北师大版七年级数学幂的运算(提高)知识讲解(含答案)
- 格式:doc
- 大小:105.00 KB
- 文档页数:4
幂的运算提高练习一.填空题(共6小题)1.计算:=.2.若9m=4,27n=2,则32m﹣3n=.3.若100x=4,100y=25,则102x+2y﹣1=.4.若(2x﹣1)x+3=1,则x的值为.5.若x2+2x﹣3=0,则x3+x2﹣5x+2012=.6.已知5x=30,6y=30,则等于.二.解答题(共34小题)7.已知a、b、c为三角形的三边,P=|a+b﹣c|﹣|b﹣a﹣c|+|a﹣b+c|.(1)化简P;(2)计算P•(a﹣b+c).8.已知3x+1•2x﹣3x•2x+1=63x+4,求x.9.若x=2m+2,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=3,求此时y的值.10.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2008的值.11.已知n是正整数,若x3n=3,求(2x3n)3+(﹣3x2n)3的值.12.问题:你能比较两个数20062007和20072006的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,比较n n+1与(n+1)n的大小(n为正整数),从分析n=1,2,3…的情形入手,通过归纳,发现规律,猜想出结论.(1)比较各组数的大小①1221(2);②2332(3);③3443(4);④4554(2)由(1)猜想出n n+1与(n+1)n的大小关系是;(3)由(2)可知:2006200720072006.13.已知a=255,b=344,c=433,比较a、b、c的大小关系.14.已知2m=3,32n=5,则23m+10n的值.15.计算:﹣82015×(﹣0.125)2016+(0.25)3×26.16.已知n为正整数,且x2n=7,求(3x3n)2﹣13(x2)2n的值.17.若2a=2,4b=6,8c=12,试求a,b,c的数量关系.18.小明是一位刻苦学习,勤于思考的同学,一天,他在解方程时突然产生了这样的想法,x2=﹣1,这个方程在实数范围内无解,如果存在一个数i2=﹣1,那么方程x2=﹣1可以变成x2=i2,则x=±i,从而x=±i是方程x2=﹣1的两个解,小明还发现i具有以下性质:i1=i,i2=﹣1,i3=i2•i=﹣i;i4=(i2)2=(﹣1)2=1,i5=i4•i=i,i6=(i2)3=(﹣1)3=﹣1,i7=i6•i=﹣i,i8=(i4)2=1,…请你观察上述等式,根据你发现的规律填空:i4n+1=,i4n+2=,i4n+3=,i4n+4=(n为自然数).19.计算:(1)x•(x2)3•(x3)2(2)(﹣a)3•a2﹣(﹣a)2•(﹣a3)20.已知20x=1000,50y=1000,求的值.21.求x,使x满足.22.计算:(1)(m4)2+m5•m3+(﹣m)4•m4(2)x6÷x3•x2+x3•(﹣x)2.23.求值:(1)已知3×9m÷27m=316,求m的值.(2)若2x+5y﹣3=0,求4x•32y的值.(3)若n为正整数,且x2n=4,求(3x3n)2﹣4(x2)2n的值.24.阅读材料:(1)1的任何次幂都为1;(2)﹣1的奇数次幂为﹣1;(3)﹣1的偶数次幂为1;(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2016的值为1.25.若(x2+px+8)(x2﹣3x﹣q)的展开式中不含有x2和x3项,求p、q的值.26.若(x2+nx+3)(x2﹣3x+m)的乘积中不含x2项和x3项,求m,n的值.27.已知等式(x+a)(x+b)=x2+mx+28,其中a、b、m均为正整数,你认为m可取哪些值?它与a、b的取值有关吗?请你写出所有满足题意的m的值.28.观察以下等式:(x+1)(x2﹣x+1)=x3+1(x+3)(x2﹣3x+9)=x3+27(x+6)(x2﹣6x+36)=x3+216…(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2﹣xy+y2)﹣(x+2y)(x2﹣2xy+4y2)29.已知一个多项式与单项式﹣7x5y4的积是21x5y7﹣28x7y4+14x6y4,求这个多项式.参考答案一.填空题(共6小题)1.﹣;2.2;3.10;4.1或﹣3;5.2009;6.1;二.解答题(共34小题)7.;8.;9.;10.;11.;12.<;<;>;>;当n=1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;>;13.;14.;15.;16.;17.;18.i;﹣1;﹣i;1;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.a2﹣ab+b2;29.;。
【学习目标】幂的运算(提高)1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算. 【要点梳理】要点一、同底数幂的乘法性质a m ⋅ a n = a m +n (其中 m , n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2) 三个或三个以上同底数幂相乘时,也具有这一性质,即 a m ⋅ a n ⋅ a p = a m +n + p ( m , n , p 都是正整数).(3) 逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即a m +n = a m ⋅ a n ( m , n 都是正整数).要点二、幂的乘方法则(a m )n = a mn (其中 m ,n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广: ((a m )n ) p = a mnp ( a ≠ 0 , m , n , p 均为正整数)(2)逆用公式: a mn = (a m)n= (a n )m,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则(ab )n = a n ⋅ b n 再把所得的幂相乘.(其中 n 是正整数).即积的乘方,等于把积的每一个因式分别乘方, 要点诠释:(1)公式的推广: (abc )n = a n ⋅ b n ⋅ c n ( n 为正整数).(2)逆用公式: a n b n = (ab )n逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:⎛ 1 ⎫10 ⎪ ⨯ 210 = ⎛ 1 ⎫10 ⨯ 2 ⎪ = 1.要点四、注意事项⎝ 2 ⎭ ⎝ 2 ⎭(1) 底数可以是任意实数,也可以是单项式、多项式.(2) 同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为 1,计算时不要遗漏.(3) 幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4) 积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5) 灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【典型例题】类型一、同底数幂的乘法性质1、计算:(1) (b + 2)3⋅ (b + 2)5⋅ (b + 2) ;(2) (x - 2 y)2⋅ (2 y -x)3.【答案与解析】解:(1)(b + 2)3⋅ (b + 2)5⋅ (b + 2) = (b + 2)3+5+1= (b + 2)9.(2)(x - 2 y)2⋅ (2 y -x)3= (x - 2 y)2⋅[-(x - 2 y)3 ] =-(x - 2 y)5.【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:⎧⎪a n(n为偶数), (-a)n=⎨⎪⎩-a n(n为奇数),⎧⎪(b -a)n(n为偶数) (a -b)n=⎨.⎪⎩-(b -a)n(n为奇数)类型二、幂的乘方法则2、计算:(1)-[(a -b)2]3;(2)( y3)2+ ( y2)3- 2 y y5;(3)(x2m-2)4⋅ (x m+1)2;(4)(x3)2⋅ (x3)4.【答案与解析】解:(1)-[(a -b)2 ]3=-(a -b)2⨯3=-(a -b)6.(2)( y3 )2+ ( y2 )3- 2 y ⋅y5=y6+y6- 2 y6= 2 y6- 2 y6= 0 .(3)(x2m-2 )4 ⋅ (x m+1 )2 =x4(2m-2) ⋅x2(m+1) =x8m-8 ⋅x2m+2 =x10m-6 .(4)(x3 )2⋅(x3 )4=x6⋅x12=x18.【总结升华】(1)运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、(2015 春•南长区期中)已知2x=8y+2,9y=3x﹣9,求x+2y 的值.【思路点拨】根据原题所给的条件,列方程组求出x、y 的值,然后代入求解.【答案与解析】解:根据2x=23(y+2),32y=3x﹣9,列方程得:,解得:,则x+2y=11.【总结升华】本题考查了幂的乘方,解题的关键是灵活运用幂的乘方运算法则.举一反三:【变式】已知a3m=2,b2m=3,则(a2m)3+(b m)6-(a2b)3m⋅b m =.【答案】-5;提示:原式=(a3m)2+(b2m)3-(a3m)2⋅(b2m)2∵∴原式=22 + 33 - 22 ⨯32 =-5.类型三、积的乘方法则4、计算:(1)-(2xy2)4(2)[-a2⋅ (-a4b3)3 ]3【思路点拨】利用积的乘方的运算性质进行计算.【答案与解析】解:(1)-(2xy2 )4= (-1) ⋅ 24⋅x4⋅ ( y2 )4=-16x4y8.(2)[-a2⋅ (-a4b3 )3 ]3=-(a2 )3⋅ (-a12b9 )3=-a6⋅ (-a36 ) ⋅b27=a42b27.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1 不可忽略.举一反三:【变式1】下列等式正确的个数是( ).①(-2x2y3)3=-6x6y9②(-a2m)3=a6m③(3a6)3= 3a9④(5⨯105)⨯(7 ⨯107)= 35⨯1035⑤(-0.5)100⨯ 2101=(-0.5⨯ 2)100⨯ 2A.1 个B. 2 个C. 3 个D. 4 个【答案】A;提示:只有⑤正确;(-2x2y3)3=-8x6y9;(-a2m)3=-a6m;(3a6)3= 27a18;(5⨯105)⨯(7 ⨯107)= 35⨯1012= 3.5⨯1013【变式 2】(2015 春•泗阳县校级月考)计算:(1)a4•(3a3)2+(﹣4a5)2(2)(2)20•()21.【答案】(1)a4•(3a3)2+(﹣4a5)2=a4•9a6+16a10=9a10+16a10=25a10;(2)(2)20•()21.=(×)20•=1×=.5、(2016 秋•济源校级期中)已知x2m=2,求(2x3m)2﹣(3x m)2 的值.【思路点拨】根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得已知条件,根据已知条件,可得计算结果.【答案与解析】解:原式=4x6m﹣9x2m=4(x2m)3﹣9x2m=4×23﹣9×2=14.【总结升华】本题考查了幂的乘方与积得乘方,先由积的乘方得出已知条件是解题关键.【巩固练习】一.选择题1.下列计算正确的是( ).A. (x2)3=x5B. (x3)5=x15C. x4⋅x5=x20D. -(-x3)2=x62.(-a5)2+(-a2)5的结果是( ).A.0B. -2a7C. 2a10D. -2a10⎣ ) 3. 下列算式计算正确的是(). A. (a 3 )3= a3+3= a6B. (-x2 )n= x2nC. (- y 2)3= (- y )6= y 6D. ⎡⎢(c 3 3 ⎤3⎥⎦= c 3⨯3⨯3 = c 27 4.x 3n +1 可以写成().A. (x3 )n +1B. (xn )3+1C. x ⋅ x 3nD. (x n)2n +15. 下列计算中,错误的个数是().① (3x 3 )2= 6x 6 ② (-5a 5b 5)2= -25a 10b 10 ③ (- 2 x )3 = - 8x 3④ (3x 2 y 3 )4= 81x 6 y 7 ⑤x 2 ⋅ x 3 = x 5 3 27A. 2 个B. 3 个C. 4 个D. 5 个6.(2016•盐城)计算(﹣x 2y )2 的结果是()A .x 4y 2B .﹣x 4y 2C .x 2y 2D .﹣x 2y 2二.填空题7.化简:(1) (- 1 ab )3 + 1a 3b 3 =;(2) (3a 2 )3+ (a 2 )2⋅ a 2 =.3 3 8.直接写出结果:(1) ()n=3n a 2n b 3n ; (2) x 10 y 11= ()5⋅ y ;(3)若2n = a , 3n = b ,则6n =.9.(2016 春•靖江市期末)已知 2m +5n +3=0,则 4m ×32n 的值为 . 10.若2a = 3, 2b = 5, 2c = 90 ,用 a , b 表示c 可以表示为.11.(2015•杭州模拟)已知 a=255,b=344,c=433,d=522,则这四个数从大到小排列顺序是.⎛ 50 ⎫a12.若整数 a 、b 、c 满足 27 ⎪ ⎛ 18 ⎫b⋅ 25 ⎪ ⎛ 9 ⎫c⋅ 8 ⎪ = 8 ,则 a = , b = , c =.⎝ ⎭ ⎝ ⎭ ⎝ ⎭三.解答题13.若2x + 5 y - 3 = 0 ,求4x ⋅ 32y 的值.14.(2014 春•吉州区期末)已知 a x =﹣2,a y =3.求: (1)a x+y 的值;(2)a 3x 的值;(3)a 3x+2y 的值.⎩15. 已知25x = 2000,80 y = 2000 ,则 1 +1 =.x y【答案与解析】一.选择题1. 【答案】B ;【解析】(x 2 )3= x 6 ; x 4 ⋅ x 5 = x 9 ; - (-x 3 )2= -x 6 . 2. 【答案】A ;【解析】(-a 5 )2+ (-a 2 )5= a 10 - a 10 = 0 . 3. 【答案】D ;3n⎧⎪x 2n(n 为偶数) 3【解析】(a 3 ) = a 3⨯3 = a 9 ; (-x 2 ) 4. 【答案】C ; = ⎨⎪-x 2n(n 为奇数); (- y 2) = - y 6 .【解析】(x3 )n +1= x 3n +3 ; (x n )3+1= x 4n ; (x n )2n +1= x 2n2+n.5. 【答案】B ;【解析】①②④错误.6. 【答案】D ;【解析】解:∵a•a 3=a 4,∴选项 A 不正确;∵a 4+a 3≠a 2,∴选项 B 不正确; ∵(a 2)5=a 10,∴选项 C 不正确; ∵(﹣ab )2=a 2b 2,∴选项 D 正确. 故选:D .二.填空题7. 【答案】 8a 3b 3;28a 6 ; 27 【解析】(- 1 ab )3 + 1 a 3b 3 = - 1 a 3b 3 + 9 a 3b 3 = 8a 3b 3 ;3 3 27 27 27(3a 2 )3+ (a 2 )2⋅ a 2 = 27a 6 + a 6 = 28a 6 .8. 【答案】3a 2b 3 ; x 2 y 2 ; ab ;【解析】(3) 6n = (2 ⨯ 3)n= 2n ⋅ 3n = ab . 9. 【答案】;【解析】4m ×32n =22m ×25n =22m +5n ,∵2m +5n +3=0,∴2m +5n=﹣3,∴4m ×32n =2﹣3=. 10. 【答案】c = 2a + b +1 ;【解析】 90 = 32 ⨯ 2 ⨯ 5 11. 【答案】b >c >a >d ;∴2∴c = (2a )2⋅ 2b ⋅ 2 = 22a +b +1 c = 2a + b +1【解析】解:a=255=3211,b=8111,c=6411,d=2511,∵81>64>32>25, ∴b >c >a >d .故答案为:b >c >a >d . 12.【答案】 a =6, b =6, c =3;⎛ 50 ⎫a ⎛ 18 ⎫b ⎛ 9 ⎫c2a ⋅ 52a 2b ⋅ 32b 32c【解析】 ⎪ ⋅ ⎪ ⋅ ⎪ = ⋅ ⋅ = 2a +b -3c ⋅ 32b +2c -3a ⋅ 52a -2b = 23⎝ 27 ⎭ ⎝ 25 ⎭ ⎝ 8 ⎭33a ⎧a + b - 3c = 3 ⎧a = 6 52b 23c ∴⎪∴2b + 2c - 3a = 0 ⎪= 6 . ⎨ ⎨b ⎪2a - 2b = 0 ⎪c = 3 ⎩⎩三.解答题13. 【解析】解: 4x ⋅ 32y= (22 )x⋅ (25 )y= 22 x ⋅ 25 y = 22 x +5 y∵ 2x + 5 y - 3 = 0 ,∴ 2x + 5 y = 3∴原式= 23 = 8 .14. 【解析】解:(1)a x+y =a x •b y =﹣2×3=﹣6;(2)a 3x =(a x )3=(﹣2)3=﹣8;(3)a 3x+2y =(a 3x )•(a 2y )=(a x )3•(a y )2=(﹣2)3•32=﹣8×9=﹣72. 15.【解析】解:∵ 25x = 2000, 80y = 2000, 2000 = 25⨯ 80∴(25x)y= 25xy= 2000y=(25⨯ 80)y= 25y⨯ 80y= 25y⨯ 2000 ; 25x⋅ 25y= 25x+y= 2000 ⨯ 25y∴25xy = 25x+y ;1 1 x +y∴xy =x +y ,+==1x y xy。
初中数学幂的运算专题讲解及典型题练习【知识点梳理】1.有理数的乘方定义求个相同因数的积的运算,叫做乘方.乘方运算的结果叫幂.n 一般地,,叫做底数,叫做指数,叫做幂。
n n a a a a a ⋅⋅⋅= 个a n n a 读作“的次幂”或读作“的次方”.n a a n a n 【注意】(1)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方运算的结果.(2)一个数可以看作是这个数本身的一次方,例如5就是,就是,指数是1通常省略15a 1a 不写.2.有理数幂的符号法则(1)正数的任何次幂都是正数.(2)负数的奇数次幂是负数,负数的偶数次幂是正数.(3)特别地,.()11,00n n n ==为正整数【注意】“负幂”与“负数的幂”区别:“负幂”例如表示的相反数,其结果为负数.“负51()2-51()2数的幂”例如,结果要看指数,即负数的奇次幂为负数,负数的偶次幂为正数.1()2n -3.有理数的混合运算一个算式里含有有理数的加、减、乘、除、乘方五种运算中的两种或两种以上的运算,称为有理数的混合运算.【注意】加法、减法、乘法、除法有各自的运算法则,也有各自的运算技巧,减法可以统一成加法,除法可以统一成乘法,加法与乘法还有各自的运算律,乘方是乘法的特例,也有自己的符号法则,同时也要考虑整体的符号关系以及简便算法.4.有理数的混合运算顺序(1)先乘方,再乘除,最后加减.(2)同级运算,从左到右依次进行.(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【注意】(1)在加、减、乘、除、乘方这几种运算基本掌握的前提下,学习混含运算,首先应注意的就是运算顺序的问题.(2)通常把六种基本的代数运算分成三级:第一级运算是加和减,第二级运算是乘和除,第三级运算是乘方和开方(以后学习).运算顺序的规定是先算高级运算,再算低级运算,同级运算在一起,按从左到右的顺序计算.对于含有多重括号的运算,一般先算小括号内的,再算中括号内的,最后算大括号内的.(3)括号前带负号,去括号后要将括号内的各项都要变号,即.()(),a b a b a b a b -+=----=-+5.科学记数法把一个数写成(其中,是正整数)的形式,这种记数法称为科学记数10n a ⨯110a <≤n 法.【注意】(1)科学记数法是一种特定的记数方法,应明白其中包含的基本原理及其结构,即要掌握形式的结构特征: ,为正整数,且值等于原数的整数位数减1.10n a ⨯110a <≤n n (2)在把用科学记数法表示的数还原为原数时,根据其基本原理和结构,把的小数点向右a 移动位,中数字不够时,用补足.n a 0【典型例题讲解】【例1】计算:.2007200812()2⨯-【分析】直接进行各自的乘方运算非常困难,但根据乘方的意义可得.共200722222=⨯⨯⨯⋅⋅⋅⨯2007个2相乘,2008200811()()22-=2007112008200722111111111222222222=⨯⨯⋅⋅⋅⨯=⨯⨯⋅⋅⋅⨯⨯=⨯个个()利用乘法交换律和结合律,把2007个2与结合在一起相乘,利用互为倒数即可求出数12值.【解析】2007200812()2⨯-20072008122=⨯().20072007200711111222222=⨯⨯⨯⨯=()()=(2)【方法总结】此题主要应用互为倒数、乘法运算律及乘方的意义进行计算,事实上我们不难发现,当与互为倒数时,其值为1.计算时要注意符号的问题.多加理解与练()m m m a b ab = a b 习,最好能达到一看题目就可以得出结果的程度.【借题发挥】计算:、.2010201115()5⨯-200920102 2.55⎛⎫-⨯ ⎪⎝⎭【解析】.20102010201111115()55555⎡⎤⎛⎫⎛⎫⨯-=⨯-⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.200920092009201020102252552.5 2.5552522⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-⨯=-⨯=-⨯⨯=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦【例2】计算:.22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦【分析】根据有理数的混合运算法则进行计算,分清计算的先后顺序,还要注意去括号的时候要注意符号.【解析】22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦[]135(13)435(1253)40.04⎡⎤=---+-⨯÷=---+-⨯÷⎢⎥⎣⎦[][]35(175)435(74)4=---+-÷=---+-÷.[]35(18.5)3(23.5)20.5=---+-=---=【借题发挥】计算:()()[]2243225.02115.01--⨯⎪⎭⎫ ⎝⎛-÷-+-【解析】原式=()[]()()2411110.52910.571167554162⎛⎫⎛⎫-+-÷⨯-=-+-÷⨯-=-+⨯⨯= ⎪ ⎪⎝⎭⎝⎭【例3】已知,,求的值.12x =-13y =-432231x y x --【分析】把,的值分别代入要求的式子,按有理数混合运算顺序进行计算.x y 【解析】把,代入,得12x =-13y =-432231x y x -- 原式43211112()3()23()231627111()124⨯--⨯-⨯-⨯-==---11114141789()3893627544-==+⨯=+=【方法总结】此类题一方面代入要准确,即负数或分数代入时一般加上小括号,另一方面代入后计算必须准确,最后结果是分数时一定是最简分数.【借题发挥】求当时,代数式的值.2,1x y =-=-2222222x y x xy y x y x y--+++-【解析】将带入,得2,1x y =-=-2222222x y x xy y x y x y --+++-原式=.()()()()()()()()()()2222221222113114221531521⨯-----⨯-⨯-+--+=+=⨯-+-----【例4】(1)补充完整下表:1323334353637383392781(2)从表中你发现3的方幂的个位数有何规律?(3)3251的个位数是什么数字?为什么?【分析】幂的个位上的数字3、9、7、l 交错重复出现,即每隔四个数,个位数字就重复一次,所以用251除以4所得的余数来确定.【解析】(1)132333435363738339278124372921876561(2)个位上的数字为3、9、7、1交错重复出现.(3)的个位数是7,因为除以4的余数是3.是重复出现时的第三个数.2513251【方法总结】此类题一般都是通过写出一些简单的幂,通过这些幂的结果总结出末位出现数字的种类及循环规律,进一步把指数按循环数进行分解,通过剩余指数求得最后答案.【借题发挥】的个位数是 ,的个位数是 ,253263的个位数是 ,的个位数是 .273283【解析】3,9,7,1.【例5】怎样比较,,的大小呢?553444335【解析】本题如果通过硬算,数字太大,不可能,因此要观察此三个数的特点,经观察,我们发现55、44、33存在着最大公因数11,不妨利用这一点以及乘方的定义来入手解题.具体过程如下:5511115533333(33333)243=⋅⋅⋅=⨯⨯⨯⨯= 个344111144444444(4444)256=⋅⋅⋅=⨯⨯⨯= 个.33111133555555(555)125=⋅⋅⋅=⨯⨯= 个因为,所以256243125>>111111256243125>>即.445533435>>【借题发挥】1.试比较的大小.443322234、、【解析】因为:,则,即()()()111111444113331122211221633274416======,,11111627<.442233243<=2.你能比较和的大小吗?2004200320032004 为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较和1n n +(1)n n +的大小(是自然数).然后,我们从分析…这些简单情形人手,从中发现规n 1,2,3,n n n ===律,经过归纳,猜想出结论.(1)通过计算.比较下列各组中两个数的大小(填“>”,“<”或“”).- ①___;②____;③ ;④____;⑤ ;…21123223433454456556 (2)从第(1)题的结果经过归纳,可以猜想出和的大小关系是 .1n n +(1)n n + (3)根据上面归纳猜想后得到的一般结论,试比较下面两个数的大小:.2004200320032004【解析】经计算与分析可推出结论:当时,<;当时,>.3n <1n n +(1)n n +3n ≥1n n +(1)n n +(1)①<;②<;③>;④>;⑤> (2) 当时,<;当时,>3n <1n n +(1)n n +3n ≥1n n +(1)n n +(3)>.(2)【借题发挥】比较下面各对数的大小:___; ; .211243342010200920092010【解析】<;>;>.【例6】比较与的大小.109.99810⨯111.00110⨯【分析】二者是用科学记数法表示的数,一方面可以把它们化成原数,通过比较原数大小来比较这两个数的大小;另一方面也可以把它化为相同指数,通过比较前面数(即)的大小来比a 较二者大小.【解析】解法一:,109.9981099980000000⨯=.111.00110100100000000⨯= 又,100100000000>99980000000.∴10119.99810 1.00110⨯<⨯ 解法二:,1110101.001l01. 0011010 10.0110⨯=⨯⨯=⨯ 又,10.019.998> .∴10119.99810 1.00110⨯<⨯【方法总结】解法一是常规方法,但书写起来很麻烦,易出现错误;方法二较巧妙地转化了,容易比较大小.11101.0011010.0110⨯=⨯【借题发挥】试比较:和.20099.9810⨯20101.0510⨯【解析】.2010200920091.051010.5109.9810⨯=⨯>⨯【例7】 定义“”“”两种运算,对于任意的两个数、,都有,○+○-a b a ○+b 1a b =+-a ○-b 1ab =-.求[()()]的值.4○-3○+5○+6○-2【分解】按规定的“”与“”进行各自的运算,运算时先算士括号里的,再算中括号里的.○+○-【解析】由,,得a ○+b 1a b =+-a ○-b 1ab =-[()()]4○-3○+5○+6○-2[()()]4=○-351+-○+621⨯-()()4=○-7○+114=○-7111+-.4=○-174=⨯171-67=【方法总结】此类题按规定的运算关系进行计算,首先要读懂表达式的含义,会套用公式,计算时注意符号关系及准确性外,还要注意运算的先后顺序.【借题发挥】“△”表示一种新的运算符号,其意义是对于任意,都存在△,如果△△a b a b 2a b =-x (1,则 .3)2=x =【解析】由△,得△△,即,则,所a b 2a b =-x (13)2=()()21312x x ⨯-=-=△△()212x --=以.12x =【例8】若尺布可做件上衣,则尺布能做多少件这样的上衣?619【解析】第题按计算件,但实际情况是只能做件,所以只能舍,不能入;961.5÷=105.【借题发挥】若每条船能载个人,则个人需要几条船?310【解析】按计算,但实际情况是条船不够,需要4条船,所以在这里应该入,取1103=33÷3134.【方法总结】在实际问题中,经常对药对一些数位上的数进行取舍,有的要求进行四舍五入,有的则按生活及生产实际进行取舍,千万不能遇及以上的数就入,遇以下的数就舍.555【随堂练习】1.计算: .2008(1)-=【答案】1.2.计算: .20102010201020104(0.25)(1)1-+-+= 【答案】原式=.201020102010201014()(1)111114-+-+=-++= 3.若,则 .21(2)0a b ++-=20102009()a b a ++=【答案】由题意知 得,代入原式可求结果为:0.1020a b +=⎧⎨-=⎩12a b =-⎧⎨=⎩4.如果那么的值为 .214,,2x y ==222x y -【答案】.222112243122x y -=⨯-=5.现有一根长为1米的木条,第一次截去一半,第二次截去剩下的一半,照此截下去,那么六次后剩下的木条为 米.【答案】第一次截后剩下米,第二次后剩下米,第三次后剩下米,由此推下1221142⎛⎫= ⎪⎝⎭312⎛⎫ ⎪⎝⎭去,第次后剩下米.所以六次后剩下的木条为(米).n 12n ⎛⎫ ⎪⎝⎭611264⎛⎫= ⎪⎝⎭6.计算:(1); (2); (3)321()(1)33-÷-232(3)-⨯-32221(0.2)(1).3(0.3)-⨯÷-【答案】(1);(2)108;(3).290.002-7.(1). (2).451132131511÷⨯⎪⎭⎫ ⎝⎛-⨯()1452515213⨯-÷+-(3). (4).()3432322⎪⎭⎫ ⎝⎛-⨯-÷-()()()3428102-⨯---÷+-(5).()[]2345.0813231325.01-----⨯÷⎪⎭⎫ ⎝⎛---(6).()54436183242113÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-【答案】(1) (2) (3) (4) (5) (6)225-347-1111620-11147224-8.利用乘方的有关知识确定的末两位数字.20076【答案】9.已知“三角”表示运算“”,“正方形”表示的运算是“” ,试计a b c -+d f g e -+-算的值.【答案】原式=.()()()199649551996281474116-+⨯-+-=-⨯=-9.计算:.111111111248163264128256512++++++++【答案】原式=11111111111122448816128256256512⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+⋅⋅⋅+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.151********-=10.光年是天文学中使用的距离单位,指的是光在真空中经历一年所走的距离,若真空中光的速度为千米/秒,用科学记数法表示l 光年是多少?(1年按天计算)300000365【答案】已知:千米/秒,(秒).300000v =365243600t =⨯⨯ 由(千米).300000365243600s vt ==⨯⨯⨯9460800000000=129.460810=⨯所以,l 光年是千米.129.460810⨯11.阅读下列解题过程:计算:()632113115⨯⎪⎭⎫ ⎝⎛--÷-解:()632113115⨯⎪⎭⎫ ⎝⎛--÷-(第一步)()662515⨯⎪⎭⎫ ⎝⎛-÷-=(第二步)()()2515-÷-=(第三步)53-=回答:(1)上面的解题过程中有两个错误,第一处是第 步,错误的原因是 ;第二处是第 步,错误原因是 .(2)正确的结果是 .【答案】(1)二,乘除为同一等级的计算,没有按照从前往后的顺序求解;(2)三,负数乘以负数得到正数,题中为负数. (2).3215【课堂总结】【课后作业】一、填空题1. .=---3232. .()22533235-⨯-⨯+=3. .()()()()()=-⨯---⨯---⨯++n n n 212211111014. .()()=-÷⎪⎭⎫ ⎝⎛-+-⨯-5214387165. .()()()=-⨯-+⨯-03.716.016.4003.76. .()()=-⨯+-÷-2333227.若、互为倒数,、互为相反数,,则 .a b c d 2=m ()=-+⋅+23m ab ba d c 8.一个数用科学记数法表示为,则它是 位整数.10n a ⨯二、选择题9.下列公式计算正确的是( )A .B .()527527⨯--=⨯--31354453=÷=⨯÷C . D .⎪⎭⎫ ⎝⎛÷÷=÷÷5454354543()932=--10.计算的值是( )()()2007200822-+-A .1 B . C . D .2-20072-2007211.下列各组数中,相等的一组是( ).A .与B .与23-2(3)-2(3)--3(2)-- C .与 D .与3(3)-33-223-⨯332-⨯12.用合理的方法计算:(1) ; (2) ;515635236767---1544 3.87 4.253495-+-+(3) ; (4) ; 1511342461832⎛⎫⎛⎫--+--+ ⎪ ⎪⎝⎭⎝⎭()110.5678111-----+⎡⎤⎣⎦13.计算:(1); (2);63221⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-÷2131521(3); (4).⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛--838712787431⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯1811351121961365514.用科学计数法表示下列计算结果:(1)一昼夜小时是多少秒?24 (2)50251002⨯15.(1)阅读短文《拆项计算》:拆项计算下面带分数的计算申,常把整数部分和分数部分拆开,以简化计算过程,举例如下:5231591736342⎛⎫⎛⎫-+++- ⎪ ⎪⎝⎭⎝⎭()5231591736342523159173634252315917363425213063241235644⎛⎫⎛⎫⎛⎫⎛⎫=-+-+++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=----++--⎛⎫=--+-+--+- ⎪⎝⎭⎛⎫=-+++ ⎪⎝⎭=-+=-(2)仿照第(1)小题的计算方法计算:5211200620054000116332⎛⎫⎛⎫⎛⎫-+-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】1.-11 2.21 3.1 4.2 5.-281.2 6.-7 7.-1 8.1n +9.D 10.D 11.C12.(1) 515655163523325319867676677⎡⎤⎛⎫⎛⎫⎛⎫---=-+-+-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2) 1541451454 3.87 4.253437437495459459-+-+=-+-+=(3) 151153424146183218⎛⎫⎛⎫--+--+=- ⎪ ⎪⎝⎭⎝⎭ (4) ()110.56781110.4321-----+=-⎡⎤⎣⎦13.(1) 121266612323⎛⎫⎛⎫-⨯=⨯+-⨯=- ⎪ ⎪⎝⎭⎝⎭(2) ()2117216853255⎛⎫÷-=⨯-=- ⎪⎝⎭(3) 377733114812888⎛⎫⎛⎫⎛⎫--÷-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4).51111351936361853911366623518633519⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯-÷-=⨯-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭14.(1) 一昼夜小时是(秒)244246060864008.6410⨯⨯==⨯(2) =50251002⨯50505010025410010⨯==15.原式=()5211352200620054000110.6332263⎛⎫⎛⎫--+++--++=+-+=- ⎪ ⎪⎝⎭⎝⎭。
专题1.2 幂的除法运算(知识解读)【学习目标】1. 掌握正整数幂的除法运算性质,能用文字和符号语言正确地表述这些性质,并能运用它们熟练地进行运算.2. 运用同底数幂的除法法则解决一下实际问题.3.理解零次幂的性质及有关综合运算。
4.掌握用科学计数法表示较小的数。
5.了解负整数指数幂的意义,并进行有关的运算。
【知识点梳理】知识点1:幂的除法运算口诀:同底数幂相除,底数不变,指数相减。
a m÷a n=a(m-n)(a≠0,m,n均为正整数,并且m>n)知识点2:零指数a0=1 (a≠0)知识3:科学记数法科学记数法:有了负指数幂后,绝对值小于 1 的数,也能写成a⨯10-n 的形式,其中n是正整数,1≤ a <10 ,这叫科学记数法.注:对于一个绝对值小于 1 的数,如果小数点后至第一个非0 数字前有m 个0,则10d 的指数n=m+1.知识点4:负整数幂当n 是正整数时,1nnaa-=(0a≠,n是正整数)【典例分析】【考点1 幂的除法运算】【典例1】计算a6÷a3,正确的结果是()A.3B.a3C.a2D.3a 【变式1-1】计算m3÷m3结果是()A.m6B.m C.0D.1【变式1-2】计算(﹣a)12÷(﹣a)3的结果为()A.a4B.﹣a4C.a9D.﹣a9【典例2】已知x a=3,x b=5,则x a﹣b=()A.B.C.D.15【变式2-1】已知3m=12,3n=4,则3m﹣n的值为()A.3B.4C.6D.8【变式2-2】若5a=3,5b=12,则5b﹣a=.【典例3】已知3m=6,9n=2,求32m﹣4n的值.【变式3-1】已知a m=4,a n=8,求a3m﹣2n的值.【变式3-2】(1)已知3a=4,3b=5,求32a﹣3b的值;(2)若3x+2y﹣3=0,求8x•4y.【典例4】计算:a2•(﹣a4)3÷(a3)2.【变式4-1】计算:(1)a•a2•a3;(2)(﹣2ab)2;(3)(a3)5;(4)(﹣a)6÷(﹣a)2÷(﹣a)2.【变式4-2】计算:(x2)3•x3﹣(﹣x)2•x9÷x2.【变式4-3】计算题:(1)(a2)3•(a2)4÷(a2)5;(2)(5a2+2a)﹣4(2+2a2).【考点2 零指数】【典例5】(一1)0等于()A.﹣1B.0C.1D.无意义【变式5-1】若(x﹣1)0有意义,那么x的取值范围是()A.x>1B.x<1C.x≠1D.x为任意数【变式5-2】计算(﹣5)0的结果是()A.1B.﹣5C.0D.﹣【考点3:科学计数法】【典例6】(2022•海曙区校级模拟)我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣8【变式6-1】(2019•烟台一模)碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米【变式6-2】(2020•汇川区模拟)世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1【考点4:负指数整数幂】【典例7】(2022春•元宝区校级期末)计算()﹣2的结果是()A.﹣9B.9C.D.﹣【变式7-1】(2022春•北碚区校级期末)()﹣2值为()A.B.﹣C.D.﹣【典例8】(2022•南陵县自主招生)计算.【变式8-1】(2022春•兰州期末)计算:()﹣1﹣(﹣3﹣3.14)0+(﹣)﹣2.【变式8-2】(2022春•城固县期末)计算:(﹣)﹣3+(﹣3)0﹣(﹣1)﹣2.【变式8-3】(2022春•西安期末)计算:﹣(﹣1)﹣1.专题1.2 幂的除法运算(知识解读)【学习目标】1. 掌握正整数幂的除法运算性质,能用文字和符号语言正确地表述这些性质,并能运用它们熟练地进行运算.2. 运用同底数幂的除法法则解决一下实际问题.3.理解零次幂的性质及有关综合运算。
8.1 幂的运算1.了解幂的运算性质,会利用幂的运算性质进行计算.2.通过幂的运算性质的形成和应用,养成观察、归纳、猜想、论证的能力,提高计算和口算的能力.3.了解和体会“特殊—一般—特殊”的认知规律,体验和学习研究问题的方法,培养思维严谨性,做到步步有据,正确熟练,养成良好的学习习惯.1.同底数幂的乘法(1)同底数幂的意义“同底数幂”顾名思义,是指底数相同的幂.如32与35,(-5)2与(-5)6,(a+b)4与(a+b)3等表示的都是同底数的幂.(2)幂的运算性质1同底数幂相乘,底数不变,指数相加.用字母可以表示为:a m·a n=a m+n(m,n都是正整数).(3)性质的推广运用当三个或三个以上的同底数幂相乘时,也具有这一性质,如:a m·a n·a p=a m+n+p(m,n,p是正整数).(4)在应用同底数幂的乘法的运算性质时,应注意以下几点:①幂的底数a可以是任意的有理数,也可以是单项式或多项式;底数是和、差或其他形式的幂相乘,应把这些和或差看作一个“整体”.②底数必须相同才能使用同底数幂的乘法公式,若底数不同,则不能使用;注意:-a n 与(-a)n不是同底数的幂,不能直接用性质.③不要忽视指数是1的因数或因式.【例1-1】(1)计算x3·x2的结果是______;(2)a4·(-a3)·(-a)3=__________.解析:(1)题中的底数都是x,是两个同底数幂相乘的运算式子,只需运用同底数幂相乘的性质进行运算,即x3·x2=x3+2=x5;(2)应先把底数分别是a,-a的幂化成同底数的幂,才能应用同底数幂的乘法性质,原式=a4·(-a3)·(-a3)=a4·a3·a3=a4+3+3=a10.答案:(1)x5(2)a10正确运用幂的运算性质解题的前提是明确性质的条件和结论.例如同底数幂的乘法,条件是底数相同,且运算是乘法运算,结论是底数不变,指数相加.【例1-2】计算:(1)(x+y)2·(x+y)3;(2)(a-2b)2·(2b-a)3.分析:(1)把(x+y)看作底数,可根据同底数幂的乘法性质来解;(2)题中(a-2b)2可转化为(2b-a)2,或者把(2b-a)3转化为-(a-2b)3,就是两个同底数的幂相乘了.解:(1)原式=(x+y)2+3=(x+y)5;(2)方法一:原式=(2b -a )2·(2b -a )3=(2b -a )5;方法二:原式=(a -2b )2·[-(a -2b )3]=-(a -2b )5.本题应用了整体的数学思想,把(x +y )和(a -2b )看作一个整体,(2)题中的两种解法所得的结果实质是相等的,因为互为相反数的奇次幂仍是互为相反数. 2.幂的乘方(1)幂的乘方的意义:幂的乘方是指几个相同的幂相乘.如(a 5)3是指三个a 5相乘,读作“a 的五次幂的三次方”,即有(a 5)3=a 5·a 5·a 5=a 5+5+5=a 5×3;(a m )n 表示n 个a m 相乘,读作“a 的m 次幂的n 次方”,即有(a m )n =m m m n a a a ⋅⋅⋅L 1442443个=m m m n a a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅L L L L 142431424314243144444424444443个个个个=a mn(m ,n 都是正整数) (2)幂的运算性质2幂的乘方,底数不变,指数相乘.用字母可以表示为:(a m )n =a mn(m ,n 都是正整数).这个性质的最大特点就是将原来的乘方运算降次为乘法运算,即底数不变,指数相乘. (3)性质的推广运用幂的乘方性质可推广为: [(a m )n ]p =a mnp(m ,n ,p 均为正整数).(4)注意(a m )n 与am n的区别 (a m )n 表示n 个a m 相乘,而am n 表示m n 个a 相乘,例如:(52)3=52×3=56,523=58.因此,(a m )n ≠am n .【例2】(1)计算(x 3)2的结果是( ).A .x 5B .x 6C .x 8D .x 9(2)计算3(a 3)3+2(a 4)2·a =__________.解析:(1)根据性质,底数不变,指数相乘,结果应选B ;(2)先根据幂的乘方、同底数幂相乘进行计算,再合并同类项得到结果.3(a 3)3+2(a 4)2·a =3a 3×3+2a 4×2·a =3a 9+2a 8·a =3a 9+2a 9=5a 9.答案:(1)B (2)5a 9防止“指数相乘”变为“指数相加”,同时防止“指数相乘”变为“指数乘方”.如(a 4)2=a 4+2=a 6与(a 2)3=a 23=a 8都是错误的.3.积的乘方(1)积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(2ab )3,(ab )n等.(2ab )3=(2ab )·(2ab )·(2ab )(乘方意义)=(2×2×2)(a ·a ·a )(b ·b ·b )(乘法交换律、结合律) =23a 3b 3.(ab )n =n ab ab ab ()()()L 1442443个=n a a a (⋅⋅⋅)L 14243个n b b b (⋅⋅⋅⋅)L 14243个=a n b n(n 为正整数).(2)幂的运算性质3积的乘方等于各因式乘方的积.也就是说,先把积中的每一个因式分别乘方,再把所得的结果相乘.用字母可以表示为:(ab )n =a n b n(n 是正整数). (3)性质的推广运用三个或三个以上的乘方也具有这一性质,如(abc )n =a n b n c n(n 是正整数).【例3】计算:(1)(-2x )3;(2)(-xy )2;(3)(xy 2)3·(-x 2y )2;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34.分析:(1)要注意-2x 含有-2,x 两个因数;(2)-xy 含有三个因数:-1,x ,y ;(3)把xy 2看作x 与y 2的积,把-x 2y 看作-1,x 2,y 的积;(4)-12ab 2c 3含有四个因数-12,a ,b 2,c 3,先运用积的乘方性质计算,再运用幂的乘方性质计算.解:(1)(-2x )3=(-2)3·x 3=-8x 3;(2)(-xy )2=(-1)2·x 2·y 2=x 2y 2;(3)(xy 2)3·(-x 2y )2=x 3(y 2)3·(-1)2·(x 2)2y 2=x 3y 6·x 4y 2=x 7y 8;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34=⎝ ⎛⎭⎪⎫-124a 4(b 2)4(c 3)4=116a 4b 8c 12.(1)在计算时,把x 2与y 2分别看成一个数,便于运用积的乘方的运算性质进行计算,这种把某个式子看成一个数或字母的方法的实质是换元法,它可以把复杂问题简单化,它是数学的常用方法.(2)此类题考查积的乘方运算,计算时应特别注意底数含有的因式,每个因式都分别乘方,不要漏掉,尤其要注意系数及系数的符号,对系数是-1的不可忽略.负数的奇次方是一个负数,负数的偶次方是一个正数.4.同底数幂的除法 (1)幂的运算性质4同底数幂相除,底数不变,指数相减.用字母可以表示为:a m ÷a n =a m -n(a ≠0,m ,n 都是正整数,且m >n ).这个性质成立的条件是:同底数幂相除,结论是:底数不变,指数相减.和同底数幂的乘法类似,被除式和除式都是幂的形式且底数一定要相同,商也是一个幂,其底数与被除式和除式的底数相同,商中幂的指数是被除式的指数与除式的指数之差.因为零不能作除数,所以底数a ≠0.(2)性质的推广运用三个或三个以上的同底数幂连续相除时,该性质仍然成立,例如a m ÷a n ÷a p =a m -n -p(a ≠0,m ,n ,p 为正整数,m >n +p ).【例4】计算:(1)(-a )6÷(-a )3;(2)(a +1)4÷(a +1)2;(3)(-x )7÷(-x 3)÷(-x )2. 分析:利用同底数幂的除法性质进行运算时关键要找准底数和指数.(1)中的底数是-a ,(2)中的底数是(a +1),(3)中的底数可以是-x ,也可以是x .解:(1)(-a )6÷(-a )3=(-a )6-3=(-a )3=-a 3;(2)(a +1)4÷(a +1)2=(a +1)4-2=(a +1)2; (3)方法1:(-x )7÷(-x 3)÷(-x )2=(-x )7÷(-x )3÷(-x )2=(-x )7-3-2=(-x )2=x 2. 方法2:(-x )7÷(-x 3)÷(-x )2=(-x 7)÷(-x 3)÷x 2=x 7-3-2=x 2.运用同底数幂除法性质的关键是看底数是否相同,若不相同则不能运用该性质,指数相减是指被除式的指数减去除式的指数;幂的前三个运算性质中字母a ,b 可以表示任何实数,也可以表示单项式和多项式;第四个性质即同底数幂的除法性质中,字母a 只表示不为零的实数,或表示其值不为零的单项式和多项式.注意指数是“1”的情况,如a 5÷a =a 5-1,而不是a 5-0.5.零指数幂与负整数指数幂(1)零指数幂:任何一个不等于零的数的零次幂都等于1.用字母可以表示为:a 0=1(a ≠0).a 0=1的前提是a ≠0,如(x -2)0=1成立的条件是x ≠2.(2)负整数指数幂:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.用字母可以表示为:a -p=1ap (a ≠0,p 是正整数).a -p =1ap 的条件是a ≠0,p 为正整数,而0-2等是无意义的.当a >0时,a p 的值一定为正;当a <0时,a -p 的值视p 的奇偶性而定,如(-2)-3=-18,(-3)-2=19.规定了零指数幂和负整数指数幂的意义后,正整数指数幂的运算性质,就可以推广到整数指数幂了,于是同底数幂除法的性质推广到整数指数幂,即a m ÷a n =a m -n(a ≠0,m ,n 都是整数).如a ÷a 2=a 1-2=a -1=1a;正整数指数幂的某些运算,在负整数指数幂中也能适用.如a -2·a -3=a-2-3=a -5等.【例5】计算:(1)1.6×10-4;(2)(-3)-3;(3)⎝ ⎛⎭⎪⎫-53-2;(4)(π-3.14)0;(5)⎝ ⎛⎭⎪⎫130+⎝ ⎛⎭⎪⎫-13-2+⎝ ⎛⎭⎪⎫-23-1.分析:此题是负整数指数幂和零指数幂的计算,可根据a -p=1ap (p 是正整数,a ≠0)和a 0=1(a ≠0)计算.其中(1)题应先求出10-4的值,再运用乘法性质求出结果.解:(1)1.6×10-4=1.6×1104=1.6×0.000 1=0.000 16.(2)(-3)-3=1-33=-127. (3)⎝ ⎛⎭⎪⎫-53-2=⎝ ⎛⎭⎪⎫-352=925. (4)因为π=3.141 592 6…, 所以π-3.14≠0.故(π-3.14)0=1.(5)原式=1+1⎝ ⎛⎭⎪⎫-132+1⎝ ⎛⎭⎪⎫-231=1+9-32=812.只要底数不为零,而指数是零,不管底数多么复杂,其结果都是1.当一个负整数指数幂的底数是分数时,它等于底数倒数的正整数次幂,即⎝ ⎛⎭⎪⎫a b -p =⎝ ⎛⎭⎪⎫b a p .6.用科学记数法表示绝对值较小的数(1)绝对值小于1的数可记成±a ×10-n的形式,其中1≤a <10,n 是正整数,n 等于原数中第一个不等于零的数字前面的零的个数(包括小数点前面的一个零),这种记数方法也是科学记数法.(2)把一个绝对值小于1的数用科学记数法表示分两步:①确定a,1≤a <10,它是将原数小数点向右移动后的结果;②确定n ,n 是正整数,它等于原数化为a 后小数点移动的位数.(3)利用科学记数法表示数,不仅简便,而且更便于比较数的大小,如:2.57×10-5显然大于2.57×10-8,前者是后者的103倍.【例6-1】2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.000 001 56 m ,用科学记数法表示这个数是( ).A .0.156×10-5B .0.156×105C.1.56×10-6 D.1.56×106解析:本题考查科学记数法,将一个数用科学记数法表示为±a×10-n(1≤a<10)的形式,其中a是正整数数位只有一位的数,所以A、B不正确,n是正整数,n等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零),所以n=6,即0.000 001 56=1.56×10-6.故选C.答案:Cn的值也等于将原数写成科学记数法±a×10-n时,小数点移动的位数.如本题中将0.000 001 56写成科学记数法表示时,a为1.56,即将原数的小数点向右移动了6位,所以n的值是6.【例6-2】已知空气的单位体积质量为 1.24×10-3 g/cm3,1.24×10-3用小数表示为( ).A.0.000 124 B.0.012 4C.-0.001 24 D.0.001 24解析:因为a=1.24,n=3,因此原数是1前面有3个零(包括小数点前面的一个零),即1.24×10-3=0.001 24.答案:D本题可把1.24的小数点向左移动3位得到原数,也可利用负整数指数幂算出10-3的值,再与1.24相乘得到原数.7.幂的混合运算幂的四个运算性质是整式乘(除)法的基础,也是整式乘(除)法的主要依据.进行幂的运算,关键是熟练掌握幂的四个运算性质,深刻理解每个性质的意义,避免互相混淆.幂的混合运算顺序是先乘方,再乘除,最后再加减,有括号的先算括号里面的.因此,运算时,应先细心观察,合理制定运算顺序,先算什么,后算什么,做到心中有数.(1)同底数幂相乘与幂的乘方运算性质混淆,从而导致错误.如:①a3·a2=a6;②(a3)2=a5.解题时应首先分清是哪种运算:若是同底数幂相乘,应将指数相加;若是幂的乘方,应将指数相乘.正解:①a3·a2=a5;②(a3)2=a6.(2)同底数幂相乘与合并同类项混淆,从而导致错误.如:①a3·a3=2a3;②a3+a3=a6.①是同底数幂相乘,应底数不变,指数相加;②是合并同类项,应系数相加作系数,字母和字母的指数不变.正解:①a3·a3=a6;②a3+a3=2a3.【例7-1】下列运算正确的是( ).A.a4+a5=a9B.a3·a3·a3=3a3C.2a4·3a5=6a9D.(-a3)4=a7解析:对于A,两者不是同类项,不能合并;对于B,结果应为a9;对于C,结果是正确的;对于D,(-a3)4=a3×4=a12.故选C.答案:C【例7-2】计算:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3.分析:按照运算顺序,先利用积的乘方化简,即(-2x2y)3=-8(x2)3·y3,8(x2)2·(-x)2·(-y)6=8x4·x2·y6,再利用幂的乘方及同底数幂的乘法化简乘方后的结果,最后合并同类项.解:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3=-8(x2)3·y3+8x4·x2·y6÷y3=-8x6y3+8x6y3=0.8.幂的运算性质的逆用对于幂的运算性质的正向运用大家一般比较熟练,但有时有些问题需要逆用幂的运算性质,可以使问题化难为易、求解更加简单.(1)逆用同底数幂的乘法性质:a m +n =a m ·a n (m ,n 为正整数).如25=23×22=2×24.当遇到幂的指数是和的形式时,为了计算的需要,往往逆用同底数幂的乘法性质,将幂转化成几个同底数幂的乘法.但是一定要注意,转化后指数的和应等于原指数.(2)逆用幂的乘方性质:a mn =(a m )n =(a n )m (m ,n 均为正整数).逆用幂的乘方性质的方法是:幂的底数不变,将幂的指数分解成两个因数的乘积,再转化成幂的乘方的形式.如x 6=(x 2)3=(x 3)2,至于选择哪一个变形结果,要具体问题具体分析.(3)逆用积的乘方性质: a n b n =(ab )n (n 为正整数).当遇到指数相差不大,且指数比较大时,可以考虑逆用积的乘方性质解题.注意,必须是同指数的幂才能逆用性质,逆用时一定要注意:底数相乘,指数不变.(4)逆用同底数幂的除法性质: a m -n =a m ÷a n (a ≠0,m ,n 为整数).当遇到幂的指数是差的形式时,为了计算的需要,往往逆用同底数幂的除法性质,将幂转化成几个同底数幂的除法.但是一定要注意,转化后指数的差应等于原指数.【例8-1】(1)已知3a =2,3b =6,则33a -2b的值为__________;(2)若m p =15,m 2q =7,m r =-75,则m 3p +4q -2r的值为__________.解析:(1)因为3a =2,3b=6,所以33a -2b =33a ÷32b =(3a )3÷(3b )2=23÷62=29.(2)m 3p +4q -2r =(m p )3·(m 2q )2÷(m r )2=⎝ ⎛⎭⎪⎫153×72÷⎝ ⎛⎭⎪⎫-752=15.答案:(1)29 (2)15【例8-2】(1)计算:⎝ ⎛⎭⎪⎫18 2 011×22 012×24 024;(2)已知10x =2,10y =3,求103x +2y的值.分析:(1)本题的指数较大,按常规方法计算很难,观察式子特点发现:4 024是2 012的两倍,可逆用幂的乘方性质,把24 024化为(22)2 012,这样再与22 012逆用积的乘方性质,此时发现与⎝ ⎛⎭⎪⎫18 2 011底数互为倒数,但指数不相同,因此逆用同底数幂的乘法及逆用积的乘方性质,简化计算;(2)可逆用幂的乘方,把103x +2y化为条件中的形式.解:(1)原式=⎝ ⎛⎭⎪⎫18 2 011×22 012×(22)2 012(逆用幂的乘方)=⎝ ⎛⎭⎪⎫18 2 011×(2×22)2 012(逆用积的乘方) =⎝ ⎛⎭⎪⎫18 2 011×82 012 =⎝ ⎛⎭⎪⎫18 2 011×82 011×8(逆用同底数幂的乘法) =⎝ ⎛⎭⎪⎫18×8 2 011×8(逆用积的乘方) =8.(2)因为103x =(10x )3=23=8,102y =(10y )2=32=9,所以103x +2y =103x ·102y=8×9=72. 9.利用幂的运算性质比较大小 在幂的运算中,经常会遇到比较正整数指数幂的大小问题.对于一些幂的指数较小的问题,可以直接计算出幂进行比较;但当幂的指数较大时,若通过先计算出幂再比较大小,就会很繁琐甚至不可能.这时可利用幂的运算性质比较幂的大小.比较幂的大小,一般有以下几种方法:(1)指数比较法:利用乘方,将比较大小的各个幂的底数化为相同的底数,然后根据指数的大小关系确定出幂的大小.(2)底数比较法:利用乘方,将比较大小的各个幂的指数化为相同的指数,然后根据底数的大小关系确定出幂的大小.(3)作商比较法:当a >0,b >0时,利用“若a b >1,则a >b ;若a b =1,则a =b ;若a b<1,则a <b ”比较.有关幂的大小比较的技巧和方法除灵活运用幂的有关性质外,还应注意策略,如利用特殊值法、放缩法等.【例9】(1)已知a =8131,b =2741,c =961,则a ,b ,c 的大小关系是( ). A .a >b >c B .a >c >b C .a <b <c D .b >c >a(2)350,440,530的大小关系是( ).A .350<440<530B .530<350<440C .530<440<350D .440<530<350(3)已知P =999999,Q =119990,那么P ,Q 的大小关系是( ).A .P >QB .P =QC .P <QD .无法比较解析:(1)因为a =8131=(34)31=3124,b =2741=(33)41=3123,c =961=(32)61=3122,又124>123>122,所以3124>3123>3122,即a >b >c .故选A .(2)因为350=(35)10=24310,440=(44)10=25610,530=(53)10=12510,而125<243<256,所以12510<24310<25610,即530<350<440.故选B .(3)因为P Q =999999×990119=9×119999×990119=99×119999×990119=1,所以P =Q .故选B . 答案:(1)A (2)B (3)B10.幂的运算性质的实际应用利用幂的运算可以解决一些实际问题,所以要熟练掌握好幂的运算性质,能在实际问题中灵活地运用幂的运算性质求解问题.解决此类问题时,必须认真审题,根据题意列出相关的算式,进而利用幂的运算性质进行运算或化简,特别地,当计算的结果是比较大的数时,一般要写成科学记数法的形式.【例10】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103m/s ,则卫星运行3×102s 所走的路程约是多少?分析:要计算卫星运行3×102s 所走的路程,根据路程等于时间乘以速度可解决问题.本题实际是一道同底数幂的乘法运算问题.解:因为7.9×103×3×102=(7.9×3)×(103×102)=23.7×105=2.37×106,所以卫星运行3×102 s 所走的路程约为2.37×106m . 11.幂的运算中的规律探究题探究发现型题是指命题中缺少一定的题设或未给出明确的结论,需要经过推断、补充并加以总结.它不像传统的解答题或证明题,在条件和结论给出的情景中只需进行由因导果或由果导因的工作,而是必须利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或去探索存在的各种可能性以及发现所形成的客观规律.规律探索题是指在一定条件下,需要探索发现有关数学对象所具有的规律性或不变性的题目,要解答此类问题,首先要仔细阅读,弄清题意,并从阅读过程中找出其规律,然后进一步利用规律进行计算.【例11】(1)观察下列各式:由22×52=4×25=100,(2×5)2=102=100,可得22×52=(2×5)2;由23×53=8×125=1 000,(2×5)3=103=1 000,可得23×53=(2×5)3;….请你再写出两个类似的式子,你从中发现了什么规律?(2)x2表示两个x相乘,(x2)3表示3个__________相乘,因此(x2)3=__________,由此类推得(x m)n=__________.利用你发现的规律计算:①(x3)15;②(x3)6;③[(2a-b)3]8.解:(1)如:34×54=(3×5)4,45×55=(4×5)5,等等.规律:a n·b n=(ab)n,即两数n次幂的积等于这两个数的积的n次幂.(2)x2x2×3=x6x mn①(x3)15=x45;②(x3)6=x18;③[(2a-b)3]8=(2a-b)24.。
北师大版七年级数学下册幂的运算能力提升专项练习题2(附答案详解)1.a 2 017可以写成( )A .a 2 010+a 7B .a 2 010·a 7C .a 2 010·aD .a 2 008·a 2 0092.计算﹣(﹣2x 3y 4)4的结果是( )A .16x 12y 16B .﹣16x 12y 16C .16x 7y 8D .﹣16x 7y 83.下列各式中,运算正确的是( )A .(a 3)2=a 5B .(a ﹣b )2=a 2﹣b 2C .a 6÷a 2=a 4 D .a 2+a 2=2a 4 4.a 2m+2÷a 等于( )A .a 3mB .2a 2m+2C .a 2m+1D .a m +a 2m5.(-2a )2 等于( )A .a 3B .aC .-4b 6D .4a 26.下列各式中,计算不正确的是 ( )A .02139⎛⎫-⨯ ⎪⎝⎭=1B .02122a ⎛⎫- ⎪⎝⎭=1C .(|a |+1)0=1D .(-1- a 2) 0=17.下列计算中,正确的是( )A .235235x x x +=B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=- 8.下列计算正确的是( ).A .235x x x +=B .236x x x ⋅=C .326()x x -=-D .633x x x ÷= 9.计算正确的是( )A .(﹣5)0=0B .x 3+x 4=x 7C .(﹣a 2b 3)2=﹣a 4b 6D .2a 2•a ﹣1=2a10.已知,则的值为_____.11.计算:(a 3)2=_____.12.计算:(1)(-b )4·(-b )5·(-b )=____;(2)-22·(-2)2·(-2)3=____.13.计算(a 3)2÷(a 2)3的结果等于________14.计算:(﹣215)2016×(511)2017=______. 15.已知8,2m n a a ==,则m n a +=_______.16.已知92m ×27m ﹣1=311,则m=_____.17.计算:(﹣0.125)2016×82017=________;18.计算:(23)7÷(23)5=_____. 19.化简()25aa -⋅所得的结果是_____. 20.计算: (1)3242442(()2)a a a a a ⋅⋅+-+-;(2)2322232(3)((()))x y x x y -+⋅-⋅-.21.若x 2 =25a 8b 6,求 x 的值22.已知8m =12,4n =6,求26m-2n+1的值.23.若x m =10,x n =5,则x m-n 为多少?24.计算:(1)234()()()a a a -⋅-⋅-;(2)724()()x x x -⋅-⋅;(3)345()()()a b b a a b -⋅-⋅-;(4)214222n n ++⨯-⨯. 25.阅读下列材料:若32a =,53b =,则,a b 的大小关系是a_____b.(填“<”或“>”)解:因为15355()232a a ===,15533()327b b ===,32>27,所以1515a b >,所以a b >. 解答下列问题:(1)上述求解过程中,逆用的幂的运算性质是:A .同底数幂的乘法B .同底数幕的除法C .幂的乘方D .积的乘方(2)已知72x =,93y =,试比较x 与y 的大小.26.已知a=833,b=1625,c=3219,试比较a,b,c 的大小.27.先化简,再求值:,其中。
幂的运算(提高)
责编:杜少波
【学习目标】
1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);
2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.
【要点梳理】
【高清课堂396573 幂的运算 知识要点】
要点一、同底数幂的乘法性质
+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.
要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、
多项式.
(2)三个或三个以上同底数幂相乘时,也具有这一性质,
即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).
(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数
与原来的底数相同,它们的指数之和等于原来的幂的指数。
即
m n m n a a a +=⋅(,m n 都是正整数).
要点二、幂的乘方法则
()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.
要点诠释:(1)公式的推广:(())=m n p mnp a a
(0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘
方运算能将某些幂变形,从而解决问题.
要点三、积的乘方法则
()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
要点诠释:(1)公式的推广:()=⋅⋅n n n n
abc a b c (n 为正整数).
(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭
要点四、注意事项
(1)底数可以是任意实数,也可以是单项式、多项式.
(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要
遗漏.
(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.
(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.
(5)灵活地双向应用运算性质,使运算更加方便、简洁.
(6)带有负号的幂的运算,要养成先化简符号的习惯.
【典型例题】
类型一、同底数幂的乘法性质
【高清课堂396573 幂的运算 例1】
1、计算:
(1)35(2)(2)(2)b b b +⋅+⋅+;
(2)23(2)(2)x y y x -⋅- .
【答案与解析】
解:(1)353519(2)(2)(2)(2)
(2)b b b b b +++⋅+⋅+=+=+. (2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--.
【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.
(2)在幂的运算中,经常用到以下变形:
()()(),n n
n a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n n n b a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则
【高清课堂396573 幂的运算 例2】
2、计算:
(1)23[()]a b --; (2)32235
()()2y y y y +-g ; (3)22412()()m m x x -+⋅; (4)3234()()x x ⋅.
【答案与解析】
解:(1)23[()]a b --236()()a b a b ⨯=--=--.
(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=.
(3)22412()()m m x x -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.
(4)3234()()x x ⋅61218x x x =⋅=.
【总结升华】(1)运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.
3、(2015春•南长区期中)已知2x =8y+2,9y =3x ﹣
9,求x+2y 的值.
【思路点拨】根据原题所给的条件,列方程组求出x 、y 的值,然后代入求解.
【答案与解析】
解:根据2x =23(y+2),32y =3x ﹣
9, 列方程得:, 解得:, 则x+2y=11.
【总结升华】本题考查了幂的乘方,解题的关键是灵活运用幂的乘方运算法则. 举一反三:
【变式】已知322,3m m a b ==,则()
()()36322m m m m a b a b b +-⋅= . 【答案】-5; 提示:原式()()()()23223232m m m m a
b a b =+-⋅ ∵
∴ 原式=23222323+-⨯=-5.
类型三、积的乘方法则
4、计算:
(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算性质进行计算.
【答案与解析】
解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-.
(2)24333[()]a a b -⋅-231293636274227()()()a a b a a b a b =-⋅-=-⋅-⋅=.
【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略.
举一反三:
【变式1】下列等式正确的个数是( ).
①()3236926x y x y -=- ②()326m m a a -= ③()3
6933a a = ④()()57355107103510
⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯ A. 1个 B. 2个 C. 3个 D. 4个 【答案】A ; 提示:只有⑤正确;()3236928x y x y -=-;()326m m a a -=-;()3
618327a a =;
()()
571213
⨯⨯⨯=⨯=⨯
5107103510 3.510
【变式2】(2015春•泗阳县校级月考)计算:
(1)a4•(3a3)2+(﹣4a5)2
(2)(2)20•()21.
【答案】
(1)a4•(3a3)2+(﹣4a5)2
=a4•9a6+16a10
=9a10+16a10
=25a10;
(2)(2)20•()21.
=(×)20•
=1×
=.
5、(2016秋•济源校级期中)已知x2m=2,求(2x3m)2﹣(3x m)2的值.
【思路点拨】根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得已知条件,根据已知条件,可得计算结果.
【答案与解析】解:原式=4x6m﹣9x2m
=4(x2m)3﹣9x2m
=4×23﹣9×2
=14.
【总结升华】本题考查了幂的乘方与积得乘方,先由积的乘方得出已知条件是解题关键.。