17秋福师《实变函数》在线作业一100分答案
- 格式:doc
- 大小:36.50 KB
- 文档页数:9
《实变函数》试题库及参考答案(完整版)选择题1,下列对象不能构成集合的是:( )A 、全体自然数B 、0,1 之间的实数全体C 、[0, 1]上的实函数全体D 、全体大个子2、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{全体小个子}D 、{x :x>1}3、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体胖子}4、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体瘦子}5、下列对象不能构成集合的是:( )A 、{全体小孩子}B 、{全体整数}C 、{x :x>1}D 、{全体实数}6、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体大人}C 、{x :x>1}D 、{全体整数}7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I∈⋃= ( ) A 、(-1, 1) B 、(-1, 0) C 、(-∞, +∞) D 、(1,+∞)8、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、(-1, 1) B 、(-1, 0) C 、[0, 1]D 、[-1, 1]9、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(0, 1) B 、[0, 1] C 、[0, 1] D 、(0, +∞)10、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、[1, 2] B 、(1, 2) C 、 (0, 3) D 、(1, 2)11、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}12、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}13、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]14、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0,1]15、设),0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、[0, n]C 、RD 、(0, ∞)16、设)1,0(nA n =, N n ∈, 则=∞→n n A lim ( ) A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ 17、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 18、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( ) A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 19、设A 、B 、C 是三个集合, 则A-(A-B)= ( )A 、B B 、AC 、A ⋂BD 、A ⋃B20、设A 、B 、C 是三个集合, 则A-(B ⋃C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C21、设A 、B 、C 是三个集合, 则A-(B ⋂C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C22、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s -= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B A C s ⋂23、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s ⋃= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B C A s ⋃24、设A 、B 、C 是三个集合, 则A-(B-C) = ( )A 、 A ⋃C-B B 、 A-B-C C 、 (A-B)⋃(A ⋂C)D 、 C-(B-A)25、集合E 的全体内点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包26、集合E 的全体聚点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包27、集合E 的全体边界点和内点所成的集合是E 的 ( )A 、开核B 、边界C 、导集D 、闭包28、E-E '所成的集合是 ( )A 、开核B 、边界C 、外点D 、{E 的全体孤立点}29、E 的全体边界点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包30、设点P 是集合E 的边界点, 则 ( )A 、P 是E 的聚点B 、P 是E 的孤立点C 、P 是E 的内点D 、P 是CE 的边界点31、设)3,2()1,0(⋃=G , 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(21, 1) C 、[0, 1] D 、(0, 2) 32、设)1,0(1=G , )2,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(-1, 21) D 、(-1, 2) 33、设)4,0(1=G , )4,3()1,0(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(3, 4)C 、(0, 4)D 、 (1, 4)34、设)1,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 3)C 、(0, 4)D 、(1, 4)35、设)2,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(1, 2)D 、(1, 4)36、设)2,1()1,0(1⋃=G , )23,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(21, 23) B 、(1, 2) C 、(0, 1) D 、(-1, 0) 37、若B A ⊂ ,则下列命题错误的是: ( )A 、B A ⊂ B 、A '⊂B 'C 、B A ∂⊂∂D 、B A ⊂38、若C B A =⋃, 则下列命题正确的是:( )A 、 CB A =⋃ B 、 A '⋃B '=C ' C 、C B A ∂=∂⋃∂D 、{A 的孤立点}⋃{B 的孤立点}={C 的孤立点}39、若C B A =⋂, 则下列命题错误的是:( )A 、 CB A =⋂ B 、C '⊂ A '⋂B ' C 、C B A =⋂D 、{A 的孤立点}⋂{B 的孤立点}={C 的孤立点}40、设CA 是A 的余集,则下列命题正确的是:( )A 、 )()(CA A C =B 、)(CA A ∂=∂C 、C(A ')=(CA )'D 、CA A C =)(41、设A -B=C, 则下列命题正确的是:( )A 、CB A ∂=∂-∂ B 、C B A =- C 、A '-B '=C 'D 、{A 的孤立点}-{B 的孤立点}={C 的孤立点}42、 (2-4-1-2) 下列命题错误的是:( )A 、A 是闭集B 、A '是闭集C 、A ∂是闭集D 、 A 是闭集43、若A 是闭集,B 是开集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 44、若A 是开集,B 是闭集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 45、若}{n A 是一开集列,则n n A ∞=⋃1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 46、若}{n A 是一开集列,则n n A ∞=⋂1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 47、若}{n A 是一闭集列,则n n A ∞=⋃1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 48、若}{n A 是一闭集列,则n n A ∞=⋂1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 49、若]1,0[ QE =,则=mE ( )A 、0B 、1C 、2D 、350、下述结论( )正确.A 、E m E m **>B 、E m E m *≥*C 、E m E m **<D 、E m E m **≤51、下列说法正确的是( )A 、x x f 1)(=在(0,1)有限B 、xx f 1)(=在)1,21(无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(x x x x f ,在[0,1]有限 D 、⎪⎩⎪⎨⎧=∈=0,1]1,0(,1)(x x x x f ,在[0,1]有界 52、函数列n n x x f =)(在[0,1]上( )于0.A 、a ,e 一致收敛B 、收敛C 、一致收敛D 、基本上一致收敛53、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=Ex E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -54、若)(x f 可测,则它必是( ).A 、连续函数B 、单调函数C 、简单函数D 、简单函数列的极限55、若Q E -=]1,0[,则=mE ( )A 、0B 、1C 、2D 、356、下列说法不正确的是( )A 、E 的测度有限,则E 必有界B 、E 的测度无限,则E 必无界C 、有界点集的测度有限D 、n R 的测度无限57、(4-4-2-1)下述论断正确的是( )A 、x x f tg )(=在)4,0(π无界 B 、⎪⎩⎪⎨⎧=∞+∈=2,)2,0[,tg )(ππx x x x f 在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=2,1)2,0[,tg )(ππx x x x f 在]2,0[π有界 D 、x x f tg )(=在)2,0(π有限58、函数列n n x x f )21()(=在[0, 2]上( )于0. A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a.e.一致收敛59、设⎩⎨⎧-∈-∈=E x x E x x x f ]1,0[,,)(其中E 是[0,1]的不可测集,则下列函数在[0, 1]可测的是( ).A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -60、一个函数在其定义域中的( )点处都是连续的.A 、边界点B 、内点C 、聚点D 、孤立点.61、0P 是康托尔(cantor )集,则=0mP ( )A 、0B 、1C 、2D 、362、设A 是B 的真子集,则( )A 、B m A m **< B 、B m A m **≤C 、B m A m **>D 、B m A m **≥63、下列说法正确的是( )A 、x x f ctg )(=在)2,4(ππ无界 B 、⎪⎩⎪⎨⎧=∞+∈=0,]2,0(ctg )(x x x x f π在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=0,1]2,0(ctg )(x x xx f π在]2,0[π有界 D 、x x f ctg )(=在)2,0(π有限64、函数列n n n x x f 2)(=在]21,0[上( )于0. A 、收敛 B 、一致收敛、 C 、基本上一致收敛 D 、a. e.一致收敛65、设E 是[0, 1]上的不可测集,⎩⎨⎧-∈-∈=Ex xE x x x f ]1,0[)(22则下列函数在[0, 1]可测的是( ). A 、)(x f B 、)(x f + C 、|)(|x f D 、)(x f -66、设E 为可测集,则下列结论中正确的是( )A 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fC 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n ⇒)(x fD 、若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a , e 收敛于)(x f67、G 表示康托尔(cantor )集在[0,1]中的余集,则mG=( )A 、0B 、1C 、2D 、368、设21,S S 都可测,则21S S ( )A 、可测B 、不可测C 、可能可测也可能不可测D 、以上都不对69、下列说法正确的是( )A 、x x f sec )(=在)4,0(π上无界 B 、x x f sec )(=在)4,0(π上有限C 、⎪⎩⎪⎨⎧=∞+∈=2)2,0[sec )(ππx x x x f 在]2,0[π上有限 D 、⎪⎩⎪⎨⎧=∈=21)2,0[sec )(ππx x x x f 在]2,0[π上有界 70、函数列n n n x x f 3)(=在]31,0[上( )于0 A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a. e.一致收敛71、设⎩⎨⎧-∈∈-=Ex x E x x x f ]1,0[,,)(33,其中E 是[0, 1]上的不可测集,则( )在[0, 1]可测.A 、)(x f 、B 、)(x f +C 、)(x f -D 、|)(|x f72、关于连续函数与可测函数,下列论述中正确的是( )A 、它们是同一概念B 、a , e 有限的可测函数是连续函数C 、a , e 有限的可测函数是基本上连续的函数D 、a , e 有限的可测函数是a , e 连续的函数73、()=-)2,1()1,0( m ( )A 、1、B 、2C 、3D 、474、A 可测,B 是A 的真子集,则( )A 、mB mA ≥ B 、B m mA *≥C 、B m mA *=D 、以上都不对75、下列说法正确的是( )A 、21)(x x f =在(0, 1)有限、B 、21)(xx f =在]1,21[无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(2x x x x f 在[0, 1]有限 D 、⎪⎩⎪⎨⎧=∈=1,1]1,0(,1)(2x x x x f 在[0, 1]有界76、函数列x x f n n sin )(=在]2,0[π上( )于0.A 、收敛B 、基本上一致收敛C 、一致收敛D 、a. e.一致收敛77、设⎩⎨⎧-∈∈-=Ex x E x x x f ]1,0[,,)(22其中E 是[0, 1]上的不可测集,则( )在[0, 1]上是可测的.A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -78、关于简单函数与可测函数下述结论不正确的是( )A 、简单函数一定是可测函数B 、简单函数列的极限是可测函数C 、简单函数与可测函数是同一概念D 、简单函数列的极限与可测函数是同一概念79、()=-]3,2()1,1[ m ( )A 、1B 、2C 、3D 、480、L 可测集类,对运算( )不封闭.A 、可数和B 、有限交C 、单调集列的极限D 、任意和.81、下列说法正确的是( )A 、31)(x x f =在)1,21(无界B 、31)(xx f =在)1,0(有限C 、⎪⎩⎪⎨⎧=∞+∈=0]1,0(1)(3x x x x f 在[0, 1]有限D 、⎪⎩⎪⎨⎧=∈=01]1,0(1)(3x x x x f 在[0, 1]有界82、函数列x x f n n cos )(=在]2,0[π上( )于0.A 、基本一致收敛B 、收敛C 、一致收敛D 、a. e.一致收敛83、设E 是]2,0[π中的不可测集,⎪⎩⎪⎨⎧-∈-∈=E x x E x x x f ]2,0[,sin ,sin )(π 则下列函数在]2,0[π上可测的是( ).A 、)(x fB 、|)(|x fC 、)(x f +D 、)(x f -84、关于依测度收敛,下列说法中不正确的是( )A 、依测度收敛不一定一致收敛B 、依测度收敛不一定收敛C 、若)}({x f n 在E 上 a.e.收敛于 a.e.有限的可测函数)(x f ,则)()(x f x f n ⇒D 、若)()(x f x f n ⇒,则存在子列)}({x f i n a. e.收敛于)(x f85、设)(x f 是可测集E 上的非负可测函数,则)(x f ( )A 、必可积B 、必几乎处处有限C 、必积分确定D 、不一定积分确定86、设)(x f 在可测集E 上可积,则在E 上( )A 、)(x f +与)(x f -只有一个可积B 、)(x f +与)(x f -皆可积C 、)(x f +与)(x f -不一定可积D 、)(x f +与)(x f -至少有一个不可积87、设0=mE (Φ≠E ),)(x f 是E 上的实函数,则下面叙述正确的是( )A 、)(x f 在E 上不一定可测B 、)(x f 在E 上可测但不一定可积C 、)(x f 在E 上可积且积分值为0D 、)(x f 在E 上不可积88、)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为( )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数89、设)(x D 为狄立克雷函数,则⎰=10)()(dx x D L ( ) A 、 0 B 、 1 C 、1/2 D 、不存在90、设)(x f 为Cantor 集的特征函数,则⎰=10)()(dx x f L ( ) A 、 0 B 、 1/3 C 、2/3 D 、 1填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=⋃B A4、若c A =, B 是一可数集, 则=⋃B A5、若c A =, n B =, 则=⋃B A6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 1 7、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋂=8、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋃= 9、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋂= 10、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋃= 11、若}{n A 是任意一个集合列, 则=∞→n n A lim 12、若}{n A 是任意一个集合列, 则=∞→n n A lim13、欧氏空间n R 中, 任意两点),,(21n x x x x =, ),,(21n y y y y =的距离d(x, y)=14、C[a, b]空间中,任意两元素x(t), y(t) 的距离 d(x, y)= 15、2l 空间中, 任意两元素 ),,,(21 n x x x x =, ),,(21 n y y y y =的距离 d(x, y)=16、欧氏空间2R 中, 任意两点),(21x x x =, ),(21y y y =的距离 d(x, y)=17、欧氏空间3R 中, 任意两点),,(321x x x x =, ),,(321y y y y =的距离d(x, y)=18、欧氏空间4R 中, 任意两点),,,(4321x x x x x =, ),,,(4321y y y y y =的距离d(x,y)=19、设2R X =,}1:),{(22<+=y x y x E ,则E =20、设3R X =, }1:),,{(222<++=z y x z y x E , 则E =21、设2R X =,}1:),{(22<+=y x y x E ,则E ∂=22、设2R X =,}1:),{(22<+=y x y x E ,则E '=23、设3R X =, }1:),,{(222<++=z y x z y x E , 则 E ∂=24、设3R X =, }1:),,{(222<++=z y x z y x E , 则E '=25、设A= [0, 1] , B = [3, 4] , 则 d(A, B) =26、设C 是康托完备集, G= [0, 1]-C , 则d (C, G) =27、设C 是康托完备集, 则C 的半径)(C δ=28、两个非空集合A, B 距离的定义为 d (A, B ) =29、一个非空集合A 的直径的定义为)(A δ=30、设A = [0, 1] ⋂Q, 则)(A δ=31、n R E ⊂,对每一列覆盖E 的开区间 ∞=⊃1i i E I ,定义=E m *________。
21考生答题不得超此4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都有_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数. (填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________________________,则称()f x 为[],a b 上的有界变差函数。
三、下列命题是否成立?若成立,则证明之;若不成立,则举反例说明.(5分×4=20分)1、设1E R ⊂,若E 是稠密集,则CE 是无处稠密集。
2、若0=mE ,则E 一定是可数集.3、若|()|f x 是可测函数,则()f x 必是可测函数。
19秋福师《实变函数》在线作业一[1]答案1、如果函数f属于变差函数(BV),那么它几乎处处可微,且它的导函数f'属于L1[a,b]。
正确答案:B2、当函数f在区间[a,b]上R可积时,它也必须L可积,而且两种积分的值相等。
正确答案:B3、如果函数f和g是增函数,那么函数f+g、f-g和fg也是增函数。
正确答案:A4、如果函数f属于绝对连续函数(AC),那么它既是连续的,又是有界变差函数(BV),即f属于C∩BV。
正确答案:B5、如果函数f有界且定义域X的测度m(X)有限,那么函数f是可测的。
正确答案:B6、增函数f在区间[a,b]上几乎处处可微。
正确答案:B7、如果函数f和g属于有界变差函数(BV),那么函数f+g、f-g和fg也属于BV。
正确答案:B8、对于任意可测集合E,如果函数f在E上可积,那么它的积分具有绝对连续性。
正确答案:B9、如果函数f和g属于有界变差函数(BV),那么|f|、f+、f-、f∧g和f∨g也属于BV。
正确答案:B10、函数f属于有界变差函数(BV)当且仅当它是两个增函数之差。
正确答案:B11、测度为零的集合称为零测集。
正确答案:B12、存在某区间[a,b]上的增函数f,使得它的导函数f'(x)在[a,b]上的积分值∫fdx小于f(b)-f(a)。
正确答案:B13、有界可测函数f在区间[a,b]上L可积的充要条件是f在[a,b]上几乎处处连续。
正确答案:A14、如果函数f可测,那么|f|也可测,反之亦然。
正确答案:A15、函数f可积的必要条件是它几乎处处有限,且集合X(f≠0)具有sigma-有限测度。
正确答案:BA f在[a,b]上一致连续B f在[a,b]上有界C f在[a,b]上可积D f在[a,b]上可导仔细分析上述题目,并作出选择]正确答案是:A、C、D2、设f(x)在[0,1]上可积,则下列哪些函数一定可积?()A f(x-1/2)B f(x^2)C f(x)/xD f(x)/sqrt(x)仔细分析上述题目,并作出选择]正确答案是:A、B、C、D3、设f(x)是[0,1]上的连续函数,则下列哪些函数一定连续?()A ∫0^x f(t)dtB ∫0^1 f(xt)dtC ∫x^2^1 f(t)dtD f(x)/x仔细分析上述题目,并作出选择]正确答案是:A、B、C4、设f(x)在[0,1]上可积,则下列哪些函数一定连续?()A ∫0^x f(t)dtB ∫0^1 f(xt)dtC ∫x^2^1 f(t)dtD f(x)/x仔细分析上述题目,并作出选择]正确答案是:A、B、C5、设f(x)是[0,1]上的单调函数,则下列哪些函数一定单调?()A f(x-1/2)B f(x^2)C f(x)/xD f(x)/sqrt(x)仔细分析上述题目,并作出选择]正确答案是:A、B、C、D6、设f(x)在[0,1]上可积,则下列哪些函数一定有界?()A ∫0^x f(t)dtB ∫0^1 f(xt)dtC ∫x^2^1 f(t)dtD f(x)/x仔细分析上述题目,并作出选择]正确答案是:A、B、C7、设f(x)在[0,1]上可积,则下列哪些函数一定可导?()A ∫0^x f(t)dtB ∫0^1 f(xt)dtC ∫x^2^1 f(t)dtD f(x)/x仔细分析上述题目,并作出选择]正确答案是:A8、设f(x)在[0,1]上可积,则下列哪些函数一定绝对可积?()A ∫0^x f(t)dtB ∫0^1 f(xt)dtC ∫x^2^1 f(t)dtD f(x)/x仔细分析上述题目,并作出选择]正确答案是:A、B、C、D。
《实变函数》习题库参考答案《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ?),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。
满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-?--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ?知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由+∞<="" 4、(="" b="" m="" ma="" p="" √="" 。
从而移项可得结论。
="" 知,+∞<-+∞理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数,从而再其和集上也是可测函数。
5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。
6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。
[法二]:可建立一个映射==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合,1,,31,21,1,0n 到集合 ,1,,31,21,1n 的一一映射。
7、( √ )理由:由B A ?知A A B B )(-=,且φ=-A A B )(,故mA mA A B mmB =+-=)(8、( √ )理由:狄利克莱函数-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。
9、( √ )理由:由于E E ?Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。
《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( )(A )=P c (B) 0mP = (C) P P =' (D) P P =ο3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。
【奥鹏】19秋福师《实变函数》在线作业一
试卷总分:100 得分:100
一、判断题(共37题,74分
1、有界可测集的测度为有限数,无界可测集的测度为+∞
A错误
B正确
[仔细分析上述题目,并作出选择]
正确答案是:A
2、若f有界变差且g满足Lip条件,则复合函数g(f(x))也是有界变差.
A错误
B正确
[仔细分析上述题目,并作出选择]
正确答案是:B
3、集合A可测等价于该集合的特征函数X_A可测
A错误
B正确
[仔细分析上述题目,并作出选择]
正确答案是:B
4、若f,g∈BV,则|f|,f+,f-,f∧g,f∨g属于BV。
A错误
B正确
[仔细分析上述题目,并作出选择]
正确答案是:B
5、不存在这样的函数f:在区间[a,b]上增且使得f'(x)在[a,b]上积分值∫fdx<f(b)-f(a) . A错误
B正确
[仔细分析上述题目,并作出选择]
正确答案是:A
6、若曲线L由参数方程x=f(t),y=g(t),z=h(t)给定,则L为可度曲线等价于f,h,g∈BV.
A错误
B正确
[仔细分析上述题目,并作出选择]
正确答案是:B
7、若f,g是增函数,则f+g,f-g,fg也是增函数。
A错误
B正确
[仔细分析上述题目,并作出选择]。
福师《概率论》在线作业一
试卷总分:100 得分:100
一、单选题 (共 50 道试题,共 100 分)
1. 在1,2,3,4,5这5个数码中,每次取一个数码,不放回,连续取两次,求第1次取到偶数的概率()
A. 3/5
B. 2/5
C. 3/4
D. 1/4
满分:2 分
正确答案:B
2. 电灯泡使用时数在1000小时以上的概率为0.2,求三个灯泡在1000小时以后最多有一个坏了的概率()
A. 0.7
B. 0.896
C. 0.104
D. 0.3
满分:2 分
正确答案:C
3. 对以往的数据分析结果表明当机器调整得良好时,产品的合格率为 90% , 而当机器发生某一故障时,其合格率为 30% 。
每天早上机器开动时,机器调整良好的概率为 75% 。
已知某天早上第一件产品是合格品,试求机器调整得良好的概率是多少?
A. 0.8
B. 0.9
C. 0.75
D. 0.95
满分:2 分
正确答案:B
4. 电话交换台有10条外线,若干台分机,在一段时间内,每台分机使用外线的概率为10%,则最多可装()台分机才能以90%的把握使外线畅通
A. 59
B. 52
C. 68
D. 72
满分:2 分
正确答案:C。
《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的就是( )(A)1lim n k n n k n A A ∞∞→∞===⋃⋂; (B)1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C)1lim n k n n k nA A ∞∞→∞===⋂⋃; (D)1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的就是( ) (A)=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的就是( )(A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集与闭集都就是波雷耳集 (D)波雷耳集都可测 4、设{}()n f x 就是E 上的..a e 有限的可测函数列,则下面不成立的就是( )(A)若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 就是可测函数(C){}inf ()n nf x 就是可测函数;(D)若()()n f x f x ⇒,则()f x 可测5、设f(x)就是],[b a 上有界变差函数,则下面不成立的就是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二、 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 就是[]0,1上有理点全体,则'E =______,oE =______,E =______、 3、设E 就是n R 中点集,如果对任一点集T 都_________________________________,则称E 就是L 可测的4、)(x f 可测的________条件就是它可以表成一列简单函数的极限函数、(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。
21考生答题不得超此(A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都有_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数. (填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________________________,则称()f x 为[],a b 上的有界变差函数。
三、下列命题是否成立?若成立,则证明之;若不成立,则举反例说明.(5分×4=20分)1、设1E R ⊂,若E 是稠密集,则CE 是无处稠密集。
2、若0=mE ,则E 一定是可数集.3、若|()|f x 是可测函数,则()f x 必是可测函数。
4.设()f x 在可测集E 上可积分,若,()0x E f x ∀∈>,则()0Ef x >⎰四、解答题(8分×2=16分).1、(8分)设2,()1,x x f x x ⎧=⎨⎩为无理数为有理数 ,则()f x 在[]0,1上是否R -可积,是否L -可积,若可积,求出积分值。