提出和讲授概念的时间,可有以下的公式:开讲后多少分钟,学生的接受能力最强?能维持多长时间?开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?解:当0v x< 10 时,f =- 0.1x2 + 2.6x + 43=- 0.12+ 59.9 ,知当x = 10 时,[f]ax = f = 59;当10v x< 16 时,f = 59;当16v x< 30 时,f = - 3x + 107,知f v—3X 16+ 107= 59.因此,开讲后10分钟,学生的接受能力最强,并能持续6分钟.••• f = - 0.1 X 2 + 59.9 = 53.5 , f = - 3X 20 + 107 = 47v 53.5 ,•••开讲后5分钟时学生的接受能力比开讲后20分钟强.点评:解析式与图象的转换是函数应用的重点,关于分段函数问题更应重点训练.知能训练某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图13的一条折线表示;西红柿的种植成本与上市时间的关系用图13的抛物线段表示.写出图13表示的市场售价与时间的函数关系P= f ;写出图13表示的种植成本与时间的函数关系式Q= g;认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?图13活动:学生在黑板上书写解答.教师在学生中巡视其他学生的解答,发现问题及时纠正.解:由图13可得市场售价与时间的函数关系为 f = 300-1,0<t <200 , 2t - 300, 200<t <300.由图13可得种植成本与时间的函数关系为g= 1XX+ 100,0 < t < 300.设t时刻的纯收益为h,则由题意得h= f - g.即h=- 1200t2 + 12t + 1752, 0< t < 200, - 1200t2 + 72t - 10252, 200<t < 300.当0W t < 200时,配方整理,得h = - 1XX+ 100,所以当t = 50时,h取得区间[0,200]上的最大值100;当200<t < 300 时,配方整理,得h=- 1XX+ 100,所以当t = 300时,h取得区间[200,300]上的最大值87.5.综上,由100>87.5可知,h在区间[0,300]上可以取得最大值100,此时t = 50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.点评:本题主要考查由函数图象建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.拓展提升探究内容①在函数应用中如何利用图象求解析式.②分段函数解析式的求法.③函数应用中的最大值、最小值问题.举例探究:某跨国公司是专门生产健身产品的企业,批产品A 上市销售40天内全部售完,该公司对批产品A上市后的国内外市场销售情况进行调研,结果如图14、图14、图14所示.其中图14的折线表示的是国外市场的日销售量与上市时间的关系;图14的抛物线表示的是国内市场的日销售量与上市时间的关系;图14的折线表示的是每件产品A 的销售利润与上市时间的关系.图14分别写出国外市场的日销售量f、国内市场的日销售量g与批产品A上市时间t的关系式;批产品A上市后的哪几天,这家公司的国内和国外日销售利润之和超过6300万元?分析:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式..在t € [0,40]上,有几个分界点,请同学们思考应分为几段..回忆函数最值的求法.解:f = 2t , 0< t < 30,- 6t + 240 , 30<t < 40,g=- 320t2 + 6t .每件A产品销售利润h= 3t , 0< t < 20, 60, 20<t < 40.该公司的日销售利润当O W t < 20时,F = 3t,先判断其单调性.设O W t1 v t2 W 20,贝y F—F= 3t1 - 3t2 v 0.••• F在区间[0,20]上为增函数.Fax = F = 6000 v 6300.当20v t W 30 时,令60>6300,则703 v t v 30;当30v t W 40 时,F= 60v 60 = 6300,故在第24,25,26,27,28,29 天日销售利润超过6300万元.点评:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式,重点是找出关键点..在t € [0,40]上,有几个分界点,t = 20, t = 30两点把区间分为三段..二次函数的最值可用配方法,另外利用单调性求最值也是常用方法之一.课堂小结本节学习了:①指数函数、对数函数、二次函数的增长差异.②幕函数、指数函数、对数函数的应用.作业课本习题3.2A组3,4.设计感想本节设计从精彩的故事开始,让学生从故事中体会数学带来的震撼,然后借助计算机感受不同函数模型的巨大差异.接着通过最新题型训练学生利用函数模型解决实际问题的能力;并且重点训练了由图象转化为函数解析式的能力,因为这是高考的一个重点.本节的每个例题都很精彩,可灵活选用.备课资料【备选例题】【例1】某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府对该项特产的销售投资收益为:每年投入x万元,可获得利润P=- 11602+ 100万元.当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在规划后对该项目每年都投入60万元的销售投资,在未来10年的前5年中,每年都从60万元中拨出30 万元用于修建一条公路,5年修成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每年投入x万元,可获利润Q=- 1591602 + 1192 万元.问从10年的累积利润看,该规划方案是否可行?解:在实施规划前,由题设P=- 11602 + 100,知每年只需投入40万,即可获得最大利润100万元.贝y 10年的总利润为1 = loo x 10= iooo.实施规划后的前5年中,由题设P=—11602 + 100,知每年投入30万元时,有最大利润Pax= 7958.前5年的利润和为7958 x 5 = 39758 .设在公路通车的后5年中,每年用x万元投资于本地的销售,而用剩下的万元用于外地区的销售投资,贝U其总利润为=—11602 + 100x 5+—159160x2 + 1192x x 5=—52 + 4950.当x = 30 时,ax = 4950.从而10年的总利润为39758 + 4950.••• 39758 + 4950 > 1000,•••该规划方案有极大实施价值.。
《几类不同增长的函数模型》教学设计一.内容和内容解析本节是高中数学必修1(人教A版)第三章《函数的应用》的起始课.该课将经历运用和选择函数模型解决实际问题的过程,从而认识在同为增函数的函数模型中,各种函数存在增长的差异;理解直线上升、指数爆炸、对数增长的含义;认识研究函数增长(衰减)差异的方法;感受数学建模的思想.对不同函数模型在增长差异上的研究,教材围绕函数模型的应用这一核心,结合具体实例展开讨论,让学生在应用函数模型的过程中,体验到指数函数、对数函数、幂函数等函数模型在描述客观世界变化规律时各自的特点.教材运用自选投资方案和制定奖励方案这两个问题,引出函数模型增长情况比较的问题,接着运用信息技术从数值和图象两个角度比较了指数函数、对数函数、幂函数的增长情况的差异,说明不同函数类型增长的含义.在必修1前两章,教材安排了函数的性质以及基本初等函数.本节内容是几类不同增长的函数模型,在此之后是研究函数模型的应用,因此,从内容上看,本节课是对前面所学习的几种基本初等函数以及函数的性质的综合应用,从思想方法上讲,是对研究函数的方法的进一步巩固和深化,同时,也在为后面继续学习各种不同的函数模型的应用举例奠定基础,.因此本节内容,既是第二章基本初等函数知识的延续,又是函数模型应用学习的基础,起着承前启后的作用.本节内容所涉及的数学思想方法主要包括:由实际问题抽象为函数模型这一过程中蕴涵的符号化、模型化的思想;在解决问题过程中函数与方程的思想.二.目标和目标解析本节课的教学任务为:(1)创设一个投资方案的问题情境,让学生通过函数建模、列数据表、研究函数图象和性质,体会直线上升和指数爆炸;(2)创设一个选择奖励模型的问题情境,让学生在观察和探究的过程中,体会对数增长模型的特点;(3)通过建立和运用函数基本模型,让学生初步体验数学建模的基本思想,发展学生的创新意识和数学应用意识.根据内容解析和教学任务,本节课的教学目标确定为:(1)通过实例的解决,运用函数表格、图象,比较一次函数、指数型函数以及对数函数模型等的增长,认识它们的增长差异,体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义;(2)通过恰当地运用函数的三种表示方法(解析法、列表法、图象法),表达实际问题中的函数关系的操作,认识函数问题的研究方法:观察—归纳—猜想—证明;(3)经历建立和运用函数基本模型的过程,初步体验数学建模的基本思想,体会数学的作用与价值,培养分析问题、解决问题的能力.这部分内容教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数模型为对象,将前面已经学习过的内容以及处理问题的思想方法紧密结合起来,使之成为一个整体.因此教学中应当注意贯彻教材的设计意图,让学生经历函数模型应用的全过程,能在这一过程中认识不同增长的差异,认识知晓函数增长差异的作用,认识研究差异的思想方法.结合以上分析本节课的教学重点为:将实际问题转化为数学模型,在比较常数函数、一次函数、指数函数、对数函数模型增长差异的过程中,体会直线上升、指数爆炸、对数增长等不同类型函数增长的含义.三.教学问题诊断学生在前面已学过函数概念、指数函数、对数函数、幂函数,但由于指数函数、对数函数和幂函数的增长变化复杂,这就使得学生在研究过程中可能遇到困难.因此本节课教学难点确定为:如何结合实际问题让学生体会不同函数模型的增长差异,以及如何利用这种增长差异来解决一些实际问题.为了解决这一难点,教科书分三个步骤,创设问题情境,并通过恰点恰时而又层层递进的问题串,让学生在不断的观察、思考和探究的过程中,弄清几个函数间的增长差异,并培养分析问题解决问题的能力.第一步,教科书先创设了一个选择投资方案的问题情境,在解决问题的过程中给出了解析式、数表和图象三种表示,然后提出了三个思考问题,让学生一方面从中体会直线上升和指数爆炸,另一方面也学会如何选择恰当的表示形式对问题进行分析.第二步,教科书又创设了一个选择公司奖励模型的问题情境,让学生在观察和探究的过程中,体会到对数增长模型的特点.第三步,教科书提出了三种函数存在怎样的增长差异的问题.先让学生从不同角度观察指数函数和幂函数的增长图象,从中体会二者的差异;再通过两个探究问题,让学生对幂函数和对数函数的增长差异,以及三种函数的衰减情况进行自主探究.这样的安排内容上层次分明,可以引导学生从不同的方面积极地开展观察、思考和探究活动,对典型的问题,多视点宽角度地进行了研究.对学生分析问题、解决问题能力的培养将有积极的推动.由于本节内容比较丰富,而且研究问题的方法和途径也比较多,所以本节课我们只能重点解决其中的前两个问题.四.教学支持条件分析要让学生较为全面地体会函数模型的思想,特别是本节例题中用函数模型研究实际问题有许多数据、图象等方面处理上的困难,而利用信息技术工具,就可以在不同的范围观察到指数函数、对数函数和幂函数的增长差异.这样,就使学生有机会接触到一些过去难以接触到的数学知识和思想方法.因此在本节内容教学的处理上,通过学生收集数据并建立函数模型,利用计算器和计算机,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.五.教学过程设计一、创设情境,引入课题1.介绍第三章章头图,提出问题.问题1:澳大利亚的兔子为什么能在短短的几十年中由5只发展到5亿只?澳大利亚兔子的急剧增长反映了自然界中一种增长现象:指数增长.问题2:在生活中,你还能举出其它增长的例子吗?2.在学生回答问题的基础上引出各种不同类型的函数增长模型.3.揭示课题:几类不同增长的函数模型.【设计意图】运用章头图,形成问题情境,产生应用函数的需要,激发学生的学习愿望.二、分析问题,建立模型(一)提出问题例1.假如你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.请问:你会选择哪种投资方式?(二)分析问题1.引导审题,抓住关键词“回报”问题3:你选择的是什么样的回报?怎样比较回报资金的大小?从解决问题的角度看:(1)比较三种方案的每日回报;(2)比较三种方案在若干天内的累计回报.2.引导分析数量关系,建立函数模型仅从日回报的角度引导学生根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式.【设计意图】引发学生思考,经历建立函数基本模型的过程.【备注】累计回报的本质是数列求和问题,由于学生目前的知识储备还不够,现在仅限于通过对函数模型通过列表计算、图象观察来作出判断和选择.三、组织探究,感性体验1.教师提出问题问题4:你会选择哪种投资方案?请用数学语言呈现你的理由.2.学生分组操作,比较不同增长从解决问题的方式上:(1)用列表方法来比较;(2)画出函数图象来分析.【设计意图】保成学生合作探究、动手实践,能借助计算器,利用数据表格、函数图象对三种模型进行比较、分析,初步感受直线上升和指数爆炸的意义,初步体验研究函数增长差异的方法.四、成果交流,阶段小结(一)学生交流让学生交流小组探究的成果(表格、图象、结论)(二)师生互动1.阅读教材上例题解答中的数据表格与图象(突出散点图),引导学生关注增长量,感受增长差异.2.通过教师多媒体动态演示,让学生进一步体会增长差异.在不同的函数模型下,虽然都有增长,但增长态势各具特点.他们的增长不在同一个“档次”上,当自变量变得很大时,指数型函数比一次函数增长的速度要快得多.(三)归纳小结1.通过教师的小结,增强学生对增长差异的认识.常数函数(没有增长),直线上升(匀速增长),指数爆炸(急剧增长).2.上述问题的解决,是通过考虑其中的数量关系,把它抽象概括成一个函数问题,用解析式、数据表格、图象这三种函数的表达形式来研究的.【设计意图】分享学生成果,达到生生互动、师生互动;借助多媒体展示,帮助学生理解不同增长的函数模型的增长差异,并且初步体验数学建模的基本思想,认识函数问题的研究方法.五、深入探究,理性分析(一)提出问题例2.某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:x y 25.0= 1log 7+=x y x y 002.1=.其中哪个模型能符合公司的要求?(二)引导分析问题5:你能立刻做出选择吗?选择的依据是什么?问题6:公司的要求到底意味着怎样的数学关系?问题7:我们提供的三个增长型函数哪一个符合限制条件?(三)解决问题1.通过多媒体演示,发现增长差异;2.结合限制条件,初步作出选择;3.通过计算,进一步确认,验证所得结论;4.体会对数增长模型的增长特征:当自变量变得很大时平缓增长;5.揭示函数问题的研究方法(观察—归纳—猜想—证明).【设计意图】让学生在观察和探究的过程中,学会理性分析,体会对数增长模型的特点.【备注】对判断模型二7log 1y x =+是否满足限制条件“7log 10.25x x +≤”,考虑到学生现在知识储备和接受水平,只能采用了直观教学,通过构造新函数,观察新函数的图象来解决(因为该函数单调性的判定,必须运用高二数学中的导数知识与方法才能解决).六、拓展延伸,创新设计这个奖励方案实施以后,立刻调动了员工的积极性,企业发展蒸蒸日上,但随着时间的推移,又出现了新的问题,员工缺乏创造高销售额的积极性.问题8:我们的奖励方案有什么弊端?问题9:你能否设计出更合理的奖励模型?【创新设计】为了实现1000万元利润的目标,在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着销售利润x (单位:万元)的增加而增加,要求如下:10万~ 50万,奖金不超过2万;50万~ 200万,奖金不超过4万;200万~ 1000万,奖金不超过20万.请选择适当的函数模型,用图象表达你的设计方案.(四人一组,合作完成)【设计意图】设计开放性问题对例2拓展延伸,既检测了学生对几类不同模型增长差异的掌握情况,又鼓励学生学以致用,用以致优,使学生的学习过程成为在教师引导下的“再创造”过程.七、归纳总结,提炼升华问题10:通过本节课的学习,你有哪些收获?请你从知识、方法、思想方面作一个小结.1.知识:对函数的性质有了进一步的了解,我们体会到同是增长型函数,但其增长差异却很大:常数函数(没有增长);一次函数(直线上升);指数函数(爆炸增长);对数函数(平缓增长).2.方法:函数有三种表示方法(解析法、列表法、图象法);函数问题的一般研究方法(观察—归纳—猜想—证明)3.思想:两个例题都体现了数学建模的思想,即把实际问题数学化:面对实际问题,我们要读懂问题,运用所学知识,将其转化成数学模型,最终得到实际问题的解.【设计意图】理解几类不同增长的函数模型的增长差异,提炼数学思想方法,认识数学的应用价值.八、布置作业,巩固提高1.课本98页课后练习1,2;课本107页习题3.2(A组)第1题;2.收集一些社会生活中递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用.【设计意图】进一步体验函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述;培养学生对数学学科的深刻认识,体会数学的应用价值.。
几种不同增长的函数模型教案(2课时)课程概述本教案将介绍几种不同的增长函数模型,包括线性增长、指数增长和对数增长。
学生将学习如何识别不同的增长模型,并了解它们在实际生活中的应用。
通过本课程的学习,学生将掌握基本的增长函数的概念,并能够应用它们解决实际问题。
教学目标1.了解线性增长、指数增长和对数增长的基本概念;2.能够识别不同的增长模型,并理解它们的特点;3.理解增长函数模型在实际生活中的应用;4.能够应用增长函数模型解决实际问题。
教学重点1.线性增长、指数增长和对数增长的基本特点;2.增长函数模型在实际生活中的应用。
教学准备1.讲义:包括线性增长、指数增长和对数增长的定义和特点;2.示例问题和解答:提供实际问题的例子和相应的解答;3.板书工具:用于在黑板上记录关键概念和解题思路。
教学过程第一课时导入(5分钟)1.引导学生回顾函数的基本概念和性质;2.提问:你知道什么是增长函数吗?讲解线性增长(15分钟)1.定义:线性增长是指y值随着x值的增长而按固定比例增长的情况;2.特点:线性增长的图像是一条直线,斜率代表了增长的速度;3.示意图:绘制线性增长的示意图,并解释斜率的意义;4.示例问题:给出一个实际问题,让学生判断它符合线性增长还是其他类型的增长。
讲解指数增长(15分钟)1.定义:指数增长是指y值随着x值的增长而按指数倍数增长的情况;2.特点:指数增长的图像是曲线,增长速度会越来越快;3.示意图:绘制指数增长的示意图,观察它与线性增长的区别;4.示例问题:给出一个实际问题,让学生判断它符合指数增长还是其他类型的增长。
讲解对数增长(15分钟)1.定义:对数增长是指y值随着x值的增长而按指数倍数减小的情况;2.特点:对数增长的图像是曲线,增长速度会越来越慢;3.示意图:绘制对数增长的示意图,观察它与线性增长的区别;4.示例问题:给出一个实际问题,让学生判断它符合对数增长还是其他类型的增长。
小结与讨论(10分钟)1.总结线性增长、指数增长和对数增长的特点;2.学生讨论在实际生活中可以找到哪些符合这些增长模型的例子。
3.2.1 几类不同增长的函数模型[学习目标] 1.掌握常见增长函数的定义、图象、性质,并体会其增长快慢;理解直线上升,对数增长,指数爆炸的含义.2.会分析具体的实际问题,建模解决实际问题.知识点一 三种函数模型的性质知识点二 三种函数的增长速度比较(1)在区间(0,+∞)上,函数y =a x (a >1),y =log a x (a >1)和y =x n (n >0)都是增函数,但增长速度不同,且不在同一个“档次”上.(2)在区间(0,+∞)上随着x 的增大,y =a x (a >1)增长速度越来越快,会超过并远远大于y =x n (n >0)的增长速度,而y =log a x (a >1)的增长速度则会越来越慢. (3)存在一个x 0,使得当x >x 0时,有log a x <x n <a x .题型一 函数模型的增长差异例1 (1)当x 越来越大时,下列函数中,增长速度最快的应该是( ) A.y =10 000x B.y =log 2x C.y =x 1 000D.y =⎝⎛⎭⎫e 2x(2)四个变量y 1,y 2,y 3,y 4随变量x 变化的数据如下表:答案 (1)D (2)y 2解析 (1)由于指数型函数的增长是爆炸式增长,则当x 越来越大时,函数y =⎝⎛⎭⎫e 2x增长速度最快.(2)以爆炸式增长的变量是呈指数函数变化的.从表格中可以看出,四个变量y 1,y 2,y 3,y 4均是从2开始变化,变量y 1,y 2,y 3,y 4都是越来越大,但是增长速度不同,其中变量y 2的增长速度最快,可知变量y 2关于x 呈指数函数变化.反思与感悟 在区间(0,+∞)上,尽管函数y =a x (a >1),y =log a x (a >1)和y =x n (n >0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x 的增大,y =a x (a >1)的增长速度越来越快,会超过并远远大于y =x n (n >0)的增长速度,而y =log a x (a >1)的增长速度则会越来越慢,因此总会存在一个x 0,当x >x 0时,就有log a x <x n <a x . 跟踪训练1 下列函数中,随x 增大而增大速度最快的是( ) A.2 014ln x B.y =x 2 014 C.y =x2 014D.y =2 014·2x答案 D解析 由于指数函数的增长是爆炸式增长,则当x 越来越大时,函数y =2 014·2x 的增长速度最快.故选D.题型二 几种函数模型的比较例2 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本y (单位:元/102kg)与上市时间x (单位:天)的数据如下表:(1)y 与上市时间x 的变化关系:y =ax +b ,y =ax 2+bx +c , y =a ·b x ,y =a log a x .(2)利用你选取的函数,求西红柿种植成本最低的上市天数及最低种植成本. 解 (1)由表格中数据可知,种植成本不是常函数,∴a ≠0,而此时y =ax +b ,y =a ·b x ,y =a log a x 均为单调函数, 与表中数据不符,因此y =ax 2+bx +c , 将三组数据代入得⎩⎪⎨⎪⎧2 500a +50b +c =150,12 100a +110b +c =108,62 500a +250b +c =150,得⎩⎪⎨⎪⎧a =1200,b =-32,c =4252.∴描述西红柿种植成本y 与上市时间x 的关系为 y =1200x 2-32x +4252. (2)当x =150时,y min =100(元/102kg).反思与感悟 1.此类问题求解的关键是首先利用待定系数法求出相关函数模型,也就是借助数据信息,得到相关方程,进而求出待定参数.2.函数模型的选择与数据的拟合是数学建模中最核心的内容,解题的关键在于通过对已知数据的分析,得出重要信息,根据解题积累的经验,从已有的各类型函数中选择模拟,进行数据的拟合.跟踪训练2 某汽车制造商在2013年初公告:随着金融危机的解除,公司计划2013年生产目标定为43万辆.已知该公司近三年的汽车生产量如下表所示:二次函数模型f (x )=ax 2+bx +c (a ≠0),指数函数模型g (x )=a ·b x +c (a ≠0,b >0,b ≠1),哪个模型能更好地反映该公司年产量y 与年份x 的关系?解 建立年产量y 与年份x 的函数,可知函数必过点(1,8),(2,18),(3,30). (1)构造二次函数模型f (x )=ax 2+bx +c (a ≠0), 将点坐标代入,可得⎩⎪⎨⎪⎧a +b +c =8,4a +2b +c =18,9a +3b +c =30,解得a =1,b =7,c =0,则f (x )=x 2+7x , 故f (4)=44,与计划误差为1.(2)构造指数函数模型g (x )=a ·b x +c (a ≠0,b >0,b ≠1),将点坐标代入,可得⎩⎪⎨⎪⎧ab +c =8,ab 2+c =18,ab 3+c =30,解得a =1253,b =65,c =-42.则g (x )=1253·⎝⎛⎭⎫65x-42,故g (4)=1253·⎝⎛⎭⎫654-42=44.4,与计划误差为1.4.由(1)(2)可得,f (x )=x 2+7x 模型能更好地反映该公司年产量y 与年份x 的关系.对几种函数的增长趋势把握不准致误例3 甲、乙、丙、丁四个物体同时从某一点出发向同一方向运动,其路程f i (x )(i =1,2,3,4)关于时间x (x ≥0)的函数关系式分别为f 1(x )=2x -1,f 2(x )=x 2,f 3(x )=x ,f 4(x )=log 2(x +1).有以下结论:①当x >1时,甲走在最前面; ②当x >1时,乙走在最前面;③当0<x <1时,丁走在最前面,当x >1时,丁走在最后面; ④丙不可能走在最前面,也不可能走在最后面; ⑤如果它们一直运动下去,最终走在最前面的是甲. 其中,正确结论的序号为________.解析 四个函数的图象如图所示,根据图象易知,③④⑤正确.答案 ③④⑤纠错心得 解决这类问题可以作出图象,根据图象特征使问题得解.跟踪训练3 下面对函数f (x )=log 21x ,g (x )=(12)x与h (x )=x 21-在区间(0,+∞)上的衰减情况的说法正确的是( )A.f (x )衰减速度越来越慢,g (x )衰减速度越来越快,h (x )衰减速度越来越慢B.f (x )衰减速度越来越快,g (x )衰减速度越来越慢,h (x )衰减速度越来越快C.f (x )衰减速度越来越慢,g (x )衰减速度越来越慢,h (x )衰减速度越来越慢D.f (x )衰减速度越来越快,g (x )衰减速度越来越快,h (x )衰减速度越来越快 答案 C解析 函数f (x )=log 21x ,g (x )=(12)x与h (x )=x 21-在区间(0,+∞)上的大致图象如图所示.观察图象,可知函数f (x )的图象在区间(0,1)上衰减较快,但衰减速度逐渐变慢;在区间(1,+∞)上,衰减较慢,且衰减速度越来越慢.同样,函数g (x )的图象在区间(0,+∞)上,衰减较慢,且衰减速度越来越慢.函数h (x )的图象在区间(0,1)上衰减较快,但衰减速度越来越慢;在区间(1,+∞)上,衰减较慢,且衰减速度越来越慢,故选C.1.当x 越来越大时,下列函数中,增长速度最快的应是( ) A.y =3x B.y =log 3x C.y =x 3 D.y =3x 答案 D解析 几种函数模型中,指数函数增长最快,故选D. 2.当a >1时,有下列结论:①指数函数y =a x ,当a 越大时,其函数值的增长越快; ②指数函数y =a x ,当a 越小时,其函数值的增长越快; ③对数函数y =log a x ,当a 越大时,其函数值的增长越快; ④对数函数y =log a x ,当a 越小时,其函数值的增长越快. 其中正确的结论是( )A.①③B.①④C.②③D.②④ 答案 B3.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x 倍,需经过y 年,则函数y =f (x )的图象大致是( )答案 D解析 设该林区的森林原有蓄积量为a , 由题意,ax =a (1+0.104)y ,故y =log 1.104x (x ≥1), ∴y =f (x )的图象大致为D 中图象.4.当2<x <4时,2x ,x 2,log 2x 的大小关系是( ) A.2x >x 2>log 2x B.x 2>2x >log 2x C.2x >log 2x >x 2 D.x 2>log 2x >2x答案 B解析 方法一 在同一平面直角坐标系中分别画出函数y =log 2x ,y =x 2,y =2x 在区间(2,4)上从上往下依次是y =x 2,y =2x ,y =log 2x 的图象,所以x 2>2x >log 2x .方法二 比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x =3,经检验易知选B.5.某种产品每件80元,每天可售出30件,如果每件定价120元,则每天可售出20件,如果售出件数是定价的一次函数,则这个函数解析式为___________________. 答案 y =-14x +50(0<x <200)解析 设解析式为y =kx +b ,由⎩⎪⎨⎪⎧30=k ×80+b ,20=k ×120+b ,解得k =-14,b =50,∴y =-14x +50(0<x <200).三种函数模型的选取(1)当增长速度变化很快时,常常选用指数函数模型.(2)当要求不断增长,但又不会增长过快,也不会增长到很大时,常常选用对数函数模型. (3)幂函数模型y =x n (n >0),则可以描述增长幅度不同的变化:n 值较小(n ≤1)时,增长较慢;n 值较大(n >1)时,增长较快.一、选择题1.下列函数中,增长速度最慢的是( ) A.y =6x B.y =log 6x C.y =x 6 D.y =6x 答案 B解析 对数函数增长的速度越来越慢,故选B.2.今年小王用7 200元买了一台笔记本电脑,由于电子技术的飞速发展,计算机成本不断降低,每隔一年这种笔记本电脑的价格降低13,则三年后这种笔记本的价格是( )A.7 200×(13)3B.7 200×(23)3C.7 200×(13)2D.7 200×(23)2答案 B解析 由于小王用7 200元买了一台笔记本电脑,每隔一年这种笔记本电脑的价格降低13,故一年后,这种笔记本电脑的价格为7 200-7 200×13=7 200×23,两年后,价格为7 200×23×(1-13)=7 200×(23)2,三年后这种笔记本电脑的价格为7 200×(23)3.3.如图给出了红豆生长时间t (月)与枝数y (枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是( )A.指数函数:y =2tB.对数函数:y =log 2tC.幂函数:y =t 3D.二次函数:y =2t 2答案 A解析 由题中图象可知,该函数模型为指数函数.4.某种动物繁殖数量y (只)与时间x (年)的关系为y =a log 2(x +1),设这种动物第一年有100只,则到第7年它们发展到( ) A.300只 B.400只 C.500只 D.600只答案 A解析 由已知第一年有100只,得a =100.将a =100,x =7代入y =a log 2(x +1), 得y =300.5.向高为H 的水瓶内注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( )答案 B解析 取OH 的中点(如图)E 作h 轴的垂线,由图知当水深h 达到容量一半时,体积V 大于一半.易知B 符合题意.6.若x ∈(1,2),则下列结论正确的是( ) A.2x >x 21>lg x B.2x >lg x >x 21 C.x 21>2x >lg x D.x 21>lg x >2x答案 A解析 ∵x ∈(1,2),∴2x >2.∴x 21∈(1,2),lg x ∈(0,1).∴2x >x 21>lg x . 二、填空题7.三个变量y 1、y 2、y 3随变量x 的变化情况如表:x 1.00 3.00 5.00 7.00 9.00 11.00 y 1 5 135 625 1 715 3 645 6 655 y 2 5 29 245 2 189 19 685 177 149 y 35.006.106.616.957.207.40其中x 呈对数函数型变化的变量是________,呈指数函数型变化的变量是________,呈幂函数型变化的变量是________. 答案 y 3 y 2 y 1解析 根据三种模型的变化特点,观察表中数据可知,y 2随着x 的增大而迅速增加,呈指数函数型变化,y 3随着x 的增大而增大,但变化缓慢,呈对数函数型变化,y 1相对于y 2的变化要慢一些,呈幂函数型变化.8.在不考虑空气阻力的情况下,火箭的最大速度v m/s 和燃料质量M kg 、火箭(除燃料外)质量m kg 的关系是v =2 000ln ⎝⎛⎭⎫1+Mm ,则当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s. 答案 e 6-1解析 由题意得2 000ln ⎝⎛⎭⎫1+Mm =12 000. ∴ln ⎝⎛⎭⎫1+M m =6,从而Mm=e 6-1. 9.若a >1,n >0,那么当x 足够大时,a x ,x n ,log a x 中最大的是________. 答案 a x解析 由指数函数、幂函数和对数函数增长快慢的差别易知a x >x n >log a x . 10.如图所示的是某受污染的湖泊在自然净化过程中某种有害物质的残留量y 与净化时间t (月)的近似函数关系:y =a t (t ≥0,a >0且a ≠1)的图象.有以下叙述:①第4个月时,残留量就会低于15;②每月减少的有害物质量都相等;③若残留量为12,14,18时,所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3.其中所有正确叙述的序号是________. 答案 ①③解析 根据题意,函数的图象经过点(2,49),故函数为y =(23)t .易知①③正确.三、解答题11.大西洋鲑鱼每年都要逆流而上,游回产地产卵.记鲑鱼的游速为v (m/s),鲑鱼的耗氧量的单位数为Q ,研究中发现v 与log 3Q100成正比,且当Q =900时,v =1.(1)求出v 关于Q 的函数解析式;(2)计算一条鲑鱼的游速是1.5 m/s 时耗氧量的单位数. 解 (1)设v =k ·log 3Q100,∵当Q =900时,v =1,∴1=k ·log 3900100,∴k =12,∴v 关于Q 的函数解析式为v =12log 3Q100.(2)令v =1.5,则1.5=12log 3Q100,∴Q =2 700,∴一条鲑鱼的游速是1.5 m/s 时耗氧量为2 700个单位.12.现有某种细胞100个,每小时分裂一次,即由1个细胞分裂成2个细胞,且每次只有占总数12的细胞分裂,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg 3=0.477,lg 2=0.301)解 现有细胞100个,先考虑经过1,2,3,4个小时后的细胞总数: 1小时后,细胞总数为12×100+12×100×2=32×100(个);2小时后,细胞总数为12×32×100+12×32×100×2=94×100(个);3小时后,细胞总数为12×94×100+12×94×100×2=278×100(个);4小时后,细胞总数为12×278×100+12×278×100×2=8116×100(个).可归纳出,细胞总数y (个)与时间x (小时)之间的函数关系为y =100×(32)x ,x ∈N *.由100×(32)x >1010,得(32)x >108,两边同时取以10为底的对数,得x lg 32>8,∴x >8lg 3-lg 2.∵8lg 3-lg 2=80.477-0.301≈45.45,∴x >45.45.故经过46小时,细胞总数超过1010个.13.我们知道:人们对声音有不同的感觉,这与它的强度有关系.声音的强度用瓦/米2(W/m 2)表示,但在实际测量时,声音的强度水平常用L 1表示,它们满足以下公式:L 1=10lg II 0(单位为分贝,L 1≥0,其中I 0=1×10-12,是人们平均能听到的最小强度,是听觉的开端).回答下列问题:(1)树叶沙沙声的强度是1×10-12 W /m 2,耳语的强度是1×10-10W/m 2,恬静的无线电广播的强度是1×10-8 W/m 2,试分别求出它们的强度水平;(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度I 的范围为多少?解 (1)由题意知:树叶沙沙声的强度水平为L 2=10lg I 2I 0=10lg 1=0(分贝); 耳语的强度水平为L 3=10lg I 3I 0=10lg 102=20(分贝); 恬静的无线电广播的强度水平为L 4=10lg I 4I 0=10lg 104=40(分贝). (2)由题意知0≤L 1<50,即0≤10lg I I 0<50, 所以1≤I I 0<105, 即1×10-12≤I <1×10-7.所以新建的安静小区的声音强度I 的范围为[1×10-12,1×10-7).。
几类不同增长的函数模型●三维目标1.知识与技能在掌握好函数基本性质的前提下,使学生探求函数在实际中的应用,并学会利用函数知识建立数学模型解决实际问题.2.过程与方法(1)培养学生应用数学的意识分析问题、解决问题的能力;(2)培养学生的综合实践和自主学习的能力.3.情感、态度与价值观体验函数是描述宏观世界变化规律的基本数学模型,认识事物之间的普遍联系与相互转化,在实践研究中,培养学生的创新精神,团结协作精神,激发学生学习数学的兴趣.二、重点与难点重点:将实际问题转化为函数模型,训练学生通过实践探求函数在实际中的应用.难点:怎样选择适当的数学模型分析解决实际问题.重难点突破:主要利用信息技术从图、表两方面对知识讲解.首先对具体函数y =2x,y=x2,y=log2x的增长的差异性进行比较.在比较函数y=2x,y=x2的增长的差异性时,分别选择了三个不同的步长进行研究,这样就更能反映了这两类函数的增长的特点,在教学时要让学生体会到为什么要选择三种不同的步长加以研究,能让学生在解决具体问题时可以针对不同的情况进行合理的选择.在比较幂函数与对数函数的增长的差异性时可利用类比的方法.然后将结论推广到一般的指数函数y=a x(a>1)、对数函数y=log a x(a>1)、幂函数y=x n(n>0)在区间(0,+∞)的增长的差异性,即存在一个x0,当x>x0时,a x>x n>log a x,充分体现了“指数爆炸”、“直线上升”、“对数增长”的特点.整个过程向学生渗透从具体到一般、数形结合的数学思想方法,培养学生全面分析问题、解决问题的能力.课标解读1.掌握常见增长函数的定义、图象、性质,并体会其增长快慢.(重点) 2.理解直线上升、对数增长、指数爆炸的含义,及三种函数模型的性质的比较.(易混点)3.会分析具体的实际问题,能够建模解决实际问题.(难点)三类函数增长速度的比较【问题导思】函数y=2x,y=log2x及y=x2的图象如图所示.1.当x∈(2,4)时,函数y=x2与y=2x哪一个增长得更快一些?【提示】y=x2.2.当x∈(4,+∞)时,函数y=x2与y=2x哪一个增长得更快一些?【提示】y=2x.3.是否存在一个x0,使x>x0时恒有2x>x2>log2x成立?【提示】存在.1.三种函数模型的性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增图象的变化随x增大逐渐变陡随x增大逐渐变缓随n值而不同(1)在区间(0,+∞)上,函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但增长速度不同,且不在同一个“档次”上.(2)在区间(0,+∞)上随着x的增大,y=a x(a>1)增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.(3)存在一个x0,使得当x>x0时,有log a x<x n<a x.函数模型的增长差异研究函数y=0.5e-2,y=ln(x+1),y=x-1在[0,+∞)上的增长情况.【思路探究】解答本题的关键是在同一坐标系中画出它们的图象,结合图象说明它们的增长情况.【自主解答】分别在同一个坐标系中画出三个函数的图象,如图,从图象上可以看出函数y=0.5e x-2的图象首先超过了函数y=ln(x+1)的图象,然后又超过了y=x2-1的图象,即存在一个满足0.5e x0-2=x20-1的x0,当x>x0时,ln(x+1)<x2-1<0.5e x-2.1.判断不同函数增长模型的差异有两种方法,一是根据图象判断,二是根据函数的变化量的情况判断.2.三种函数模型的表达形式及其增长特点(1)指数函数模型:能用指数型函数f(x)=ab x+c(a,b,c为常数,a>0,b>1)表达的函数模型,其增长特点是随着自变量x的增大,函数值增大的速度越来越快,常称之为“指数爆炸”.(2)对数函数模型:能用对数型函数f(x)=m log a x+n(m,n,a为常数,m≠0,x>0,a>1)表达的函数模型,其增长的特点是开始阶段增长得较快,但随着x的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”.(3)幂函数模型:能用幂型函数f(x)=axα+b(a,b,c,α为常数,a≠0,α≠1)表达的函数模型,其增长情况由a和α的取值确定,常见的有二次函数模型和反比例函数模型.三个变量y1,y2,y3随着变量x的变化情况如下表:x 1357911y15135625 1 715 3 645 6 655y2529245 2 18919 685177 149y35 6.10 6.61 6.957.27.4 则关于x分别呈对数型函数、指数型函数、幂函数型函数变化的变量依次为() A.y1,y2,y3B.y2,y1,y3C.y3,y2,y1D.y1,y3,y2【解析】通过指数型函数、对数型函数、幂函数型函数的增长规律比较可知,对数型函数的增长速度越来越慢,变量y3随x的变化符合此规律;指数型函数的增长是爆炸式增长,y2随x的变化符合此规律;幂函数型函数的增长速度越来越快,y1随x的变化符合此规律,故选C.【答案】 C根据函数增长差异确定图象并比较大小函数f(x)=2x和g(x)=x3的图象如图所示.设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出示意图中曲线C1,C2分别对应哪一个函数;(2)结合函数图象示意图,判断f(6),g(6),f(2012),g(2012)的大小.【思路探究】根据指数函数、幂函数增长差异进行判断.【自主解答】(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)∵f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),∴1<x1<2,9<x2<10.∴x1<6<x2,2012>x2.从图象上可以看出,当x1<x<x2时,f(x)<g(x),∴f(6)<g(6).当x>x2时,f(x)>g(x),∴f(2012)>g(2012).又∵g(2012)>g(6),∴f(2012)>g(2012)>g(6)>f(6).1.解答此类问题的关键是明确“指数爆炸”、“对数增长”等函数增长差异,需注意幂函数的增长是介于两者之间的.2.体会数形结合思想,明确图形是函数关系的直观反映.本例中若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},指出a、b的值,并说明理由.【解】a=1,b=9.理由如下:令φ(x)=f(x)-g(x)=2x-x3,则x1,x2为函数φ(x)的零点,由于φ(x)在[1,13]上为连续函数,φ(1)=1>0,φ(2)=-4<0,φ(9)=29-93<0,φ(10)=210-103>0,所以函数φ(x)=f(x)-g(x)的两个零点x1∈[1,2],x2∈[9,10],因此a=1,b=9.根据函数增长差异选择函数模型某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且资金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x,其中哪个模型符合该校的要求?【思路探究】作出函数图象→观察图象得到结论【自主解答】借助工具作出函数y=3,y=0.2x,y=log5x,y=1.02x的图象(如图所示).观察图象可知,在区间[5,60]上,y=0.2x,y=1.02x的图象都有一部分在直线y=3的上方,只有y=log5x的图象始终在y=3和y=0.2x的下方,这说明只有按模型y=log5x进行奖励才符合学校的要求.不同的函数增长模型描述增长速度的差异:(1)线性函数增长模型适合于描述增长速度不变的变化规律;(2)指数函数增长模型适合于描述增长速度急剧的变化规律;(3)对数函数增长模型适合于描述增长速度平缓的变化规律;(4)幂函数增长模型适合于描述增长速度一般的变化规律.因此,需抓住题中蕴含的数学信息,恰当、准确地建立相应变化规律的函数模型来解决实际问题.某债券市场发行三种债券,A 种面值为100元,一年到期本息和为103元;B 种面值为50元,半年到期本息和为51.4元;C 种面值为100元,但买入价为97元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,从小到大排列为( )A .B ,A ,CB .A ,C ,B C .A ,B ,CD .C ,A ,B【解析】 A 种债券的收益是每100元收益3元;B 种债券的利率为51.4-5050,所以100元一年到期的本息和为100×⎝⎛⎭⎪⎫1+51.4-50502≈105.68(元),收益为5.68元;C 种债券的利率为100-9797,100元一年到期的本息和为100⎝ ⎛⎭⎪⎫1+100-9797≈103.09(元),收益为3.09元.【答案】 B数形结合思想在函数中的应用(12分)电信局为了配合客户的不同需要,现设计A ,B 两种优惠方案,这两种方案的应付电话费y (元)与通话时间x (分钟)之间的关系如图3-2-2所示(实线部分).(注:图中MN ∥CD )图3-2-2(1)若通话时间为2小时,则按方案A ,B 各付话费多少元?(2)方案B 从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B 才会比方案A 优惠?【思路点拨】 两种方案都是由线性函数组成的分段函数,结合图形可求出函数的解析式,然后再根据题意解题.【规范解答】 由图可知M (60,98),N (500,230),C (500,168),MN ∥CD .1分 设这两种方案的应付话费与通话时间的函数关系分别为f A (x ),f B (x ),则f A (x )=⎩⎨⎧ 98(0≤x ≤60)310x +80(x >60),f B (x )=⎩⎨⎧ 168(0≤x ≤500)310x +18(x >500).3分(1)易知,通话2小时,两种方案的话费分别为116元,168元.4分(2)因为f B (n +1)-f B (n )=310(n +1)+18-310n -18=0.3(n >500),6分所以方案B 从500分钟以后,每分钟收费0.3元.7分(3)由图可知,当0≤x ≤60时,有f A (x )<f B (x ).当x >500时,f A (x )>f B (x ).9分当60<x ≤500时,168=310x +80,解得x =8803.当60<x <8803时,f B (x )>f A (x );当8803≤x ≤500时,f A (x )>f B (x ).11分即当通话时间在⎝ ⎛⎭⎪⎫8803,+∞时,方案B 才会比方案A 优惠.12分1.对于给出图象的应用性问题,首先我们可以根据函数图象用待定系数法求出解析式,然后再用函数解析式来解决问题,最后再转化成具体问题,作出解答.2.对于借助函数图象表达题目信息的问题,读懂图象是解题的关键.小结1.直线上升、指数爆炸、对数增长对于直线y=kx+b(k≥0)、指数函数y=a x(a>1)、对数函数y=log b x(b>1),当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快,并且直线上升,其增长量固定不变.2.函数模型选取的择优意识解题过程中究竟选用哪种增长的函数模型,要根据题目的具体要求进行抽象和概括,灵活地选取和建立数学模型.3.要注意化归思想和数形结合思想的运用.。
几类不同增长的函数模型教学设计教学设计:几类不同增长的函数模型一、教学目标1.了解不同增长的函数模型,并能够区分它们的特点和应用领域;2.掌握常见的函数模型如线性函数、指数函数、对数函数和幂函数,并能够运用这些模型解决实际问题;3.培养学生对函数模型的理解和应用能力,提高解决实际问题的能力。
二、教学内容1.线性函数的增长特点和应用领域;2.指数函数的增长特点和应用领域;3.对数函数的增长特点和应用领域;4.幂函数的增长特点和应用领域。
三、教学过程1.导入引入(15分钟)以一个实际问题为引导,引导学生思考函数模型的应用场景和重要性。
例如,假设一个旅游公司在地开展了一项旅游活动,目标是每个月增加100名游客,学生应该思考如何建立一个适合这种情况的增长函数模型。
2.线性函数的教学(30分钟)2.1 线性函数的定义和特点:线性函数是自变量的一次函数,通常表示为 y = kx + b,其中 k 和 b 是常数。
讲解线性函数的特点,如斜率和截距的含义。
2.2线性函数的应用:通过实际问题引导学生判断何时可以应用线性函数模型,并举例说明如何建立和使用线性函数模型。
3.指数函数的教学(30分钟)3.1指数函数的定义和特点:指数函数是以常数为底数,自变量为指数的函数,通常表示为y=a^x,其中a>0,且a≠1、讲解指数函数的特点和增长规律。
3.2指数函数的应用:通过实际问题引导学生判断何时可以应用指数函数模型,并举例说明如何建立和使用指数函数模型。
4.对数函数的教学(30分钟)4.1 对数函数的定义和特点:对数函数是指数函数的逆运算,通常表示为 y = logₐ(x),其中 a > 0,且a ≠ 1、讲解对数函数的特点和增长规律。
4.2对数函数的应用:通过实际问题引导学生判断何时可以应用对数函数模型,并举例说明如何建立和使用对数函数模型。
5.幂函数的教学(30分钟)5.1幂函数的定义和特点:幂函数是自变量为底数,指数为常数的函数,通常表示为y=x^a,其中a是常数。
3.2.1几类不同增长的函数模型(1)教学目的:使学生了解常用的描述现实世界中不同增长规律的函数模型:指数函数、对数函数以及幂函数,了解直线上升、指数爆炸、对数增长等增长含义。
教学重难点:通过图象对指数函数、对数函数、幂函数模型的增长速度对比,让学生理解直线上升、指数爆炸、对数增长等增长的含义。
建立实际问题的函数模型是难点。
教学过程一、复习提问写出指数函数、对数函数、幂函数的一般形式,你知道它们的变化规律吗?二、新课例1、假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报元,以后每天的回报比前一天翻一番。
请问,你会选择哪种投资方案?解:设第x天所得回报是y元,则各方案的函数模型为:比其它2个方案快得多,称为“指数爆炸”。
投资5天以下选方案一,投资5――8天选方案二,投资8天以上选方案三。
再看累计回报数表P114。
投资8天以下(不含8天),应选择第一种投资方案,投资8--10天,应选择第二种投资方案;投资11天(含11天)以上,则应选择第三种方案。
例2、某公司为了实现1000万元利润目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过log+1,y=。
其中哪个模型利润的25%。
现有三个奖励模型:y=,y=x2能符合公司的要求?分析:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金不超过利润的25%,由于公司总的利润目标为1000万元,所以部门销售利润一般不会超过公司总的利润,于是,只需在区间[10,1000]上,检验三个模型是否符合公司要求即可。
不妨先作函数图象,通过观察函数的图象,得到初步的结论,再通过具体计算,确认结果。
几种不同增长的函数模型教案(2课时)
几种不同增长的函数模型(两课时)一、教学目的1、利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;2、结合实例让学生体会直线上升,指数爆炸,对数增长等不同增长的函数模型的意义;3、运用函数的三种表示法(解析式、图象、表格)并结合信息技术解决一些实际问题;4、以一些实际例子,让学生了解社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的广泛应用。
二、教学重点、难点重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
难点:怎样选择数学模型分析解决实际问题。
三、教学过程第一课时1、复习引入师:在我们的生活中,有没有用到函数的例子?生:细胞分裂;银行储蓄;早晨跑步锻炼时速度与时间的关系;……师:很好,生活中,数学无处不在,用好数学,将会给我们带来很大的方便。
今天,我们就来看一个利用数学为我们服务的例子。
2、新课(用幻灯片展示例题)假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:1)每天回报40元;2)第一天回报10元,以后每天比前一天多回报10元;3)第一天回报0.4元,以
后每天的回报比前一天翻一番。
请问:你会选择哪一种投资方案?(让学生充分讨论)教师提示:1)、考虑回报量,除了要考虑每天的回报量之外,还得考虑什么?(回报的累积值)。
2)、本题中涉及哪些数量关系?如何利用函数描述这些数量关系?教师引导学生分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作适当的指导。
设问:根据所列的表格中提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?教师引导学生观察表格中三个方案的数量变化情况,对“增加量”进行比较,体会“直线增长”、“指数爆炸”等;让学生通过观察,说出自己的发现,并进行交流。
利用计算机作出函数图象,引导学生根据三个方案的不同变化趋势,描述三个方案的特点,为方案的选择提供依据。
通过自主活动,使学生认识到怎样选择才是正确的。
综合学生的分析意见,教师总结:选择最佳方案,除了要考虑每天的收益,还要考虑一段时间内的总收益。
由上面的分析可见:投资8天以下(不含8天),应选择第一种投资方案;投资8~10天,应选择第二种方案;投资11天(含11天)以上,则应选择第三种方案。
设问:若有人给你这么一个建议:投资前8天用第一种方案,第9天到第10天用第二种方案,投资第11天开始用第三种方案。
你觉得这建议如何?3)、(幻灯片展示例题2)设问:本题中涉及了哪几类函数模型?实质是什么?教师引导学生分析三种函数的不同增长情况对于奖励模型的选择影响,使学生明确问题的实质就是要比较三个函数的增长情况。
让学生分组讨论:对每一个奖励模型的奖金总额是否超过5万元,以及奖励比例是否超过25%进行分析,由各小组代表陈述讨论结果。
教师根据学生讨论的结果作出总结,并利用解析式,结合图象,对三个模型的增长情况进行分析比较,写出完整的解题过程。
3、小结:一般地,对指数函数、幂函数和对数函数,在(0,+∞)上,尽管指数函数y=ax、对数函数y=logax和幂函数y=xa都是增函数,但它们的增长速度不同,而且不在同一“档次”上,随着x的增大,指数函数y=ax 的增长速度越来越快,会超过并远远大于幂函数y=xa,而对数函数y=logax的增长速度则会越来越慢。
因此,总会存在一个x0,当x>x0时,就有logax<xa<ax。
第二课时1、复习引入通过上节课的学习,我们已经知道,应用数学函数模型能为我们解决实际问题提供很大的帮助,。
我们不仅要应用好数学模型,我们更应该在面对实际问题时,能通过自己建立函数模型来解决问题。
2、新课1、(用幻灯片展示例题3)教师引导学生读图,弄懂题意,由学生写出解题过程。
课堂练习:P128第1、3题。
小结:在解决实际问题过程中,函数图象能够发挥很好的作用,因此,提高读图
能力非常重要。
分段函数也是刻画现实问题的一个重要的函数模型。
2、(展示例题4)教师引导学生根据收集到的数据,作出散点图,通过观察图象判定问题所适合的函数模型,利用计算机的数据拟合功能得出具体的函数解析式,再用得到的函数模型解决相应的问题,这是函数应用的一个基本过程。
课堂练习:P123第1题。
教师小结指出:用已知的函数模型来刻画实际问题时,由于实际问题的条件与得出已知函数模型的条件会有所不同,所以,必须对模型进行修正。
3、(用幻灯片展示例题5)让学生集体讨论,寻求相应的函数模型,并作出解答。
教师小结:所收集到的数据中,规律性很明显的问题,可直接找出与之对应的函数模型进行解答。
4、(用幻灯片展示例题6)观察散点图,教师引导学生分析,这些点的连线是一条向上弯曲的曲线,根据这些点的分布情况,可考虑用y=a·bx这一函数模型来近似刻画这一地区未成年男性体重y与身高x的函数关系。
课堂练习:P133 B组第3题。
小结:应用函数模型解决实际问题的基本过程:①
确定函数模型;②
利用数据表格,函数图象讨论模型;③
体会直线上升、指数爆炸、对数增长等不同类型增长的含义。
作业:P127第4、5题。