2019年高考数学(文科)二轮复习对点练:三三角专题对点练10(含答案)
- 格式:doc
- 大小:765.00 KB
- 文档页数:5
专题对点练4 从审题中寻找解题思路一、选择题1.已知方程=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )x 2m 2+n ‒y 23m 2-n A.(-1,3) B.(-1,) C.(0,3) D.(0,)332.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x<2时,f (x )=x 3-x ,则函数y=f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .93.已知F 1,F 2是双曲线C :=1(a>0,b>0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小的内x 2a 2‒y 2b 2角为30°,则双曲线C 的渐近线方程是( )A .x±y=0B .x±y=022C .x±2y=0D .2x±y=04.已知双曲线C :x 2-=1,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 的条数y 24共有( )A .3B .2C .1D .45.已知二次函数f (x )=ax 2+bx+c ,其中b>a ,且对任意x ∈R 都有f (x )≥0,则M=的最小值为( )a +2b +3cb -a A .B .C .D .5-2325+2327-3527+3526.(2018河北一模)设双曲线=1(0<a<b )的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线l 的距离x 2a2‒y 2b 2为c ,则双曲线的离心率为( )34A .2B .C .D .32233二、填空题7.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C+c cos B=2b ,则= .8.下表中的数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第i 行第j 列的数为a i ,j (i ,j ∈N *),则(1)a 9,9= ;(2)表中的数82共出现 次.234567…35791113…4710131619…5913172125…61116212631…71319253137……………………9.已知锐角三角形ABC 的三个内角A ,B ,C 所对的边分别是a ,b ,c ,若b 是和2的等比中项,c 是1和5的等差中项,则a 的取值范围是 . 三、解答题10.已知数列{a n }是公差不为零的等差数列,a 1=2,且a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项;(2)设{b n -(-1)n a n }是等比数列,且b 2=7,b 5=71.求数列{b n }的前n 项和T n .11.已知函数f (x )=4sin·cos ωx 在x=处取得最值,其中ω∈(0,2).(ωx -π4)π4(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向左平移个单位长度,再将所得图象上各点的横坐标伸长为原来的3倍,纵坐标不变,得π36到函数y=g (x )的图象,若α为锐角,g (α)=,求cos α.43‒212.已知函数f (x )=ln x+a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a-2时,求a 的取值范围.专题对点练4答案1.A 解析 因为双曲线的焦距为4,所以c=2,即m 2+n+3m 2-n=4,解得m 2=1.又由方程表示双曲线得(1+n )(3-n )>0,解得-1<n<3,故选A .2.B 解析 当0≤x<2时,令f (x )=x 3-x=0,得x=0或x=1,根据周期函数的性质,由f (x )的最小正周期为2,可知y=f (x )在[0,6)上有6个零点,又f (6)=f (3×2)=f (0)=0,所以f (x )在[0,6]上与x 轴的交点个数为7.3.A 解析 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a.在△PF 1F 2中,| F 1F 2|=2c ,而c>a ,所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2·2c·4a cos 30°,得c=a ,3所以b=a ,c 2-a 2=2所以双曲线的渐近线方程为y=±x=±x ,即x±y=0.224.D 解析 当直线l 斜率存在时,令l :y-1=k (x-1),代入x 2-=1中整理有(4-k 2)x 2+2k·(k-1)x-k 2+2k-5=0.当4-k 2=0,即k=±2时,l 和双曲线的渐近线平行,有一个公共y 24点.当k ≠±2时,由Δ=0,解得k=,即k=时,有一个切点.直线l 斜率不存在时,x=1也和曲线C 有一个切点.综上,共有4条满足条件的直线.5.D 解析 由题意得a>0,b 2-4ac ≤0,即c ≥,则M=.b24a a +2b +3cb -a≥a +2b +3b 24ab -a=1+2·b a +34·(b a )2b a -1令=t ,则t>1,于是M ≥(t-1)+,1+2t +34t2t -1=34(t -1)2+72(t -1)+154t -1=34154·1t -1+72≥352+72当且仅当t-1=,即b=(1+)a , c=a 时等号成立.55b 24a =3+52所以M=的最小值为.a +2b +3cb -a 7+3526.A 解析 ∵直线l 过(a ,0),(0,b )两点,∴直线l 的方程为=1,x a +y b 即bx+ay-ab=0.又原点到直线l 的距离为c ,34∴c ,即c 2,|ab |a 2+b 2=34a 2b 2a 2+b2=316又c 2=a 2+b 2,∴a 2(c 2-a 2)=c 4,316即c 4-a 2c 2+a 4=0,316化简得(e 2-4)(3e 2-4)=0,∴e 2=4或e 2=.2又∵0<a<b ,∴e 2==1+>2,c 2a 2b 2a 2∴e 2=4,即e=2,故选A .7.2 解析 (法一)因为b cos C+c cos B=2b ,所以b·+c·=2b ,化简可得=2.a 2+b 2-c 22ab a 2+c 2-b 22ac (法二)因为b cos C+c cos B=2b ,所以sin B cos C+sin C cos B=2sin B ,故sin(B+C )=2sin B ,故sin A=2sin B ,则a=2b ,即=2.8.(1)82 (2)5 解析 (1)a 9,9表示第9行第9列,第1行的公差为1,第2行的公差为2,……第9行的公差为9,第9行的首项b 1=10,则b 9=10+8×9=82.(2)第1行数组成的数列a 1,j (j=1,2,…)是以2为首项,公差为1的等差数列,所以a 1,j =2+(j-1)·1=j+1;第i 行数组成的数列a i ,j (j=1,2,…)是以i+1为首项,公差为i 的等差数列,所以a i ,j =(i+1)+(j-1)i=ij+1,由题意得a i ,j =ij+1=82,即ij=81,且i ,j ∈N *,所以81=81×1=27×3=9×9=1×81=3×27,故表格中82共出现5次.9.(2) 解析 因为b 是和2的等比中项,所以b==1.2,1012×2因为c 是1和5的等差中项,所以c==3.1+52又因为△ABC 为锐角三角形,①当a 为最大边时,有{12+32-a 2>0,a ≥3,1+3>a ,解得3≤a<;10②当c 为最大边时,有{12+a 2-32>0,a +1>3,a ≤3,解得2<a ≤3.2由①②得2<a<,210所以a 的取值范围是(2).2,1010.解 (1)设数列{a n }的公差为d (d ≠0),∵a 1=2,且a 2,a 4,a 8成等比数列,∴(3d+2)2=(d+2)(7d+2),解得d=2,故a n =a 1+(n-1)d=2n.(2)令c n =b n -(-1)n a n ,设{c n }的公比为q.∵b 2=7,b 5=71,a n =2n ,∴c 2=b 2-a 2=3,c 5=81,∴q 3==27,q=3,c 5c 2∴c n =c 2=3n-1.q n -2从而b n =3n-1+(-1)n 2n.T n =b 1+b 2+…+b n =(30+31+…+3n-1)+[-2+4-6+…+(-1)n 2n ],当n 为偶数时,T n =,当n 为奇数时,T n =.3n +2n -123n -2n -3211.解 (1)f (x )=4sin·cos ωx (ωx -π4)=2sin ωx·cos ωx-2cos 2ωx 22=(sin 2ωx-cos 2ωx )-22=2sin ,(2ωx -π4)‒2∵f (x )在x=处取得最值,2∴2ω·=k π+,k ∈Z ,π4‒π4∴ω=2k+,k ∈Z .∵ω∈(0,2),即0<2k+<2,∴-<k<,又k ∈Z ,∴k=0,则ω=,∴f (x )=2sin ,∴T=.(3x -π4)‒22π3(2)将函数f (x )的图象向左平移个单位长度,得到π36h (x )=2sin [3(x +π36)-π4]‒2=2sin ,(3x -π6)‒2再将h (x )图象上各点的横坐标伸长为原来的3倍,纵坐标不变,得到g (x )=2sin .(x -π6)‒2故g (α)=2sin ,(α-π6)‒2=43‒2sin.(α-π6)=23∵α为锐角,∴-<α-,π6<π3因此cos.(α-π6)=1-(23)2=53故cos α=cos =cos ·cos -sin ·sin .(α-π6+π6)(α-π6)(α-π6)π6=53×32‒23×12=15-2612.解 (1)f (x )的定义域为(0,+∞),f'(x )= -a.若a ≤0,则f'(x )>0,所以f (x )在(0,+∞)内单调递增.若a>0,则当x ∈时,f'(x )>0;当x ∈时,f'(x )<0.(0,1a )(1a ,+∞)所以f (x )在内单调递增,在内单调递减.(0,1a )(1a ,+∞)(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a>0时,f (x )在x=处取得最大值,最大值为f =ln +a=-ln a+a-1.(1a )(1a )(1-1a )因此f >2a-2等价于ln a+a-1<0.(1a )令g (a )=ln a+a-1,则g (a )在(0,+∞)内单调递增,g (1)=0.于是,当0<a<1时,g (a )<0;当a>1时,g (a )>0.因此,a 的取值范围是(0,1).。
专题对点练1选择题、填空题的解法一、选择题1.方程ax2+2x+1=0至少有一个负根的充要条件是()A.0<a≤1B.a<1C.a≤1D.0<a≤1或a<02.设f(x)=ln x,0<a<b,若p=f(),q=f,r= [f(a)+f(b)],则下列关系式中正确的是()A.q=r<pB.q=r>pC.p=r<qD.p=r>q3.在等差数列{a n}中,是一个与n无关的常数,则该常数的可能值的集合为()A.{1}B.C. D.4.在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则等于()A. B. C. D.5.已知定义在R上的函数f(x)满足:对任意实数x,都有f(1+x)=f(1-x),且f(x)在(-∞,1]上单调递增.若x1<x2,且x1+x2=3,则f(x1)与f(x2)的大小关系是()A.f(x1)<f(x2)B.f(x1)=f(x2)C.f(x1)>f(x2)D.不能确定6.已知O是锐角△ABC的外接圆圆心,A=60°,=2m·,则m的值为()A. B.C.1D.7.设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围是()A.B.[0,1]C.D.[1,+∞)8.(2018陕西一模)设x∈R,定义符号函数sgn x=则函数f(x)=|x|sgn x的图象大致是()9.已知f(x)=log a(x-1)+1(a>0,且a≠1)恒过定点M,且点M在直线=1(m>0,n>0)上,则m+n的最小值为()A.3+2B.8C.4D.410.已知直线l与双曲线-y2=1相切于点P,l与双曲线两条渐近线交于M,N两点,则的值为()A.3B.4C.5D.0二、填空题11.设a>b>1,则log a b,log b a,log ab b的大小关系是.(用“<”连接)12.不论k为何实数,直线y=kx+1与圆x2+y2-2ax+a2-2a-4=0恒有交点,则实数a的取值范围是.13.函数f(x)=4cos2cos-2sin x-|ln(x+1)|的零点个数为.14.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=.15.已知函数f(x)是定义在R上的可导函数,其导函数记为f'(x),若对于∀x∈R,有f(x)>f'(x),且y=f(x)-1是奇函数,则不等式f(x)<e x的解集为.16.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域为.专题对点练1答案1.C解析当a=0时,x=-,符合题意,排除A,D;当a=1时,x=-1,符合题意,排除B.故选C.2.C解析f(x)=ln x是增函数,根据条件不妨取a=1,b=e,则p=f()=ln,q=f>f()=,r=·[f(1)+f(e)]=.在这种特例情况下满足p=r<q,所以选C.3.B解析∵是一个与n无关的常数,∴结合选项令=1,则数列{a n}是一个常数列,满足题意;令,设等差数列的公差为d,则a n=a2n= (a n+nd),∴a n=nd,即a1+(n-1)d=nd,化简,得a1=d,也满足题意;=0,则a n=0,a2n=0,不满足题意.故选B.4.B解析(法一)由题意可取特殊值a=3,b=4,c=5,则cos A=,cos C=0,.故选B.(法二)由题意可取特殊角A=B=C=60°,cos A=cos C=.故选B.5.C解析由f(1+x)=f(1-x)知,函数y=f(x)的图象关于直线x=1对称.又f(x)在(-∞,1]上单调递增,所以f(x)在[1,+∞)上单调递减.设点A(x1,0),B(x2,0).因为x1<x2,且x1+x2=3,所以点A在点B的左侧,且AB的中点坐标为,所以结合图象可知(图略),f (x1)>f(x2).6.A解析对任意锐角三角形,题干中的等式都成立,则对等边三角形,题干中的等式也应成立.如图,当△ABC为正三角形时,则∠BAC=∠ABC=∠ACB=60°.取BC的中点D,连接AD,由题意可知,则有=2m·.∴)=2m×.∴·2.∴m=.故选A.7.C解析当a=2时,f(a)=f(2)=22=4>1,f(f(a))=2f(a),∴a=2满足题意,排除A,B选项;当a=时,f(a)=f=3×-1=1,f(f(a))=2f(a),∴a=满足题意,排除D选项,故答案为C.8.C解析函数f(x)=|x|sgn x=故函数f(x)=|x|sgn x的图象为y=x所在的直线,故选C.9.A解析因为f(x)=log a(x-1)+1(a>0,且a≠1)恒过定点M(2,1),所以M(2,1)在直线=1上,可得=1,m+n=(m+n)=3+≥3+2当且仅当,m+n的最小值为3+2,故选A.10.A解析取点P(2,0),则M(2,1),N(2,-1),∴=4-1=3,取点P(-2,0),则M(-2,1),N(-2,-1),∴=4-1=3,故选A.11.log ab b<log a b<log b a解析考虑到两个数的大小关系是确定的,不妨令a=4,b=2,则log a b=,log b a=2,log ab b=,显然<2,∴log ab b<log a b<log b a.12.[-1,3]解析由题知2a+4>0,则a>-2.注意到直线y=kx+1恒过定点(0,1),所以题设条件等价于点(0,1)在圆内或圆上,则有02+12-2a·0+a2-2a-4≤0,即a2-2a-3≤0,解得-1≤a≤3.综上,-1≤a≤3.13.2解析由题意可得f(x)=4cos2·sin x-2sin x-|ln(x+1)|=2sin x·-|ln(x+1)|=sin 2x-|ln(x+1)|.令f(x)=0,得sin 2x=|ln(x+1)|.在同一平面直角坐标系中作出两个函数y=sin 2x与函数y=|ln(x+1)|的大致图象,如图所示.观察图象可知,两函数图象有2个交点,故函数f(x)有2个零点.14.-8解析根据函数特点取f(x)=sin x,再由图象可得(x1+x2)+(x3+x4)=(-6×2)+(2×2)=-8.15.(0,+∞)解析由题意令g(x)=,则g'(x)=.∵f(x)>f'(x),∴g'(x)<0,故函数g(x)=在R上单调递减.∵y=f(x)-1是奇函数,∴f(0)-1=0,即f(0)=1,g(0)=1,则不等式f(x)<e x等价为<1=g(0),即g(x)<g(0),解得x>0.16.∪(2,+∞)解析由x<g(x),得x<x2-2,∴x<-1或x>2;由x≥g(x),得x≥x2-2,∴-1≤x≤2.∴f(x)=即f(x)=当x<-1时,f(x)>2;当x>2时,f(x)>8.∴当x∈(-∞,-1)∪(2,+∞)时,函数的值域为(2,+∞).当-1≤x≤2时,-≤f(x)≤0.∴当x∈[-1,2]时,函数的值域为.综上可知,f(x)的值域为∪(2,+∞).。
专题对点练11三角变换与解三角形1.在△ABC中,角A,B,C的对边分别为a,b,c.已知b=3,=-6,S△ABC=3,求A和a.2.已知a,b,c分别为锐角三角形ABC的内角A,B,C所对的边,且a=2c sin A.(1)求角C;(2)若c=,且△ABC的面积为,求a+b的值.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2c-a=2b cos A.(1)求角B的大小;(2)若a=2,b=,求c的长.4.已知△ABC中,角A,B,C所对的边分别为a,b,c,且a sin C=c cos A.(1)求角A;(2)若b=2,△ABC的面积为,求a.5.在△ABC中,角A,B,C的对边分别为a,b,c,且满足.(1)求角A的大小;(2)若D为BC上一点,且=2,b=3,AD=,求a.6.已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且b=2,c=3,△ABC的面积为,又=2,∠CBD=θ.(1)求a,A,cos∠ABC;(2)求cos 2θ的值.7.在△ABC中,a,b,c分别是角A,B,C所对的边,且满足a=3b cos C.(1)求的值;(2)若a=3,tan A=3,求△ABC的面积.8.在△ABC中,角A,B,C所对的边分别为a,b,c,且2a cos C-c=2b.(1)求角A的大小;(2)若c=,角B的平分线BD=,求a.专题对点练11答案1.解因为=-6,所以bc cos A=-6,又S△ABC=3,所以bc sin A=6,因此tan A=-1,又0<A<π,所以A=.又b=3,所以c=2.由余弦定理a2=b2+c2-2bc cos A,得a2=9+8-2×3×2=29,所以a=.2.解(1)由a=2c sin A及正弦定理得sin A=2sin C sin A.∵sin A≠0,∴sin C=.∵△ABC是锐角三角形,∴C=.(2)∵C=,△ABC的面积为,∴ab sin,即ab=6.①∵c=,∴由余弦定理得a2+b2-2ab cos=7,即(a+b)2=3ab+7.②将①代入②得(a+b)2=25,故a+b=5.3.解(1)∵2c-a=2b cos A,∴由正弦定理可得2sin C-sin A=2sin B cos A,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴2sin A cos B+2cos A sin B-sin A=2sin B cos A.∴2sin A cos B=sin A.∵sin A≠0,∴cos B=,∴B=.(2)∵b2=a2+c2-2ac cos B,∴7=4+c2-2c,即c2-2c-3=0,解得c=3或c=-1(舍去),∴c=3.4.解(1)∵a sin C=c cos A,∴sin A sin C=sin C cos A,∵sin C>0,∴sin A=cos A,则tan A=,由0<A<π得A=.(2)∵b=2,A=,△ABC的面积为,∴bc sin A=,则×2×c×,解得c=2,由余弦定理得a2=b2+c2-2bc cos A=4+4-2×2×2×=4,则a=2.5.解(1)由,则(2c-b)cos A=a cos B,由正弦定理可知=2R,则a=2R sin A,b=2R sin B,c=2R sin C, ∴(2sin C-sin B)cos A=sin A cos B,整理得2sin C cos A-sin B cos A=sin A cos B,即2sin C cos A=sin(A+B)=sin C,由sin C≠0,则cos A=,即A=,∴角A的大小为.(2)过点D作DE∥AC,交AB于点E,则△ADE中,ED=AC=1,∠DEA=, 由余弦定理可知AD2=AE2+ED2-2AE·ED cos,又AD=,∴AE=4,∴AB=6.又AC=3,∠BAC=,则△ABC为直角三角形,∴a=BC=3,∴a的值为3.6.解(1)由△ABC的面积为bc sin A,可得×2×3×sin A=,可得sin A=,又A为锐角,可得A=,由余弦定理得a2=b2+c2-2bc cos A=22+32-2×2×3×cos=7,解得a=,可得cos∠ABC=.(2)由=2,知CD=1,由△ABD为正三角形,即BD=3,且sin∠ABC=,cos θ=cos=coscos∠ABC+sinsin∠ABC=,∴cos 2θ=2cos2θ-1=.7.解(1)由正弦定理=2R可得2R sin A=3×2R sin B cos C.∵A+B+C=π,∴sin A=sin(B+C)=3sin B cos C,即sin B cos C+cos B sin C=3sin B cos C.∴cos B sin C=2sin B cos C,∴=2,故=2.(2)(方法一)由A+B+C=π,得tan(B+C)=tan(π-A)=-3,即=-3,将tan C=2tan B代入得=-3,解得tan B=1或tan B=-,根据tan C=2tan B得tan C,tan B同正,∴tan B=1,tan C=2.又tan A=3,可得sin B=,sin C=,sin A=,代入正弦定理可得,∴b=,∴S△ABC=ab sin C=×3×=3.(方法二)由A+B+C=π得tan(B+C)=tan(π-A)=-3,即=-3,将tan C=2tan B代入得=-3,解得tan B=1或tan B=-,根据tan C=2tan B得tan C,tan B同正,∴tan B=1,tan C=2.又a=3b cos C=3,∴b cos C=1,∴ab cos C=3.∴ab cos C tan C=6.∴S△ABC=ab sin C=×6=3.8.解(1)由2a cos C-c=2b及正弦定理得2sin A cos C-sin C=2sin B,2sin A cos C-sin C=2sin(A+C)=2sin A cos C+2cos A sin C,∴-sin C=2cos A sin C,∵sin C≠0,∴cos A=-,又A∈(0,π),∴A=.(2)在△ABD中,c=,角B的平分线BD=,由正弦定理得,∴sin∠ADB=,由A=,得∠ADB=,∴∠ABC=2,∴∠ACB=π-,AC=AB=.由余弦定理得a2=BC2=AB2+AC2-2AB·AC·cos A=2+2-2×=6,∴a=.。
专题对点练123.1~3.3组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1.已知cos x=,则cos 2x=()A.-B.C.-D.2.角θ的顶点与原点重合,始边与x轴非负半轴重合,终边在直线y=2x上,则tan 2θ=()A.2B.-4C.-D.-3.函数y=sin 2x+cos 2x的最小正周期为()A. B. C.π D.2π4.设△ABC的内角A,B,C所对的边分别为a,b,c,且C=,a+b=12,则△ABC面积的最大值为()A.8B.9C.16D.215.若△ABC的内角A,B,C所对的边分别为a,b,c,已知2b sin 2A=3a sin B,且c=2b,则等于()A.B.C.D.6.(2018天津,文6)将函数y=sin的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递增B.在区间上单调递减C.在区间上单调递增D.在区间上单调递减7.设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π,若f=2,f=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=-C.ω=,φ=-D.ω=,φ=8.已知曲线C1:y=cos x,C2:y=sin,则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C29.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0)的图象与直线y=a(0<a<A)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递减区间是()A.[6kπ,6kπ+3](k∈Z)B.[6kπ-3,6kπ](k∈Z)C.[6k,6k+3](k∈Z)D.[6k-3,6k](k∈Z)二、填空题(共3小题,满分15分)10.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=,则sinβ=.11.在△ABC中,a,b,c分别是角A,B,C的对边,△ABC的面积为S,(a2+b2)tan C=8S,则=.12.已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连接CD,则△BDC的面积是,cos∠BDC=.三、解答题(共3个题,满分分别为13分,13分,14分)13.(2018浙江,18)已知角α的顶点与原点O重复,始边与x轴的非负半轴重合,它的终边过点P.(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=,求cos β的值.14.已知函数f(x)= cos22x+sin 2x cos 2x+1.(1)求f(x)的最小正周期;(2)当x∈时,求f(x)的最值.15.已知在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求b的值;(2)若cos B+sin B=2,求a+c的取值范围.专题对点练12答案1.D解析cos 2x=2cos2x-1=2×-1=.2.D解析∵角θ的始边与x轴的非负半轴重合,终边在直线y=2x上,∴tan θ=2.∴tan 2θ==-,故选D.3.C解析因为y=sin 2x+cos 2x=2=2sin,所以其最小正周期T==π.4.B解析∵ab≤=36,当且仅当a=b=6时,等号成立,∴S△ABC=ab·sin C≤×36×=9,故选B.5.C解析由2b sin 2A=3a sin B,利用正弦定理可得4sin B sin A cos A=3sin A sin B,由于sin A≠0,sin B≠0,可得cos A=,又c=2b,可得a2=b2+c2-2bc cos A=b2+4b2-2b·2b·=2b2,则.故选C.6.A解析将函数y=sin的图象向右平移个单位长度,所得图象对应的函数解析式为y=sin=sin 2x,该函数在(k∈Z)上单调递增,在(k∈Z)上单调递减,结合选项可知选A.7.A解析由题意可知,>2π,,所以≤ω<1.所以排除C,D.当ω=时,f=2sin=2sin=2,所以sin=1.所以+φ=+2kπ,即φ=+2kπ(k∈Z).因为|φ|<π,所以φ=.故选A.8.D解析曲线C1的方程可化为y=cos x=sin,把曲线C1上各点的横坐标缩短到原来的倍,纵坐标不变,得曲线y=sin=sin 2,为得到曲线C2:y=sin 2,需再把得到的曲线向左平移个单位长度.9.D解析由函数与直线y=a(0<a<A)的三个相邻交点的横坐标分别是2,4,8,知函数的周期为T==2,得ω=,再由五点法作图可得+φ=,求得φ=-,∴函数f(x)=A sin.令2kπ+x-≤2kπ+,k∈Z,解得6k+3≤x≤6k+6,k∈Z,∴f(x)的单调递减区间为[6k-3,6k](k∈Z).10.解析由角α与角β的终边关于y轴对称,得α+β=2kπ+π,k∈Z,即β=2kπ+π-α,k∈Z,故sin β=sin(2kπ+π-α)=sin α=.11.2解析∵(a2+b2)tan C=8S,∴a2+b2=4ab cos C=4ab·,化简得a2+b2=2c2,则=2.故答案为2.12.解析如图,取BC中点E,DC中点F,由题意知AE⊥BC,BF⊥CD.在Rt△ABE中,cos∠ABE=,∴cos∠DBC=-,sin∠DBC=.∴S△BCD=×BD×BC×sin∠DBC=.∵cos∠DBC=1-2sin2∠DBF=-,且∠DBF为锐角,∴sin∠DBF=.在Rt△BDF中,cos∠BDF=sin∠DBF=.综上可得,△BCD的面积是,cos∠BDC=.13.解(1)由角α的终边过点P,得sin α=-,所以sin(α+π)=-sin α=.(2)由角α的终边过点P,得cos α=-,由sin(α+β)=,得cos(α+β)=±.由β=(α+β)-α,得cos β=cos(α+β)·cos α+sin(α+β)sin α,所以cos β=-或cos β=.14.解函数f(x)= cos22x+sin 2x·cos 2x+1=sin 4x+1=sin.(1)f(x)的最小正周期T=.(2)当x∈时,4x+,则sin.当4x+时,函数f(x)取得最小值为1,此时x=;当4x+时,函数f(x)取得最大值为,此时x=.∴当x∈时,函数f(x)的最大值为,最小值为1.15.解(1)△ABC中,,∴,∴,解得b=.(2)∵cos B+sin B=2,∴cos B=2-sin B,∴sin2B+cos2B=sin2B+(2-sin B)2=4sin2B-4sin B+4=1,∴4sin2B-4sin B+3=0,解得sin B=.从而求得cos B=,∴B=.由正弦定理得=1,∴a=sin A,c=sin C.由A+B+C=π,得A+C=,∴C=-A,且0<A<.∴a+c=sin A+sin C=sin A+sin=sin A+sin cos A-cos sin A=sin A+cos A=sin, ∵0<A<,∴<A+,∴<sin≤1,∴sin,∴a+c的取值范围是.。
2019版高考数学二轮复习专题三三角专题对点练12 3.1~3.3组合练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学二轮复习专题三三角专题对点练12 3.1~3.3组合练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学二轮复习专题三三角专题对点练12 3.1~3.3组合练文的全部内容。
专题对点练12 3。
1~3.3组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1。
已知cos x=,则cos 2x=()A.—B. C。
—D。
2。
角θ的顶点与原点重合,始边与x轴非负半轴重合,终边在直线y=2x上,则tan 2θ=()A。
2 B.—4 C.-D.-3.函数y=sin 2x+cos 2x的最小正周期为()A.B。
C。
π D.2π4.设△ABC的内角A,B,C所对的边分别为a,b,c,且C=,a+b=12,则△ABC面积的最大值为()A。
8 B.9 C.16 D。
215。
若△ABC的内角A,B,C所对的边分别为a,b,c,已知2b sin 2A=3a sin B,且c=2b,则等于()A。
B.C.D.6。
(2018天津,文6)将函数y=sin的图象向右平移个单位长度,所得图象对应的函数()A。
在区间上单调递增B.在区间上单调递减C.在区间上单调递增D。
在区间上单调递减7。
设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|〈π,若f=2,f=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=-C。
ω=,φ=— D.ω=,φ=8。
已知曲线C1:y=cos x,C2:y=sin,则下面结论正确的是()A。
专题对点练12 3・1~3・3组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分) 1. 己知 cos x=则 cos 2x=( ) 2. 角0的顶点与原点重合,始边与无轴非负半轴重合,终边在直线yP/上,则tan 2 〃 =() A. 2 B. ~4 C. - D.-3.函数y'sin 2x 尢os 2x 的最小正周期为( )-n2nA. 2B. TC. nD. 2 JiTl4. 设的内角A, B, C 所对的边分别为日,b, c,且CN, a+b=\2,则△加疋面积的最大值为() A.8 B.9 C. 16 D.215. 若的内角A, B, C 所对的边分别为白,b,c,已知2bsin 2力弋臼sin B,且c 电b,则等于( )A.B. C. V2 D . V36. (2018天津,文6)将函数y-sin (2x + 9的图象向右平移佥个单位长度,所得图象对应的函数() [It It]A. 在区间上单调递增B. 在区间卜*“1上单调递减It it「刃上单调递增D.在区问压詞上单调递减8. 已知曲线G:y=cos x, G:尸in (力+ 〒),则下面结论正确的是()TIA.把G 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移E 个单位长度,得 到曲线GB. 把G 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移辽个单位长度,得 到曲线GTIC. 把G 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移&个单位长度,得到 曲线GTID. 把G 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移辽个单位长度,得到 曲线G9. 已知函数刃sin (QE0) (/P0,少刈的图象与直线yp (0Q<4)的三个相邻交点的横坐标分 别是2, 4, &则/U )的单调递减区间是() A. [6加,6An ,3] (AeZ ) B. [6&兀-3, 6加](&WZ ) C. [6A, 6M3](胫 Z ) D. [6A-3, 6幻 gZ )二、填空题(共3小题,满分15分)10. 在平面直角坐标系xOy 中,角a 与角〃均以%为始边,它们的终边关于y 轴对称.若sin 。
专题对点练3分类讨论思想、转化与化归思想一、选择题1.设函数f(x)=若f(a)>1,则实数a的取值范围是()A.(0,2)B.(0,+∞)C.(2,+∞)D.(-∞,0)∪(2,+∞)2.函数y=5的最大值为()A.9B.12C.D.33.在等比数列{a n}中,a3=7,前3项的和S3=21,则公比q的值是()A.1B.-C.1或-D.-1或4.若m是2和8的等比中项,则圆锥曲线x2+=1的离心率是()A.B.C.D.5.已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为y=±x,则该双曲线的离心率为()A. B.C. D.6.若a>0,且a≠1,p=log a(a3+1),q=log a(a2+1),则p,q的大小关系是()A.p=qB.p<qC.p>qD.当a>1时,p>q;当0<a<1时,p<q7.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()A.B.(-∞,3)C.D.[3,+∞)8.(2018安徽黄山一模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是()A.(0,1)B.(1,+∞)C.(-1,0)D.(-∞,-1)二、填空题9.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b=.10.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意x∈[a,a+2],f(x+a)≥f(3x+1)恒成立,则实数a的取值范围是.11.函数y=的最小值为.12.在三棱锥P-ABC中,PA,PB,PC两两互相垂直,且AB=4,AC=5,则BC的取值范围是.三、解答题13.已知a≥3,函数F(x)=min{2|x-1|,x2-2ax+4a-2},其中min{p,q}=(1)求使得等式F(x)=x2-2ax+4a-2成立的x的取值范围;(2)①求F(x)的最小值m(a);②求F(x)在区间[0,6]上的最大值M(a).专题对点练3答案1.B解析若2a-3>1,解得a>2,与a<0矛盾,若>1,解得a>0,故a的范围是(0,+∞).2.D解析设a=(5,1),b=(),∵a·b≤|a|·|b|,∴y=5=3.当且仅当5,即x=时等号成立.3.C解析当公比q=1时,则a1=a2=a3=7,S3=3a1=21,符合要求.当公比q≠1时,则a1q2=7,=21,解得q=- (q=1舍去).综上可知,q=1或q=-.4.D解析因为m是2和8的等比中项,所以m2=2×8=16,所以m=±4.当m=4时,圆锥曲线+x2=1是椭圆,其离心率e=;当m=-4时,圆锥曲线x2-=1是双曲线,其离心率e=.综上知,选项D正确.5.C解析当焦点在x轴上时,,此时离心率e=;当焦点在y轴上时,,此时离心率e=.故选C.6.C解析当0<a<1时,可知y=a x和y=log a x在其定义域上均为减函数,则a3+1<a2+1,∴log a(a3+1)>log a(a2+1),即p>q.当a>1时,y=a x和y=log a x在其定义域上均为增函数,则a3+1>a2+1,∴log a(a3+1)>log a(a2+1),即p>q.综上可得p>q.7.C解析f'(x)=3x2-2tx+3,由于f(x)在区间[1,4]上单调递减,则有f' (x)≤0在[1,4]上恒成立,即3x2-2tx+3≤0,即t≥在[1,4]上恒成立,因为y=在[1,4]上单调递增,所以t≥,故选C.8.B解析方程f(x)=k化为方程e|x|=k-|x|.令y1=e|x|,y2=k-|x|.y2=k-|x|表示斜率为1或-1的平行折线系.当折线与曲线y=e|x|恰好有一个公共点时,k=1.由图知,关于x的方程f(x)=k有两个不同的实根时,实数k的取值范围是(1,+∞).故选B.9.-解析当a>1时,函数f(x)= a x+b在[-1,0]上为增函数,由题意得无解.当0<a<1时,函数f(x)=a x+b在[-1,0]上为减函数,由题意得解得所以a+b=-.10.(-∞,-5]解析因为当x≥0时,f(x)=x2,所以此时函数f(x)在[0,+∞)上单调递增.又因为f(x)是定义在R上的奇函数,且f(0)=0,所以f(x)在R上单调递增.若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则x+a≥3x+1恒成立,即a≥2x+1恒成立,因为x∈[a,a+2],所以(2x+1)max=2(a+2)+ 1=2a+5,即a≥2a+5,解得a≤-5.即实数a的取值范围是(-∞,-5].11.解析原函数等价于y=,即求x轴上一点到A(1,1),B(3,2)两点距离之和的最小值.将点A(1,1)关于x轴对称,得A'(1,-1),连接A'B交x轴于点P,则线段A'B的值就是所求的最小值,即|A'B|=.12.(3,)解析如图所示,问题等价于长方体中,棱长分别为x,y,z,且x2+y2=16,x2+z2=25,求的取值范围,转化为y2+z2=41-2x2,∵x2+y2=16,∴0<x<4,∴41-2x2∈(9,41),即BC的取值范围是(3,).13.解(1)由于a≥3,则当x≤1时,(x2-2ax+4a-2)-2|x-1|=x2+2(a-1)(2-x)>0,当x>1时,(x2-2ax+4a-2)-2|x-1|=(x-2)(x-2a).所以,使得等式F(x)=x2-2ax+4a-2成立的x的取值范围为[2,2a].(2)①设函数f(x)=2|x-1|,g(x)=x2-2ax+4a-2,则f(x)min=f(1)=0,g(x)min=g(a)=-a2+4a-2,所以,由F(x)的定义知m(a)=min{f(1), g(a)},即m(a)=②当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2),当2≤x≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34-8a}=max{F(2),F(6)}.所以,M(a)=。
专题三立体几何与空间向量专题检测选题明细表知识点·方法A组B组集合与常用逻辑用语 1 2复数9 1平面向量 4 4,13 不等式与线性规划 2 15计数原理与古典概型8 11三角函数11 5,10,16空间几何体3,10,13 4,6,7,9,12空间位置关系5,7,12,14,15 3,8,14,17 立体几何的向量方法6,16 18A组一、选择题1.若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为( C )(A)5 (B)4 (C)3 (D)2解析:x=-1,y=0时,z=-1;x=-1,y=2时,z=1;x=1,y=0时,z=1;x=1,y=2时,z=3.故z的值为-1,1,3,共3个元素.2.设a= log2π,b== loπ,c=π-2,则( C )(A)a>b>c (B)b>a>c(C)a>c>b (D)c>b>a解析:因为a= log2π> log22=1,b= loπ< lo1=0,c=π-2∈(0,1),所以a>c>b,故选C.3.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是( A )(A)1 cm3(B)2 cm3(C)3 cm3(D)6 cm3解析:本题主要考查了三视图的应用,根据三棱锥的体积公式V=××2×1×3=1,所以选A.4.△ABC的三个内角A,B,C所对的边分别为a,b,c,设向量p=(a+c,b),q=(b-a,c-a),若p∥q,则角C的大小为( B )(A)(B)(C)(D)解析:因为p∥q,所以(a+c)(c-a)=b(b-a),即b2+a2-c2=ab.由余弦定理得cos C=,又0<C<π,所以C=.5.已知正四棱锥S ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为( C )(A)(B) (C) (D)解析:设AC,BD的交点为O,连接EO,则∠AEO为AE,SD所成的角或其补角;设正四棱锥的棱长为a,则AE=a,EO=a,OA=a,所以cos ∠AEO===,故选C.6.在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a.点E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为( D )(A)30°(B)45°(C)60°(D)90°解析:以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系D xyz,D(0,0,0),P(0,0,a),B(a,a,0),E(0,,),=(a,a,-a),又=(0,,),·=0+-=0,所以PB⊥DE.由已知DF⊥PB,又DF∩DE=D,所以PB⊥平面EFD,所以PB与平面EFD所成角为90°.故选D.7.在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,M是棱PC上一点.若PA=AC=a,则当△MBD的面积为最小值时,直线AC与平面MBD所成的角为( B )(A)(B)(C)(D)解析:连接AC,BD交于O,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,所以PA⊥BD,AC⊥BD,所以BD⊥平面PAC,进一步求出BM=DM,过O点作OM⊥PC于M,当△MBD的面积为最小值,只需OM最小即可,若PA=AC=a,所以∠ACP=即为所求.故选B.二、填空题8.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.解析:因为这10个数是1,-3,(-3)2,(-3)3,(-3)4,(-3)5,(-3)6,(-3)7,(-3)8,(-3)9,所以它小于8的概率为=.答案:9.已知复数z=a2-1+(a+1)i(a∈R)为纯虚数,则为.解析:因为复数z=a2-1+(a+1)i(a∈R)为纯虚数,所以解得a=1,故z=2i,则=-2i.答案:-2i10.已知三棱锥S ABC的各顶点都在一个表面积为4π的球面上,球心O在AB上,SO⊥平面ABC,AC=,则三棱锥S-ABC的表面积为.解析:因为球的表面积为4π,所以球的半径为R=1,三棱锥S ABC的图形如图所示,由题意及图可知AB=2R=2,SO=AO=BO=CO=1,又SO⊥平面ABC,所以SA=SB=SC=,又AC=,所以BC=,所以△ABC与△ABS均为等腰直角三角形,其面积和为2×1=2,△SAC与△SBC均为等边三角形,其面积和为××=,所以三棱锥的表面积为2+.答案:2+11.方程3sin x=1+cos 2x在区间[0,2π]上的解为.解析:3sin x=1+cos 2x,即3sin x=2-2sin2x,所以2sin2x+3sin x-2=0,解得sin x=或sin x=-2(舍去),所以在区间[0,2π]上的解为或.答案:或12.平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且S位于平面α,β之间,AS=8,BS=6,CS=12,则SD= .解析:根据题意做出图形.因为AB,CD交于S点,所以三点确定一平面,所以设ASC平面为n,于是有n交α于AC,交β于DB,因为α,β平行,所以AC∥DB,所以△ASC∽△BSD,所以=,因为AS=8,BS=6,CS=12,所以=,所以SD=9.答案:913. 如图是正方体的平面展开图,则在这个正方体中①BM与ED平行;②CN 与BE是异面直线;③CN与BM成60°角;④DM与BN是异面直线.以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).解析:把展开图复原成正方体,如图,由正方体的性质,可知:BM与ED是异面直线,所以①是错误的;CN与BE是平行直线,所以②是错误的;从图中连接AN,AC,由于几何体是正方体,所以三角形ANC为等边三角形,所以CN,BE所成的角为60°,所以③是正确的;DM与BN是异面直线,所以④是正确的.答案:③④14. 如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=AD=a,G是EF的中点,则GB与平面AGC所成角的正弦值为.解析: 因为四边形ABCD是正方形,所以CB⊥AB.因为平面ABCD⊥平面ABEF且交于AB,所以CB⊥平面ABEF.因为AG,GB⊂平面ABEF,所以CB⊥AG,CB⊥BG.又AD=2a,AF=a,四边形ABEF是矩形,G是EF的中点,所以AG=BG=a,AB=2a, 所以AB2=AG2+BG2,所以AG⊥BG,因为BG∩BC=B,所以AG⊥平面CBG,而AG⊂平面AGC,故平面AGC⊥平面BGC,如图.在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,所以∠BGH是GB与平面AGC所成的角.在Rt△CBG中,BH==a,BG=a,所以sin ∠BGH==.答案:三、解答题15. 如图,直三棱柱ABC A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N 分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h 为高)法一(1)证明:连接AB′,AC′,如图,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,所以M为AB′的中点.又因为N为B′C′的中点,所以MN∥AC′,又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,因此MN∥平面A′ACC′.(2)解:连接BN,如图所示,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC,又A′N=B′C′=1,故====,法二(1)证明:取A′B′的中点P,连接MP,NP,AB′,如图,而M,N分别为AB′与B′C′的中点,所以MP∥AA′,PN∥A′C′,所以MP∥平面A′ACC′,PN∥平面A′ACC′,又MP∩NP=P,因此平面MPN∥平面A′ACC′,而MN⊂平面MPN,因此MN∥平面A′ACC′.(2)解:=-==.16. (2018·全国Ⅱ卷)如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M PA C为30°,求PC与平面PAM所成角的正弦值.(1)证明:因为PA=PC=AC=4,O为AC的中点,所以OP⊥AC,且OP=2.如图,连接OB.因为AB=BC=AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=AC=2.由OP2+OB2=PB2知PO⊥OB.由OP⊥OB,OP⊥AC,OB∩AC=O,得PO⊥平面ABC.(2)解:如图,以O为坐标原点,的方向为x轴正方向,建立空间直角坐标系O-xyz.由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2),=(0,2, 2).取平面PAC的一个法向量=(2,0,0).设M(a,2-a,0)(0≤a≤2),则=(a,4-a,0).设平面PAM的法向量为n=(x,y,z).由·n=0,·n=0得可取y=a,得平面PAM的一个法向量为n=((a-4),a,-a),所以cos<,n>=.由已知可得︱cos<,n>︱=cos 30°=,所以=,解得a=-4(舍去)或a=.所以n=(-,,-).又=(0,2,-2),所以cos<,n>=,所以PC与平面PAM所成角的正弦值为.B组一、选择题1.若复数z=1+i(i为虚数单位),是z的共轭复数,则z2+的虚部为( A )(A)0 (B)-1 (C)1 (D)-2解析:法一由z=1+i知=1-i,z2+=(1+i)2+(1-i)2=2i+(-2i)=0,其虚部为0.故应选A.法二由z=1+i知=1-i,z2+=(z+)2-2z=4-4=0,其虚部为0.故应选A.2.已知集合A={1,2,3,4,5},B={(x,y)︱x∈A,y∈A,x-y∈A},则B中所含元素的个数为( D )(A)3 (B)6 (C)8 (D)10解析:因为A={1,2,3,4,5},x,y∈A,x-y∈A,所以所以B中共10个元素,选D.3.(2017·湖州、衢州、丽水三市高三4月联考)已知平面α与两条不重合的直线a,b,则“a⊥α,且b⊥α”是“a∥b”的( A )(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:已知平面α与两条不重合的直线a,b,如果a⊥α,且b⊥α,那么根据直线与平面垂直的性质定理,可得a∥b,充分性成立;反之,如果a∥b,那么不能推断a⊥α,且b⊥α,必要性不成立,即“a⊥α,且b⊥α”是“a∥b”的充分不必要条件.故选A.4.对任意向量a,b,下列关系式中不恒成立的是( B )(A)︱a·b︱≤︱a︱︱b︱ (B)︱a-b︱≤︱︱a︱-︱b︱︱(C)(a+b)2=︱a+b︱2 (D)(a+b)(a-b)=a2-b2解析:因为︱a·b︱=︱a︱︱b︱︱cos <a,b>︱≤︱a︱︱b︱,所以选项A 正确;当a与b方向相反时,︱a-b︱≤︱︱a︱-︱b︱︱不成立,所以选项B 错误;向量的平方等于向量的模的平方,所以选项C正确;(a+b)(a-b)=a2-b2,所以选项D正确.故选B.5.在△ABC中,BC边上的中线AD长为3,且cos B=,cos∠ADC=-,则边AC长为( A )(A)4 (B)16 (C)(D)解析:如图,因为∠ADC与∠ADB互补,所以当cos∠ADC=-时,cos∠ADB=,则sin∠ADB==,又cos B=,则sin B=,所以sin∠BAD=sin(π-∠B-∠ADB)=sin(∠B+∠ADB)=sin Bcos∠ADB+cos Bsin∠ADB=×+×=,在△BAD中,由正弦定理得:=,从而BD=2,所以CD=2,在△ADC中,由余弦定理得:AC2=9+4-2×3×2×(-)=16,所以AC=4.故选A.6. 如图,四面体ABCD中,AB=DC=1,BD=,AD=BC=,二面角A BD C的平面角的大小为60°,E,F分别是BC,AD的中点,则异面直线EF与AC所成的角的余弦值是( B )(A)(B) (C) (D)解析:取DC的中点为G,连EG,FG,则EG=BD=,FG=AC=,易知EF=,则∠EFG=θ就是异面直线EF与AC所成的角,故在△EFG中,cos θ==,故选B.7.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCE翻折,使得点A,D重合于F,此时二面角E BC F的余弦值为( B )(A)(B) (C)(D)解析: 如图所示,取BC中点P,连接EP,FP,由题意得BF=CF=2,所以PF⊥BC,又因为EB=EC==,所以EP⊥BC,所以∠EPF即为二面角E BC F的平面角,而FP==,在△EPF中,cos ∠EPF===,故选B.8.在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则( A )(A)平面α与平面β垂直(B)平面α与平面β所成的(锐)二面角为45°(C)平面α与平面β平行(D)平面α与平面β所成的(锐)二面角为60°解析:设P1=fα(P),P2=fβ(P),则PP1⊥α,P1Q1⊥β,PP2⊥β,P2Q2⊥α.若α∥β,则P1与Q2重合、P2与Q1重合,所以PQ1≠PQ2,所以α与β相交.设α∩β=l,由PP1∥P2Q2,所以P,P1,P2,Q2四点共面,同理,P,P1,P2,Q1四点共面.所以P,P1,P2,Q1,Q2五点共面,且α与β的交线l垂直于此平面.又因为PQ1=PQ2,所以Q1,Q2重合且在l上,四边形PP1Q1P2为矩形.那么∠P1Q1P2=为二面角αlβ的平面角,所以α⊥β.故选A.二、填空题9.某几何体的三视图如图所示,则此几何体的表面积是,体积是.解析:由三视图可得该几何体的直观图如图所示.该几何体是一个四棱锥A-CDEF和一个三棱锥F-ABC构成的组合体,底面直角梯形ABCD的面积为6,侧面CDEF的面积为4,侧面ABF的面积为2,侧面BCF的面积为2,侧面ADE的面积为4,侧面AEF的面积为2,所以这个几何体的表面积为16+2+2,四棱锥A-CDEF的底面面积为4,高为4,故体积为×4×4=,三棱锥F-ABC的底面积为2,高为2,故体积为×2×2=,故这个几何体的体积为V=+=.答案:16+2+210.若2sin α-cos α=,则sin α= ,tan (α-)=.解析:2sin α-cos α=⇒4sin 2α-4sin αcos α+cos 2α=5⇒sin 2α+4sin αcos α+4cos 2α=0⇒sin α+2cos α=0,因此sin α=,cos α=-,tan α=-2;tan (α-)==3. 答案: 311.若(x+)(2x-)5的展开式中各项系数的和为2,则该展开式中的常数项为.解析:令x=1,即可得到(x+)(2x-)5的展开式中各项系数的和为1+a=2,所以a=1,(x+)(2x-)5=(x+)(2x-)5,要找其展开式中的常数项,需要找(2x-)5的展开式中的x和,由通项公式得T r+1=(2x)5-r·(-)r=(-1)r·25-r·x5-2r,令5-2r=±1,得到r=2或r=3,所以有80x和-项,分别与和x相乘,再相加,即得该展开式中的常数项为80-40=40.答案:4012. 如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°.沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.解析:如图,连接BD′,设直线AC与BD′所成的角为θ.O是AC的中点.由已知得AC=,以OB为x轴,OA为y轴,过O与平面ABC 垂直的直线为z轴,建立空间直角坐标系,则A(0,,0),B(,0,0),C(0,-,0).作DH⊥AC于H,连接D′H,翻折过程中,D′H始终与AC垂直,则CH===,则OH=,DH==,因此D′(-cos α,-,sin α)(设∠DHD′=α),则=(-cos α-,-,sin α),与平行的单位向量为n=(0,1,0),所以cos θ=︱cos<,n>︱=︱︱=,所以cos α=-1时,cos θ取得最大值为.答案:13.如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则·= .解析:设AC与BD交于O点,则·=2·==2×32=18.(注意AP⊥BD 有·=)答案:1814. 如图,二面角α-l-β的大小是45°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是.解析:过点A作AO垂直平面β于点O,作AC垂直直线l于点C,连接CO,BO,则∠ACO=45°,∠ABC=30°,∠ABO即为AB与平面β所成的角.设AO=a,则AC=a,AB=2a,所以sin∠ABO===.答案:15.已知正数a,b,c满足:5c-3a≤b≤4c-a,cln b≥a+cln c,则的取值范围是.解析:把5c-3a≤b≤4c-a变形为5·-3≤≤4·-1,所以5·-3≤4·-1,所以0<≤2;所以-3<5·-3≤≤4·-1≤7,①又cln b≥a+cln c,所以c(ln b-ln c)>a,所以ln>-ln.设x=,h(x)=x-ln x(x≥),利用导数可以证明h(x)在(,1)上单调递减,在(1,+∞)上单调递增,所以h(x)≥h(1)=1,故ln≥1,所以≥e,②由①②可得e≤≤7.答案:[e,7]三、解答题16.(2017·江苏卷)已知向量a=(cos x,sin x),b=(3,-),x∈[0,π].(1)若a∥b,求x的值;(2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值.解:(1)因为a=(cos x,sin x),b=(3,-),a∥b,所以-cos x=3sin x.若cos x=0,则sin x=0,与sin2x+cos2x=1矛盾,故cos x≠0.于是tan x=-.又x∈[0,π],所以x=.(2)f(x)=a·b=(cos x,sin x)·(3,-)=3cos x-sin x=2cos (x+). 因为x∈[0,π],所以x+∈[,],从而-1≤cos(x+)≤.于是,当x+=,即x=0时,f(x)取到最大值3;当x+=π,即x=时,f(x)取到最小值-2.17.(2018·宁波期末) 如图,在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,底面ABCD为矩形,E为PA中点,AB=2a,BC=a,PC=PD= a.(1)求证:PC∥平面BDE;(2)求直线AC与平面PAD所成角的正弦值.解:(1)设AC与BD的交点为O,连接EO.因为四边形ABCD为矩形,所以O为AC的中点.在△PAC中,由已知E为PA中点,所以EO∥PC.又EO⊂平面BDE,PC⊄平面BDE,所以PC∥平面BDE.(2)在△PCD中,DC=2a,PC=PD=a,所以DC2=PD2+PC2,即PC⊥PD.因为平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AD⊥CD,所以AD⊥平面PCD,故AD⊥PC.又因为AD∩PD=D,AD,PD⊂平面PAD,所以PC⊥平面PAD,故∠PAC就是直线AC与平面PAD所成的角.在Rt△PAC中AC=a,PC=a,所以sin ∠PAC===.即直线AC与平面PAD所成角的正弦值为.18. (2017·山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E AG C的大小.解:(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP.又BP⊂平面ABP,所以BE⊥BP.又∠EBC=120°,所以∠CBP=30°.(2)法一如图①,取的中点H,连接EH,GH,CH. 因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC==.取AG的中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG, 所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12, 所以EC=2,所以△EMC为等边三角形,故所求的角为60°.法二以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图②所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3).设m=(x1,y1,z1)是平面AEG的一个法向量,由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量,由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>==.故所求的角为60°.。
专题对点练92.1~2.4组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1.设函数f(x)=则f(f(e))=()A.0B.1C.2D.ln(e2+1)2.设a=60.4,b=log0.40.5,c=log80.4,则a,b,c的大小关系是()A.a<b<cB.c<b<aC.c<a<bD.b<c<a3.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<14.(2018全国Ⅲ,文9)函数y=-x4+x2+2的图象大致为()5.函数y=1+log0.5(x-1)的图象一定经过点()A.(1,1)B.(1,0)C.(2,1)D.(2,0)6.若函数f(x)=的值域为[-1,1],则实数a的取值范围是()A.[1,+∞)B.(-∞,-1]C.(0,1]D.(-1,0)7.已知函数f(x)=,则()A.∃x0∈R,使得f (x)<0B.∀x∈(0,+∞),f(x)≥0C.∃x1,x2∈[0,+∞),使得<0D.∀x1∈[0,+∞),∃x2∈[0,+∞),使得f(x1)>f(x2)8.已知函数f(x)为偶函数,当x≤0时,f(x)为增函数,则“<x<2”是“f[log2(2x-2)]>f”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.已知f(x)=若不等式f(x-1)≥f(x)对一切x∈R恒成立,则实数a的最大值为()A.B.-1 C.-D.1二、填空题(共3小题,满分15分)10.已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.11.已知二次函数f(x)=ax2-2x+c的值域为[0,+∞),则的最小值为.12.(2018天津,文14)已知a∈R,函数f(x)=若对任意x∈[-3,+∞),f(x)≤|x|恒成立,则a的取值范围是.三、解答题(共3个题,满分分别为13分,13分,14分)13.(2018全国Ⅰ,文21)已知函数f(x)=a e x-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.14.已知函数f(x)=e x-ax2-2x(a∈R).(1)当a=0时,求f(x)的最小值;(2)当a<-1时,证明不等式f(x)> -1在(0,+∞)上恒成立.15.(2018浙江,22)已知函数f(x)=-ln x.(1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8-8ln 2;(2)若a≤3-4ln 2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.专题对点练9答案1.C解析f(e)=ln e=1,所以f(f(e))=f(1)=12+1=2.故选C.2.B解析∵a=60.4>1,b=log0.40.5∈(0,1),c=log80.4<0,∴a>b>c.3.D解析∵函数单调递减,∴0<a<1,当x=1时,y=log a(1+c)<0,即1+c>1,即c>0,当x=0时,log a(x+c)=log a c>0,即c<1,即0<c<1,故选D.4.D解析当x=0时,y=2>0,排除A,B;当x=时,y=-+2>2.排除C.故选D.5.C解析∵函数y=log0.5x恒过定点(1,0),而y=1+log0.5(x-1)的图象是由y=log0.5x的图象向右平移一个单位,向上平移一个单位得到,∴定点(1,0)平移以后即为定点(2,1),故选C.6.A解析函数f(x)=的值域为[-1,1],当x≤a时,f(x)=cos x∈[-1,1],满足题意;当x>a时,f(x)=∈[-1,1],应满足0<≤1,解得x≥1.∴a的取值范围是[1,+∞).7.B解析由函数f(x)=,知在A中f(x)≥0恒成立,故A错误,B正确;又f(x)=在[0,+∞)上是递增函数,故C错误;在D中,当x1=0时,不存在x2∈[0,+∞)使得f(x1)>f(x2),故D不成立.故选B.8.D解析由f(x)是偶函数且当x≤0时,f(x)为增函数,则x>0时,f(x)是减函数,故由f[log2(2x-2)]>f,得|log2(2x-2)|<=log2,故0<2x-2<,解得1<x<,故“<x<2”是“1<x<”的既不充分也不必要条件,故选D.9.B解析作出函数f(x)和f(x-1)的图象,当a≥0时,f(x-1)≥f(x)对一切x∈R不恒成立(如图1).图1图2当a<0时,f(x-1)过定点(1,0)(如图2),当x>0时,f(x)=ax2+x的两个零点为x=0和x=-,要使不等式f(x-1)≥f(x)对一切x∈R恒成立,则只需要-≤1,得a≤-1,即a的最大值为-1.10.解析x2+y2=x2+(1-x)2=2x2-2x+1,x∈[0,1],所以当x=0或1时,x2+y2取最大值1;当x=时,x2+y2取最小值.因此x2+y2的取值范围为.11.6解析二次函数f(x)=ax2-2x+c的值域为[0,+∞),可得判别式Δ=4-4ac=0,即有ac=1,且a>0,c>0,可得≥2=2×3=6,当且仅当,即有c=,a=3时,取得最小值6.12.解析当x>0时,f(x)≤|x|可化为-x2+2x-2a≤x,即+2a-≥0,所以a≥;当-3≤x≤0时,f(x)≤|x|可化为x2+2x+a-2≤-x,即x2+3x+a-2≤0.对于函数y=x2+3x+a-2,其图象的对称轴方程为x=-.因为当-3≤x≤0时,y≤0,所以当x=0时,y≤0,即a-2≤0,所以a≤2.综上所述,a的取值范围为.13.解(1)f(x)的定义域为(0,+∞),f'(x)=a e x-.由题设知,f'(2)=0,所以a=.从而f(x)=e x-ln x-1,f'(x)=e x-.当0<x<2时,f'(x)<0;当x>2时,f'(x)>0.所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)当a≥时,f(x)≥-ln x-1.设g(x)=-ln x-1,则g'(x)=.当0<x<1时,g'(x)<0;当x>1时,g'(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当a≥时,f(x)≥0.14.(1)解a=0时,f(x)=e x-2x,f'(x)=e x-2,令f'(x)>0,解得x>ln 2,令f'(x)<0,解得x<ln 2,故f(x)在(-∞,ln 2)递减,在(ln 2,+∞)递增,故f(x)min=f(ln 2)=2-2ln 2.(2)证明∵f'(x)=e x-2ax-2,∴f'(1)=e-2-2a>e-2-2=0,f'(0)=-1<0,故存在x0∈(0,1),使得f'(x0)=0,令h(x)=e x-2ax-2,则x∈(0,+∞)时,h'(x)=e x-2a>e x+2-e>0,故h(x)在(0,+∞)递增且h(x0)=0,故x=x0是h(x)的唯一零点,且在x=x0处f(x)取最小值f(x0)=-x0(ax0+2),又h(x0)=0,即-2ax0-2=0,得ax0+1=,故f(x0)=-x0,构造函数g(t)=e t-t,则g'(t)=e t-1,[g'(t)]'=e t,故t∈(0,1)时,[g'(t)]'<0,g'(t)在(0,1)递减,故t∈(0,1)时,g'(t)<g'(0)<0,故g(t)在(0,1)递减,故f(x0)在(0,1)递减,故f(x)min=f(x0)>e1-1=-1,原结论成立.15.证明(1)函数f(x)的导函数f'(x)=,由f'(x1)=f'(x2),得,因为x1≠x2,所以.由基本不等式,得≥2,因为x1≠x2,所以x1x2>256.由题意得f(x1)+f(x2)=-ln x1+-ln x2=-ln(x1x2).设g(x)=-ln x,则g'(x)=-4),所以所以g(x)在[256,+∞)上单调递增,故g(x1x2)>g(256)=8-8ln 2,即f(x1)+f(x2)>8-8ln 2.(2)令m=e-(|a|+k),n=+1,则f(m)-km-a>|a|+k-k-a≥0,f(n)-kn-a<n≤n<0,所以,存在x0∈(m,n),使f(x0)=kx0+a.所以,对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点.由f(x)=kx+a,得k=.设h(x)=,则h'(x)=.其中g(x)=-ln x.由(1)可知g(x)≥g(16).又a≤3-4ln 2,故-g(x)-1+a≤-g(16)-1+a=-3+4ln 2+a≤0,所以h'(x)≤0,即函数h(x)在(0,+∞)上单调递减.因此方程f(x)-kx-a=0至多1个实根.综上,当a≤3-4ln 2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。
专题对点练11三角变换与解三角形1.在△ABC中,角A,B,C的对边分别为a,b,c.已知b=3,=-6,S△ABC=3,求A和a.2.已知a,b,c分别为锐角三角形ABC的内角A,B,C所对的边,且a=2c sin A.(1)求角C;(2)若c=,且△ABC的面积为,求a+b的值.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2c-a=2b cos A.(1)求角B的大小;(2)若a=2,b=,求c的长.4.已知△ABC中,角A,B,C所对的边分别为a,b,c,且a sin C=c cos A.(1)求角A;(2)若b=2,△ABC的面积为,求a.5.在△ABC中,角A,B,C的对边分别为a,b,c,且满足.(1)求角A的大小;(2)若D为BC上一点,且=2,b=3,AD=,求a.6.已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且b=2,c=3,△ABC的面积为,又=2,∠CBD=θ.(1)求a,A,cos∠ABC;(2)求cos 2θ的值.7.在△ABC中,a,b,c分别是角A,B,C所对的边,且满足a=3b cos C.(1)求的值;(2)若a=3,tan A=3,求△ABC的面积.8.在△ABC中,角A,B,C所对的边分别为a,b,c,且2a cos C-c=2b.(1)求角A的大小;(2)若c=,角B的平分线BD=,求a.专题对点练11答案1.解因为=-6,所以bc cos A=-6,又S△ABC=3,所以bc sin A=6,因此tan A=-1,又0<A<π,所以A=.又b=3,所以c=2.由余弦定理a2=b2+c2-2bc cos A,得a2=9+8-2×3×2=29,所以a=.2.解(1)由a=2c sin A及正弦定理得sin A=2sin C sin A.∵sin A≠0,∴sin C=.∵△ABC是锐角三角形,∴C=.(2)∵C=,△ABC的面积为,∴ab sin,即ab=6.①∵c=,∴由余弦定理得a2+b2-2ab cos=7,即(a+b)2=3ab+7.②将①代入②得(a+b)2=25,故a+b=5.3.解(1)∵2c-a=2b cos A,∴由正弦定理可得2sin C-sin A=2sin B cos A,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴2sin A cos B+2cos A sin B-sin A=2sin B cos A.∴2sin A cos B=sin A.∵sin A≠0,∴cos B=,∴B=.(2)∵b2=a2+c2-2ac cos B,∴7=4+c2-2c,即c2-2c-3=0,解得c=3或c=-1(舍去),∴c=3.4.解(1)∵a sin C=c cos A,∴sin A sin C=sin C cos A,∵sin C>0,∴sin A=cos A,则tan A=,由0<A<π得A=.(2)∵b=2,A=,△ABC的面积为,∴bc sin A=,则×2×c×,解得c=2,由余弦定理得a2=b2+c2-2bc cos A=4+4-2×2×2×=4,则a=2.5.解(1)由,则(2c-b)cos A=a cos B,由正弦定理可知=2R,则a=2R sin A,b=2R sin B,c=2R sin C, ∴(2sin C-sin B)cos A=sin A cos B,整理得2sin C cos A-sin B cos A=sin A cos B,即2sin C cos A=sin(A+B)=sin C,由sin C≠0,则cos A=,即A=,∴角A的大小为.(2)过点D作DE∥AC,交AB于点E,则△ADE中,ED=AC=1,∠DEA=, 由余弦定理可知AD2=AE2+ED2-2AE·ED cos,又AD=,∴AE=4,∴AB=6.又AC=3,∠BAC=,则△ABC为直角三角形,∴a=BC=3,∴a的值为3.6.解(1)由△ABC的面积为bc sin A,可得×2×3×sin A=,可得sin A=,又A为锐角,可得A=,由余弦定理得a2=b2+c2-2bc cos A=22+32-2×2×3×cos=7,解得a=,可得cos∠ABC=.(2)由=2,知CD=1,由△ABD为正三角形,即BD=3,且sin∠ABC=,cos θ=cos=coscos∠ABC+sinsin∠ABC=,∴cos 2θ=2cos2θ-1=.7.解(1)由正弦定理=2R可得2R sin A=3×2R sin B cos C.∵A+B+C=π,∴sin A=sin(B+C)=3sin B cos C,即sin B cos C+cos B sin C=3sin B cos C.∴cos B sin C=2sin B cos C,∴=2,故=2.(2)(方法一)由A+B+C=π,得tan(B+C)=tan(π-A)=-3,即=-3,将tan C=2tan B代入得=-3,解得tan B=1或tan B=-,根据tan C=2tan B得tan C,tan B同正,∴tan B=1,tan C=2.又tan A=3,可得sin B=,sin C=,sin A=,代入正弦定理可得,∴b=,∴S△ABC=ab sin C=×3×=3.(方法二)由A+B+C=π得tan(B+C)=tan(π-A)=-3,即=-3,将tan C=2tan B代入得=-3,解得tan B=1或tan B=-,根据tan C=2tan B得tan C,tan B同正,∴tan B=1,tan C=2.又a=3b cos C=3,∴b cos C=1,∴ab cos C=3.∴ab cos C tan C=6.∴S△ABC=ab sin C=×6=3.8.解(1)由2a cos C-c=2b及正弦定理得2sin A cos C-sin C=2sin B,2sin A cos C-sin C=2sin(A+C)=2sin A cos C+2cos A sin C,∴-sin C=2cos A sin C,∵sin C≠0,∴cos A=-,又A∈(0,π),∴A=.(2)在△ABD中,c=,角B的平分线BD=,由正弦定理得,∴sin∠ADB=,由A=,得∠ADB=,∴∠ABC=2,∴∠ACB=π-,AC=AB=.由余弦定理得a2=BC2=AB2+AC2-2AB·AC·cos A=2+2-2×=6,∴a=.。
专题对点练10三角函数与三角变换
1.(2018上海,18)设常数a∈R,函数f(x)=a sin 2x+2cos2x.
(1)若f(x)为偶函数,求a的值;
(2)若f+1,求方程f(x)=1-在区间[-π,π]上的解.
2.已知函数f(x)=cos-2sin x cos x.
(1)求f(x)的最小正周期;
(2)求证:当x∈时,f(x)≥-.
3.设函数f(x)=cos2x-sin x cos x+.
(1)求f(x)的最小正周期及值域;
(2)已知在△ABC中,角A,B,C的对边分别为a,b,c,若f(B+C)=,a=,b+c=3,求△ABC的面积.
4.已知函数f(x)=sin ωx·cos ωx+cos2ωx- (ω>0)的两条相邻对称轴之间的距离为.
(1)求ω的值;
(2)将函数f(x)的图象向左平移个单位,再将所得函数的图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若函数y=g(x)-k在区间上存在零点,求实数k的取值范围.
5.在△ABC中,内角A,B,C的对边分别是a,b,c,已知A为锐角,且b sin A cos C+c sin A cos B= a.
(1)求角A的大小;
(2)设函数f(x)=tan A sin ωx cos ωx-cos 2ωx(ω>0),其图象上相邻两条对称轴间的距离为,将函数y=f(x)的图象向左平移个单位,得到函数y=g(x)图象,求函数g(x)在区间上的值域.
6.已知f(x)=sin(π+ωx)·sin-cos2ωx(ω>0)的最小正周期为T=π.
(1)求f的值;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若(2a-c)cos B=b cos C,求角B的大小以及f(A)的取值范围.
7.已知函数f(x)=2cos2x+2sin x cos x+a,且当x∈时,f(x)的最小值为2.
(1)求a的值,并求f(x)的单调递增区间;
(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得图象向右平移个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间上所有根之和.
8.函数f(x) =2sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示.
(1)求f(x)的解析式,并求函数f(x)在上的值域;
(2)在△ABC中,AB=3,AC=2,f(A) =1,求sin 2B.
专题对点练10答案
1.解(1)∵f(x)=a sin 2x+2cos2x,
∴f(-x)=-a sin 2x+2cos2x.
∵f(x)为偶函数,∴f(-x)=f(x),
∴-a sin 2x+2cos2x=a sin 2x+2cos2x,
∴2a sin 2x=0,∴a=0.
(2)∵f+1,
∴a sin+2cos2=a+1=+1,
∴a=,
∴f(x)=sin 2x+2cos2x=sin 2x+cos 2x+1=2sin+1.
∵f(x)=1-,
∴2sin+1=1-,
∴sin=-,
∴2x+=-+2kπ或2x+π+2kπ,k∈Z,
∴x=kπ-或x=kπ+,k∈Z.
∵x∈[-π,π],
∴x=-或-.
∴所求方程的解为x=-或-.
2.(1)解f(x)=cos 2x+sin 2x-sin 2x
=sin 2x+cos 2x
=sin.
所以f(x)的最小正周期T==π.
(2)证明因为-≤x≤,
所以-≤2x+.
所以sin≥sin=-.
所以当x∈时,f(x)≥-.
3.解(1)f(x)=cos2x-sin x cos x+=cos+1,
∴f(x)的最小正周期为T=π.
∵x∈R,∴-1≤cos≤1,
故f(x)的值域为[0,2].
(2)由f(B+C)=cos+1=,得cos.
又A∈(0,π),得A=.
在△ABC中,由余弦定理得a2=b2+c2-2bc cos=(b+c)2-3bc,
又a=,b+c=3,∴3=9-3bc,
解得bc=2,
∴△ABC的面积S=bc sin×2×.
4.解(1)原函数可化为f(x)=sin 2ωx+sin 2ωx+·cos 2ωx=sin.∵函数f(x)的相邻两条对称轴之间的距离为,
∴f(x)的最小正周期为2×=π.
∴=π,∴ω=1.
(2)由(1)知,ω=1,f(x)=sin,将函数f(x)的图象向左平移个单位,得到函数y=sin=sin=cos 2x的图象,再将函数y=cos 2x的图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=cos x的图象.
∴g(x)=cos x.
∵x∈,
∴g(x)=cos x∈.
∵函数y=g(x)-k在区间上存在零点,
∴k∈.
∴实数k的取值范围为.
5.解(1)∵b sin A cos C+c sin A cos B=a,∴由正弦定理可得sin B sin A cos C+sin C sin A cos B=sin A,
∵A为锐角,sin A≠0,
∴sin B cos C+sin C cos B=,可得sin(B+C)=sin A=,∴A=.
(2)∵A=,可得tan A=,
∴f(x)=sin ωx cos ωx-cos 2ωx=sin 2ωx-cos 2ωx=sin,
∵其图象上相邻两条对称轴间的距离为,可得T=2×,解得ω=1,
∴f(x)=sin,
∴将y=f(x)的图象向左平移个单位,图象对应的函数为y=g(x)=sin=sin,
∵x∈,
可得2x+,
∴g(x)=sin.
6.解(1)f(x)=sin(π+ωx)·sin-cos2ωx
=sin ωx·cos ωx-cos2ωx
=sin 2ωx-cos 2ωx-
=sin.
∵最小正周期为T=π,∴=π,ω=1.
∴f(x)=sin.
∴f=sin.
(2)∵(2a-c)cos B=b cos C,
∴(2sin A-sin C)cos B=sin B cos C,
2sin A cos B=sin B cos C+cos B sin C=sin(B+C)=sin A.
∵sin A>0,∴cos B=,
∵B∈(0,π),∴B=.
∴A∈,2A-,
∴sin.
即f(A)的取值范围为.
7.解(1)f(x)=2cos2x+2·sin x cos x+a=cos 2x+1+sin 2x+a=2sin+a+1,
∵x∈,∴2x+,
∴f(x)的最小值为-1+a+1=2,
解得a=2,
∴f(x)=2sin+3.
由2kπ-≤2x+≤2kπ+,k∈Z,可得kπ-≤x≤kπ+,k∈Z,∴f(x)的单调递增区间为 (k∈Z).
(2)由函数图象变换可得
g(x)=2sin+3,
由g(x)=4可得sin,
∴4x-=2kπ+或4x-=2kπ+(k∈Z),
解得x=或x=(k∈Z),
∵x∈,∴x=或x=,
∴所有根之和为.
8.解(1)由题图知, T=,
∴T=π.
∴=π,∴ω=2,∴f(x)=2sin(2x+φ).
∵点在函数f(x)的图象上,
∴sin=1,
∴+φ=+2kπ(k∈Z).
∵0<φ<π,∴φ=,
∴f(x)=2sin.
∵-≤x≤,∴0≤2x+.
∴0≤sin≤1,∴0≤f(x)≤2,即函数f(x)在上的值域为[0,2].
(2)∵f(A)=2sin=1,
∴sin.
∵<2A+,
∴2A+,∴A=.
在△ABC中,由余弦定理得
BC2=9+4-2×3×2×=7,
∴BC=.
由正弦定理得,
故sin B=.
又AC<AB,∴角B为锐角,
∴cos B=,
∴sin 2B=2sin B cos B=.。