第五章 统计推断(1)
- 格式:ppt
- 大小:463.00 KB
- 文档页数:29
生物统计学教案第五章统计推断教学时间:5学时教学方法:课堂板书讲授教学目的:重点掌握两个样本的差异显著性检验,掌握一个样本的差异显著性检验,了解二项分布的显著性检验。
讲授难点:一个、两个样本的差异显著性检验统计假设检验:首先对总体参数提出一个假设,通过样本数据推断这个假设是否可以接受,如果可以接受,样本很可能抽自这个总体,否则拒绝该假设,样本抽自另外总体。
参数估计:通过样本统计量估计总体参数。
5.1 单个样本的统计假设检验5.1.1 一般原理及两种类型的错误例:已知动物体重服从正态分布N(μ,σ2),实验要求动物体重μ=10.00g。
已知总体标准差σ=0.40g,总体平均数μ未知,为了得出对总体平均数μ的推断,以便决定是否接受这批动物,随机抽取含量为n的样本,通过样本平均数,推断μ。
1、假设:H0: μ=μ0或H0: μ-μ0=0H A: μ>μ0 μ<μ0 μ≠μ0三种情况中的一种。
本例的μ0=10.00g,因此H0: μ=10.00H A: μ>10.00或μ<10.00或μ≠10.002、小概率原理小概率的事件,在一次试验中几乎是不会发生的,若根据一定的假设条件计算出来该事件发生的概率很小,而在一次试验中,它竟然发生了,则可以认为假设的条件不正确,从而拒绝假设。
从动物群体中抽出含量为n的样本,计算样本平均数,假设该样本是从N(10.00,0.402)中抽取的,标准化的样本平均数服从N (0,1)分布,可以从正态分布表中查出样本抽自平均数为μ的总体的概率,即P (U >u ), P (U <-u ), 以及P (|U |>u )的概率。
如果得到的值很小,则x 抽自平均数为μ0的总体的事件是一个小概率事件,它在一次试验中几乎是不会发生的,但实际上它发生了,说明假设的条件不正确,从而拒绝零假设,接受备择假设。
显著性检验:根据小概率原理建立起来的检验方法。
第五章一、单项选择题1.抽样推断的目的在于( )A.对样本进行全面调查 B.了解样本的基本情况C.了解总体的基本情况 D.推断总体指标2.在重复抽样条件下纯随机抽样的平均误差取决于( )A.样本单位数 B.总体方差C.抽样比例 D.样本单位数和总体方差3.根据重复抽样的资料,一年级优秀生比重为10%,二年级为20%,若抽样人数相等时,优秀生比重的抽样误差( )A.一年级较大 B.二年级较大C.误差相同 D.无法判断4.用重复抽样的抽样平均误差公式计算不重复抽样的抽样平均误差结果将( )A.高估误差 B.低估误差C.恰好相等 D.高估或低估5.在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量( )A.扩大到原来的2倍 B.扩大到原来的4倍C.缩小到原来的1/4 D.缩小到原来的1/26.当总体单位不很多且差异较小时宜采用( )A.整群抽样 B.纯随机抽样C.分层抽样 D.等距抽样7.在分层抽样中影响抽样平均误差的方差是()A.层间方差 B.层内方差C.总方差 D.允许误差二、多项选择题1.抽样推断的特点有()A.建立在随机抽样原则基础上 B.深入研究复杂的专门问题C.用样本指标来推断总体指标 D.抽样误差可以事先计算E.抽样误差可以事先控制2.影响抽样误差的因素有( )A.样本容量的大小 B.是有限总体还是无限总体C.总体单位的标志变动度 D.抽样方法E.抽样组织方式3.抽样方法根据取样的方式不同分为( )A.重复抽样 B.等距抽样 C.整群抽样D.分层抽样 E.不重复抽样4.抽样推断的优良标准是( )A.无偏性 B.同质性 C.一致性D.随机性 E.有效性5.影响必要样本容量的主要因素有( )A.总体方差的大小 B.抽样方法C.抽样组织方式 D.允许误差范围大小E.要求的概率保证程度6.参数估计的三项基本要素有()A.估计值 B.极限误差C.估计的优良标准 D.概率保证程度E.显著性水平7.分层抽样中分层的原则是( )A.尽量缩小层内方差 B.尽量扩大层内方差C.层量扩大层间方差 D.尽量缩小层间方差E.便于样本单位的抽取三、填空题1.抽样推断和全面调查结合运用,既实现了调查资料的_______性,又保证于调查资料的_______性。
统计推断原理统计推断是指根据样本数据对总体特征进行推断的一种统计方法。
它是基于概率理论和数理统计学的基本原理,通过对样本数据的分析和推断,来对总体的特征进行估计和推断。
统计推断在科学研究、社会调查、经济预测等领域都有着广泛的应用,是一种非常重要的统计方法。
统计推断的原理可以分为参数估计和假设检验两个方面。
参数估计是指根据样本数据对总体参数进行估计,常见的参数包括总体均值、总体方差等。
而假设检验则是根据样本数据对总体特征进行检验,判断某种假设是否成立。
在进行参数估计和假设检验时,我们通常会使用一些统计量来进行推断,如样本均值、标准差、t 值、F值等。
统计推断的原理主要包括抽样理论、估计理论和假设检验理论。
抽样理论是统计推断的基础,它研究如何从总体中抽取样本,并对样本数据进行分析和推断。
估计理论则是研究如何根据样本数据对总体参数进行估计,包括点估计和区间估计两种方法。
假设检验理论则是研究如何根据样本数据对总体特征进行检验,判断某种假设是否成立。
在统计推断中,我们通常会使用一些统计分布来进行推断,如正态分布、t分布、F分布等。
这些统计分布在进行参数估计和假设检验时起着非常重要的作用,它们可以帮助我们进行推断,并且在一定条件下具有一定的稳定性和可靠性。
统计推断的原理在实际应用中有着广泛的应用。
在医学研究中,我们可以通过对样本数据的分析和推断,来对某种药物的疗效进行评估;在市场调查中,我们可以通过对样本数据的分析和推断,来对市场需求进行预测;在质量控制中,我们可以通过对样本数据的分析和推断,来对产品质量进行检验。
统计推断的原理为我们提供了一种科学的方法,来对未知总体特征进行推断,它具有着重要的理论和实际意义。
总之,统计推断的原理是一种基于概率理论和数理统计学的推断方法,它通过对样本数据的分析和推断,来对总体特征进行估计和推断。
统计推断的原理包括参数估计和假设检验两个方面,它在实际应用中有着广泛的应用,为我们提供了一种科学的方法,来对未知总体特征进行推断。
统计推断第五章统计推断所谓统计推断就是根据抽样分布率和概率理论,由样本结果(统计数)来推断总体特征(参数)。
试验实践中所获得的资料,通常都是样本的结果;⽽我们希望了解的却是抽得样本的总体。
统计推断:统计假设测验参数估计统计假设测验是根据某种实际需要对未知的或不完全知道的统计总体提出⼀些假设,然后由样本的实际结果,经过⼀定的计算,做出在概率意义上应当接受哪种假设的测验。
例如在相同的栽培管理条件下种植了甲、⼄两个⽟⽶品种各15个⼩区,如果测得甲品种平均亩产为1x =650 kg ,⼄品种平均亩产为2x =670 kg ,亩产相差20 kg ,这究竟是由于甲品种的总体平均数µ1的确不同于⼄品种的总体平均数µ2呢?还是由于随机抽样误差(µ1和µ2并⽆不同)?这不能通过简单的⽐较来下结论,必须通过概率计算做出选择,这就是统计假设测验要研究的问题。
参数估计是指由样本统计数对总体参数做出点估计和区间估计。
点估计是指由样本统计数估计相应参数。
区间估计是指以⼀定的概率保证总体参数位于某两个数值之间。
第⼀节统计假设测验的基本原理⼀、统计假设测验的基本⽅法就是试验⼯作者提出有关某⼀总体参数的假设。
例如假设某批产品符合标准。
但是如何确切地证实假设是正确的还是错误的呢?当然可以把全部产品逐个检验,这种研究总体中全部个体的⽅法当然是很准确的,但往往是⾏不通的。
我们不得不采⽤另⼀种⽅法,即研究样本。
也就是从全部产品中抽取样本进⾏检验,然后推断这批产品是否合格。
这种利⽤样本以测验假设是否正确或错误的过程,称为⼀个假设正确性(或不正确性)的统计证明。
如果通过测验证明假设与试验结果相符,则该假设就被接受;反之,如果假设与试验结果不相符,则该假设就被否定。
对统计总体⼀般作两个假设,⼀个是假设总体参数与某⼀指定值相等或假设两个总体参数相等,即假设其没有效应,这⼀假设称为⽆效假设,记作H 0;和⽆效假设相对应的另⼀统计假设,叫对应假设或备择假设,记作H A 。