体会生活中的轴对称现象
- 格式:doc
- 大小:38.50 KB
- 文档页数:2
生活中有哪些轴对称现象
生活中,我们经常会遇到一些轴对称的现象,这些现象在日常生活中无处不在。
轴对称是指物体在某个轴线上的对称性,即物体的一部分关于这个轴线对称于另一部分。
让我们一起来看看生活中有哪些轴对称的现象吧。
首先,我们可以看到很多自然界中的轴对称现象。
比如,许多植物的叶子都具
有轴对称的特点,叶子的左半部分和右半部分关于中间的中脉对称。
这种轴对称的设计让植物在生长过程中更加稳定和美观。
其次,建筑物中也常常可以看到轴对称的设计。
许多古代建筑和现代建筑都采
用了轴对称的设计理念,比如对称的门窗、楼梯和装饰图案等。
这种设计不仅能够增加建筑物的美感,还能够在视觉上给人一种平衡和稳定的感觉。
除此之外,我们在日常生活中还可以看到许多轴对称的艺术作品。
比如对称的
花瓶、对称的家具、对称的服装等等。
这些设计不仅能够给人以美的享受,还能够在一定程度上提高生活品质。
总的来说,轴对称现象在生活中是无处不在的。
无论是自然界中的植物、建筑
物中的设计,还是艺术作品中的表现,轴对称都是一种美的体现。
让我们在日常生活中多留意这些轴对称的现象,感受到它们给我们带来的美好。
生活中的轴对称图形
生活中处处都充满了美丽的轴对称图形,它们不仅存在于数学课本中,更融入
了我们的日常生活。
从自然界到建筑物,从日常用品到艺术品,轴对称图形无处不在,给我们的生活增添了许多美丽和神奇。
在自然界中,许多植物和动物都展现出轴对称的美丽。
比如,蝴蝶的翅膀、花
朵的花瓣、树木的枝叶等都具有轴对称的特点,让人们感受到大自然的神奇和美丽。
这些轴对称图形不仅给人们带来了视觉上的享受,更让人们感受到了自然界的奇妙之处。
在建筑物中,许多建筑设计也采用了轴对称的元素,使建筑更加美观和稳定。
例如,古希腊的神庙、古罗马的圆形竞技场,以及现代建筑中的对称设计等,都展现出了轴对称图形的魅力。
这些建筑不仅给人们带来了美的享受,更让人们感受到了建筑艺术的魅力和力量。
在日常用品中,许多家具、餐具、装饰品等也采用了轴对称的设计,使这些物
品更加美观和实用。
比如,镜子、餐桌、花瓶等都采用了轴对称的设计,让人们在使用这些物品的同时,也感受到了轴对称图形的美妙之处。
在艺术品中,许多绘画、雕塑、摄影作品也展现出了轴对称图形的魅力。
艺术
家们通过对称的构图和设计,创作出了许多令人赏心悦目的作品,给人们带来了美的享受和心灵的震撼。
生活中的轴对称图形无处不在,它们给我们的生活增添了许多美丽和神奇。
让
我们在日常生活中,多去发现和欣赏这些轴对称图形,让美丽和神奇充满我们的生活。
《轴对称图形》教案(最新5篇)《轴对称图形》教案篇一教学目标:1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形的基本特征。
2、会用动手或观察等方法辨别轴对称图形,能利用身边的工具制作轴对称图形,并在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生良好的数学情感。
3、在对知识的探究过程中,培养学生的合作能力,动手能力、空间思维能力和良好的学习情感。
教学重点:理解轴对称图形的特征。
教学难点:掌握并能准确辨别较为复杂的轴对称图形。
教具准备:多媒体网络课件、钉子板、剪刀等教学过程:一、活动导入谈话:同学们,老师今天带来了一个美丽的朋友,大家看!(出示只有一个触角的蝴蝶的图片。
)提问:仔细观察这张图片,你有什么发现和感受,还应该怎么做才好看?学生回答。
教师:今天我们要研究的问题和这只美丽的蝴蝶也有一定的关系。
板书课题:轴对称图形,同时引导学生看了课题你想研究哪些问题?(请学生提出自己赶兴趣的问题)二、识轴对称图形1、课件出示天安门、飞机、奖杯图片。
引导学生观察图片上的物体,说说它们有什么共同特征。
教师:同学们请拿出你们自己手中的这些平面图形,折一折、比一比,和同组的同学交流一下你们发现了什么?(先小组讨论,再汇报)引导学生用手摸一摸对折后的两边,说说有什么样的感觉。
得出结论:这些图形对折后“两部分完全重合”。
介绍:我们把这些对折后能完全重合的图形称为“轴对称图形”。
(板书轴对称图形定义)。
中间这条折痕就是轴对称图形的对称轴。
(板书:对称轴)谈话:我们生活中还有哪些常见物体的平面图形也是轴对称图形呢?(学生交流并回答)2、试一试谈话:同学们你们的学具袋中有几种不同的多边形,它们是轴对称图形吗?引导学生参照轴对称图形的定义,动手折一折、比一比,看看这些常见的图形哪些是轴对称图形?汇报时引导学生用“完全重合”等词语来描述和判断是否是轴对称图形。
3、判断轴对称图形谈话:下面我们一起到“轴对称图形博物馆”去看看。
生活中的轴对称教案(最新完成版)第一章:轴对称的基本概念1.1 轴对称的定义解释轴对称的概念,让学生理解轴对称图形的特点。
通过实际例子,如剪纸、图片等,让学生直观地感受轴对称。
1.2 轴对称的性质介绍轴对称图形的性质,如对应点的连线与对称轴垂直,对应点相等等。
引导学生通过实际操作,验证这些性质。
第二章:生活中的轴对称现象2.1 生活中的轴对称实例举例说明生活中常见的轴对称现象,如衣服的领子、房间的布置等。
让学生观察并描述这些轴对称现象。
2.2 制作轴对称图形引导学生利用纸张、剪刀等材料,制作自己喜欢的轴对称图形。
鼓励学生发挥创意,设计独特的轴对称图形。
第三章:轴对称与几何图形的变换3.1 轴对称与对称轴解释对称轴的概念,让学生理解对称轴在轴对称中的作用。
引导学生通过实际操作,找出给定图形的对称轴。
3.2 轴对称与旋转介绍轴对称与旋转的关系,让学生理解旋转是轴对称的一种特殊情况。
引导学生通过实际操作,观察旋转对图形的影响。
第四章:轴对称在实际应用中的例子4.1 轴对称在设计中的应用举例说明轴对称在设计中的应用,如标志设计、服装设计等。
让学生欣赏并分析这些设计中的轴对称元素。
4.2 轴对称在建筑中的应用举例说明轴对称在建筑中的应用,如宫殿、教堂等。
引导学生观察并描述这些建筑中的轴对称特点。
第五章:轴对称的练习与拓展5.1 轴对称的练习题提供一些轴对称的练习题,让学生巩固所学知识。
包括找对称轴、判断轴对称图形等类型的题目。
5.2 轴对称的拓展活动引导学生进行轴对称的拓展活动,如设计轴对称的图案、制作轴对称的手工作品等。
鼓励学生发挥创意,展示自己的作品。
第六章:轴对称与坐标系6.1 坐标系中的轴对称介绍坐标系中轴对称的概念,让学生理解在坐标系中如何表示轴对称图形。
引导学生通过实际操作,找出给定图形在坐标系中的对称轴。
6.2 轴对称图形的对称点解释坐标系中轴对称图形的对称点如何计算,让学生掌握对称点的求法。
生活中的轴对称美国数学家克莱因曾对数学美作过这样的描绘:音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。
下面就让我们一起来看看数学是怎样让人赏心悦目的。
轴对称图形是沿着某直线折叠后,直线两旁的局部互相重合的图形。
这条直线就是他们的对称轴。
这条对称轴就像一个公正的法官,左右两边的长度、面积、形状等,都一点儿也不差,唯一不同的就是他们所朝的方向。
在数学课本里,我们已见过它们的身影,也接触、理解过它们。
下面让我们一起看看生活当中的轴对称图形。
当我们漫步在校园时,随手捡起一片树叶,假如将树叶中间的那根茎当成是其左右两边的对称轴,将树叶右边局部沿着这条对称轴对折过去,我们会惊奇地发现它正好与左边的一半树叶重合。
一只蝴蝶停留在花朵上,张合着翅膀时,假如将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的直线就是其对称轴。
而右边的翅膀就像是左边的翅膀沿着对称轴翻折过去的图形。
像蝴蝶这样成轴对称图形的动物还有很多,比方蜻蜓、飞蛾、螃蟹等。
动物进化经历了由海绵动物、双胚层辐射对称动物〔包括腔肠动物〕、三胚层两侧对称动物的开展阶段,其中从辐射对称动物到两侧对称动物的演化,是生物进化过程中的一个重大事件,它意味着一系列遗传基因的重要创新,并由此促进生命的形态、行为向更加复杂的阶段快速开展。
“贵州小春虫〞的发现,将生物进化史上的一个重要阶段——两侧对称动物化石记录的历史前推到了寒武纪之前4000万年。
对称是动物的美学,左右对称是动物世界普遍的安康、强壮的特征。
人类的耳、眼、四肢都是对称生长的。
耳的轴对称不仅使我们听到的声音具有强烈的立体感,还可以判断声源的位置;眼的对称使我们看物体更明晰、准确。
演出前化装时,你肯定不希望眉毛被画得一高一低、两边眼线不一样粗细吧?这就要求化装师随时把轴对称放在心里。
中国银行的图形标志也是一个轴对称图形。
这个图形的对称轴有两条,一条是图形程度直径所在的直线,另一条是与程度直径相垂直的直径所在的直线。
浅谈《生活中的轴对称图形》作者:李贻来源:《新教育时代·教师版》2016年第23期摘要:轴对称图形在我们的生活中经常出现,美丽的图片、房屋建筑设计、室内装饰……最近的几次听课、评课中,发现越是看似简单易懂的知识却越容易讲不清楚,讲不透彻,这让我不得不反思三个技术问题——相似概念的区别与联系、课堂容量的适当选择、作图法的应用。
关键词:相似概念的区别与联系;课堂容量的适当选择;作图法的应用。
生活中有许许多多的轴对称图形,它们是那么的美丽,让人记忆深刻。
作为教师,我们希望在学习第五章《生活中的轴对称图形》后,能够让学生们学好轴对称的相关知识,将来他们也许会成为我们未来生活的设计师,创作出更多鲜活的作品。
作为教师,我想谈谈在教学七年级下期的第五章《生活中的轴对称图形》(北师大版本)中遇到的三个问题。
第五章《生活中的轴对称图形》共四节课,从整个章节的理解和分析,我们看得出教学是一个循序渐进、由浅入深、从初步的理解掌握到实际应用的过程,希望是美好的,操作中我们却遇到了问题。
一、清楚认识“轴对称”和“对称轴图形”两个概念学生在学习第一课《生活中的轴对称》,学生易在看到各种美妙的轴对称图片后,确确实实能感受到图片中的轴对称现象,但如果知识只是从感官上认识,那一些分析理解的考点题上就很易混淆“轴对称”和“轴对称图形”两个概念。
轴对称——把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做关于这条直线的对称点,这条直线叫做对称轴,两个图形关于直线对称也称轴对称。
说明:(1)轴对称是指两个图形之间形状个位置的关系,包含两层意思:一是两个图形,能够完全重合,即形状大小都相同;二是对重合的方式有限制,也就是它们的位置关系必须满足一个条件,即把它们沿某一条直线对折后能够重合,因此,全等的图形不一定是轴对称的,而轴对称图形一定是全等的。
(2)对称轴是指一条直线。
生活中的轴对称我们常说数学来源于生活,又服务于生活的,其实数学与生活是密不可分的。
数学并不只是算算数那么简单和肤浅,在生活中到处都有数学的身影,从点到线,从线到表面,从脸到身体,都有丰富的知识,它可以帮助我们解决生活中的许多问题。
其中,轴对称图形就是数学中的一个很重要的分支,同时也是在生活中随处可见,对称在生活中不仅可以给我们带来美享受,还有很多它的实用价值以及重要的作用。
自然界中的轴对称大自然是世界万物的起源,而在这神奇的大自然界也处处都有着对称之美,对称不仅仅给美,还有着更大的作用,先说一说大自然界的主宰我们人类吧。
人的耳朵、眼睛、四肢、都是对称生长的。
耳朵的对称性使得我们听到的声音具有强烈的三维感觉,也可以确定声源的位置。
我们见过戴助听器的孩子,他们不能像正常人一样去听,只能靠助听器,但事实上,他们是无法分辨声音来自于哪里。
并且他们所听到的声音都是一样的。
所以,人耳朵的对称在健康的情况下是很重要的。
眼睛的对称性可以让我们更舒适、更准确地看待事物,如果只有一只眼睛能正常看实物则看起来很不舒服,并且有偏离的误差。
四肢的对称就不用多说了,让我们的身体随时保持平衡。
那么,除了我们人类以外,还有其他的动物和植物都存在对称现象,例如,我们经常看到蝴蝶飞来飞去,蝴蝶停留在花上,张合有翅膀。
如果蝴蝶的两个触角的中点与尾部相连,则连线所在的直线是其对称轴。
像蝴蝶一样,有许多轴对称形状的动物。
比如蜻蜓,蜜蜂,蝉,蜘蛛等等数不胜数,大多数的植物的叶子也是轴称图形。
我们在所有的叶子中几乎都能找到这样的对称。
它们的对称生长是自然有其道理的。
二、日常生活中的轴对称1.中国传统的剪纸艺术最初的对称就是从剪纸开始的,在数学课本中也是通过剪纸而向学生去渗透对称的原理和好处。
剪纸不仅是一种艺术供我们欣赏,还有很大的实用性,例如,窗花、壁花、灯笼等装饰类型的剪纸贴在门窗、墙壁、灯笼上,装饰和美化生活环境,尤其是我们熟悉的那些。
生活中对称现象的例子生活中对称现象的例子对称是一种广泛存在于自然和人造物中的特性。
它可以在很多不同的形式中体现,如镜像反射、轴对称性等。
不仅在艺术和设计中出现,对称也在科学和工程中起着重要的作用。
以下是一些生活中对称的例子。
1. 自然界的对称许多自然物体具有对称性。
树木、花朵和蝴蝶都表现出轴对称性。
这种对称性通常发生在中心轴线的两侧。
例如,许多蝴蝶的翅膀在中心线两侧的花瓣一样。
这种对称性也被发现在很多奇特的海洋生物中,如海星和珊瑚。
2. 建筑中的对称建筑是设计与对称相结合的艺术。
许多著名的建筑,如殿堂、教堂和古代遗迹,都具有对称性。
一座建筑的对称性可以让观众感到平静和安宁,也可以增强建筑的美感和个性。
比如,埃及金字塔和中国长城的对称性创造了耐人寻味的美感和气势。
3. 人体中的对称人体在多个方面都具有对称性。
人体的左侧和右侧大致对称。
这种对称性通常表现在面部、手臂、腿以及内部器官上。
我们的脸上,左右的眼睛、鼻子、耳朵和嘴巴形状,大小、地位都大致相同。
这些对称性使得人类的美学感与概念更加稳健,并帮助人类识别并维持身体自身的平衡。
4. 对称在艺术与设计中的应用对称在艺术和设计中应用广泛。
很多画家、雕塑家和建筑师都把对称作为基本设计原则。
对称和谐的效果可以创建出一种宁静和优雅的氛围。
在室内设计中,设计师经常使用对称来达到平衡和和谐的效果。
比如,某些调色板可以包含一个基本的对称形式作为控制点,从而有效地达到调和色彩。
5. 对称对于人类文化的影响对称已经成为世界范围内的文化语言。
著名的艺术品、民族风格、文化习俗等使用了对称的设计元素。
例如、斯堪的纳维亚式的图案中经常使用秀美流畅的对称,而日本则是把对称运用到了众多的文化物品,如传统的和服、茶道器具和文具等等。
综上所述,对称在自然、生活和艺术等多个领域中都是十分重要的。
对称帮助人们理解自然的规律,创造出宁静和谐的环境。
同时,对称也帮助人们创造出令人印象深刻的艺术品,并成为空间设计的实现准则。
生活中常见的轴对称图形
《镜花水月,轴对称的美》。
生活中处处充满了轴对称的图形,无论是自然界的花朵、树叶,还是建筑物的对称结构,都散发着一种神秘而美丽的魅力。
在自然界中,我们常常能够看到许多轴对称的图形,比如花瓣、树叶、昆虫的翅膀等等。
这些图形都展现了自然的完美之美,仿佛是大自然用最精致的笔触创造出来的艺术品。
在春天,盛开的花朵就像是一幅幅绚丽的轴对称图案,吸引着我们的目光。
而在秋天,落叶在风中飘舞,它们的轴对称形状也让人感到无比的美妙。
除了自然界,建筑物中也常常可以看到轴对称的图形。
古代的宫殿、寺庙、现代的摩天大楼、桥梁等,都展现出了人类对称美的追求。
无论是中国的古典建筑,还是欧洲的哥特式建筑,都充满了对称美的设计,让人们感受到建筑之美。
生活中的轴对称图形不仅仅存在于自然和建筑中,它们也深深地影响着我们的日常生活。
比如我们常见的镜子,它能够将我们的形象对称地反射出来,让我们看到自己的另一面。
又比如我们常用的对称图案,比如卡片、服装等,它们都展现了轴对称的美。
轴对称的图形,让我们感受到了美的力量,它们让我们感受到了自然的神秘和建筑的艺术,也让我们在日常生活中感受到了对称美的魅力。
让我们在生活中多一些对称美的感受,让我们的生活更加美好。
生活中的轴对称
生活中的轴对称,是一种美妙的对称形式,它存在于我们周围的一切事物中。
从自然界的植物和动物,到建筑和艺术品,轴对称都是一种常见的美学原则。
而在我们的日常生活中,轴对称也有着深刻的意义。
在人际关系中,轴对称可以被理解为平等和互相尊重。
当两个人之间的关系是
轴对称的,意味着彼此之间的权利和责任是平衡的,没有一方占据上风。
这种关系的平衡和和谐,可以让双方在交往中感受到彼此的尊重和关爱,从而建立起稳固的友谊或爱情关系。
在职业生涯中,轴对称也是一种重要的原则。
一个公司或组织的内部结构和管
理体系,需要保持轴对称的状态,才能够实现最佳的运转和发展。
领导者和下属之间的关系,部门之间的合作,以及工作任务的分配和执行,都需要建立在平等和公正的基础上,才能够实现最大的效益和成就。
在个人成长和发展中,轴对称更是一种重要的指导原则。
一个健康的心理状态,需要保持内心的平衡和和谐。
在面对挑战和困难时,保持心灵的轴对称,可以让我们更加坚韧和稳定地面对生活的起伏和变化。
同时,也能够让我们更加理性和客观地看待自己和他人,从而建立起健康的人际关系和社会关系。
生活中的轴对称,不仅仅是一种美学原则,更是一种生活智慧。
在日常生活中,我们可以通过保持平等和和谐的态度,来构建更加美好和幸福的生活。
让我们在生活中不断地寻找和创造轴对称的美,让生活变得更加美好和有意义。
生活中的轴对称
生活中的轴对称:生活上有书本,飞机,蝴蝶,排球,足球,篮球,羽毛球拍,灯,柜子,风扇,凳子,桌子,床,被子,沙发,对联,笔盒。
轴对称图形平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。
生活作用
1、为了美观。
比如天安门,对称就显的美观漂亮。
2、保持平衡。
比如飞机的两翼。
3、特殊工作的需要。
比如五角星,剪纸。
扩展资料:
实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形。
现将小学课本中常见的图形归类如下:既是轴对称图形又是中心对称图形的有:长方形,正方形,圆,菱形等。
只是轴对称图形的有:角,五角星,等腰三角形,等边三角形,等腰梯形等等。
只是中心对称图形的有:平行四边形。
既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等。
一个图形既轴对称又中心对称一定有两条或两条以上的对称轴。
华师大版数学七年级下册《生活中的轴对称》说课稿一. 教材分析华师大版数学七年级下册《生活中的轴对称》这一章节,主要让学生了解轴对称的概念,以及如何在实际生活中发现和应用轴对称。
教材通过丰富的图片和实例,引导学生探索轴对称的性质,培养学生的观察能力和实践能力。
本章节的内容与学生的日常生活紧密相连,有利于激发学生的学习兴趣。
同时,教材在设计上注重引导学生主动探究,培养学生的独立思考能力。
此外,本章节还为后续的数学学习奠定了基础,如八年级上的几何图形变换等。
二. 学情分析面对七年级的学生,他们对轴对称可能有一定的直观认识,例如在绘画、剪纸等活动中曾接触过。
但他们对轴对称的数学定义和性质可能还较为陌生。
因此,在教学过程中,我需要关注学生的已有知识,引导学生从生活实例中发现轴对称,逐步建立数学模型。
此外,学生的观察能力和抽象思维能力仍在发展阶段,因此在教学过程中,我需要设计符合他们认知水平的问题,引导他们逐步提高。
同时,学生的学习兴趣和积极性对他们的学习成效有很大影响,我在教学过程中要注重激发他们的学习兴趣。
三. 说教学目标1.知识与技能:让学生掌握轴对称的定义和性质,能够判断一个图形是否为轴对称,并找出图形的对称轴。
2.过程与方法:通过观察、操作、交流等环节,培养学生的观察能力、实践能力和团队合作能力。
3.情感态度与价值观:让学生体验数学与生活的紧密联系,提高学生对数学的兴趣,培养学生的创新精神和实践能力。
四. 说教学重难点1.重点:轴对称的定义和性质,如何判断一个图形是否为轴对称。
2.难点:找出图形的对称轴,以及如何在实际生活中发现和应用轴对称。
五. 说教学方法与手段1.教学方法:采用问题驱动、案例引导、合作学习等教学方法,让学生在实践中掌握轴对称的知识。
2.教学手段:利用多媒体课件、实物模型、剪纸等教具,以及黑板、粉笔等传统教学工具。
六. 说教学过程1.导入:通过展示生活中的轴对称现象,如剪纸、建筑等,引发学生的兴趣,导入新课。
5.1 轴对称现象教学目标:1.经历观察生活中的轴对称现象、探索轴对称现象共同特征的过程,进一步积累数学活动经验和发展学生的空间观念.2.理解轴对称图形和成轴对称的图形的定义,能够识别这些图形并能指出它们的对称轴.3.欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和丰富的文化价值.教学重点:通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴教学难点:理解轴对称图形和轴对称的联系与区别教学过程:一、出示目标:二、动手自学:阅读教材P115~P117的内容,完成下面练习1.如果一个平面图形沿一条折叠后,直线两旁的部分能够,那么这个图形就叫做,这条直线叫做.这时,我们也说这个图形关于这条直线(成轴) .2.如果两个平面图形沿一条直线折叠后能够重合,那么称这两个图形,这条直线叫做这两个图形的.三、展示分享:1、观察图5-2中的图形,哪些图形是轴对称图形?如果是轴对称图形,请找出它的对称轴2、说出如何判断两个图形成轴对称图形?并且画出下列图形的对称轴3、誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()四、课堂检测:1、下面的图形都是轴对称图形或成轴对称的图形,请分别找出每个图形的对称轴2、观察下面的图形,哪些图形是轴对称图形?如果是轴对称图形,请画出对称轴五、拓展链接:1、下列汉子中,哪些可以看成是轴对称图形?2、试画出下列正多边形的所有对称轴,并完成表格.正多边形的边数34567…对称轴的条数34567…根据上表,猜想正n边形有条对称轴.六、布置作业七、教学反思5.2 探索轴对称的性质教学目标:1.经历探索轴对称性质的过程,积累数学活动经验,发展空间观念.2.理解轴对称的性质:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.教学重点:探索并掌握轴对称的性质教学难点:运用轴对称的性质作图及利用轴对称的性质解决一些实际问题教学过程:出示目标:动手操作(1):将一张矩形纸对折,然后用笔尖扎出“14”这个数字,将纸打开后铺平。
生活中的轴对称教案(最新完成版)第一章:轴对称的基本概念1.1 轴对称的定义解释轴对称的概念,让学生理解轴对称图形的特点。
通过实际例子,如剪纸、折纸等,让学生观察并识别轴对称图形。
1.2 轴对称的性质介绍轴对称图形的性质,如对折后的两部分完全重合。
通过实际操作,让学生亲自折纸或剪纸,体验轴对称图形的性质。
第二章:生活中的轴对称现象2.1 日常生活中的轴对称引导学生观察日常生活中的轴对称现象,如衣服的扣子、剪刀等。
让学生举例说明,并进行展示或分享。
2.2 建筑与艺术中的轴对称介绍一些著名的建筑或艺术作品中的轴对称元素,如巴黎圣母院的立面。
让学生观察并讨论这些轴对称元素的作用和美感。
第三章:轴对称的运用3.1 轴对称在设计中的应用介绍轴对称在设计中的应用,如海报、标志设计等。
让学生尝试自己设计一个具有轴对称特点的图案或标志。
3.2 轴对称在数学中的应用介绍轴对称在数学中的运用,如对称轴的性质在几何证明中的应用。
给学生一些几何题目,要求运用轴对称的性质进行解答。
第四章:轴对称的创意实践4.1 轴对称剪纸艺术教授学生如何进行轴对称剪纸,让学生亲自动手制作。
引导学生发挥创意,设计出自己独特的轴对称剪纸作品。
4.2 轴对称折纸艺术教授学生如何进行轴对称折纸,让学生亲自动手制作。
引导学生发挥创意,设计出自己独特的轴对称折纸作品。
第五章:总结与拓展5.1 总结回顾本章内容,让学生总结轴对称的基本概念、性质和应用。
引导学生思考轴对称在生活中的重要性和美感。
5.2 拓展给学生提供一些轴对称的拓展阅读材料或视频,让学生进一步了解轴对称的运用和意义。
鼓励学生继续观察和探索生活中的轴对称现象,并将其运用到自己的创作中。
生活中的轴对称教案(最新完成版)第六章:轴对称在自然界中的体现6.1 自然界的轴对称引导学生观察自然界中的轴对称现象,如树叶、花朵等。
让学生举例说明,并进行展示或分享。
6.2 生物体内的轴对称介绍一些生物体内的轴对称结构,如人体的对称器官。
生活中的轴对称现象
生活中的轴对称现象无处不在,从自然界到人造物品,都可以找到轴对称的身影。
轴对称是一种对称形式,即一个物体可以通过某一条轴对折,两边完全重合。
这种对称形式在生活中随处可见,不仅给人们带来美的享受,还在很多方面发挥着重要的作用。
首先,我们可以从自然界中找到轴对称的例子。
比如很多植物的花朵、叶子和
水果都具有轴对称的特点,这种对称形式使得它们看起来更加美丽和和谐。
另外,动物的身体结构也常常呈现轴对称的特征,比如很多昆虫和海洋生物的身体都可以通过一个轴对折,两边完全重合。
这种对称形式不仅使它们更容易生存,还给人们带来了对自然的美的赞叹。
其次,在人造物品中,轴对称现象也是非常常见的。
比如很多建筑物的设计就
采用了轴对称的形式,使得建筑物看起来更加稳重和美观。
另外,在工艺品和艺术品中,轴对称的设计也被广泛运用,比如古代的陶瓷器、织锦以及现代的家具、服装等等,都可以看到轴对称的影子。
这种对称形式不仅使得这些物品更加美观,还能够给人们带来舒适和愉悦的感受。
总的来说,生活中的轴对称现象无处不在,不论是自然界还是人造物品,都可
以找到它的身影。
轴对称不仅给人们带来美的享受,还在很多方面发挥着重要的作用。
因此,我们应该更加关注和欣赏这种对称形式,让它成为我们生活中的一部分。
体会生活中的轴对称现象
我们生活在一个充满对称的世界里,日常生活中随处都可以看到它的身影. 一、设计最短输水管线
【例1】如图1,要在河道l 上修建一座水泵站,分别向A 、B 两地供水,问:水泵站建在河道的什么地方,可使所用的输水管线最短?
【分析】我们可以把河道近似地看成一条直线l ,问题就是要在直线l 上找一点C ,使AC 与BC 的和最小.设B ′是B 关于l 的对称点,本题就是要使AC 与CB ′的和最小.在连接AB ′的线中,线段AB ′最短.因此,线段AB ′与直线l 的交点C 的位置即为所求.
图1
B /
B
C A
l
二、台球比赛中的准确击球
【例2】如图2,已知台球桌ABCD 内有两球P 、Q ,现击打球Q 去撞击AD 边后反弹,再正面撞击球P .请画出球Q 撞击AD 边的位置.
【分析】要使球Q 撞击AD 边反弹,再撞击球P ,必须使球Q 的入射角等于反射角,显然,作点P 关于AD 的对称点P ′,连接P ′Q ,P ′Q 与AD 相交于点E ,容易得到∠QED =∠AEP ′=∠AEP .所以点E 即为所求.
图2
C
三、蚂蚁爬行的最短路程
【例3】如图4,在一块三角形区域ABC 中,一只蚂蚁P 停留在AB 边上,它现在从点P 出发,先爬到BC 边上的点M ,再从点M 爬到AC 边上的点N ,然后再回到点P ,请在图上作出点M 、点N ,使得蚂蚁爬行的路程最短.
图4P 2
N
C
M P 1
B
P
A
【分析】作点P 关于BC 、AC 的对称点P 1、P 2,连接P 1P 2,分别交BC 、AC 于点M 、点N ,再连接PM 、PN ,易知:
PM =P 1M ,PN =P 2N ,所以蚂蚁爬行的路程=PM +PN +MN =P 1M +P 2N +MN =P 1P 2,根据两
点之间线段最短,可知△PMN即为所求.
四、设计精美的图案
【例4】幸福村拟建造农民文化公园,将12个场馆排列成6行,每行4个场馆,村委会将如图5的设计公布后,引起许多同学的好奇,他们纷纷设计出精美的轴对称图案来,请你也设计一张符合条件的新图吧!
【分析】这是一道融知识、技能、技巧为一体的创新试题,答案不唯一,只要符合条件即可.下面试给出几个参考答案.
总之,我们的生活充满着对称,用心去感悟对称,你会觉得对称世界是如此的绚丽多彩.。