生活中的轴对称图形
- 格式:ppt
- 大小:1.81 MB
- 文档页数:27
第五章生活中的轴对称5.3.1简单的轴对称图形【教学目标】知识与技能探索并掌握等腰三角形的轴对称性及其相关性质。
过程与方法经历探索简单图形轴对称的过程,进一步体验轴对称的特征,发展空间观念。
情感态度与价值观通过学生的操作与思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展空间观念。
行为与创新使学生在积极参与探索、交流的数学活动中,激发学生的求知欲,感受与他人合作的重要性。
【教学重难点】重点等腰三角形的轴对称性及相关的性质难点利用等腰三角形的轴对称性及相关性质解决问题【课前准备】教师:课件学生:练习本.【教学过程】复习回顾一、创设情景引入观察下列各种图形,判断是不是轴对称图形, 能找出对称轴吗?二、应用练习促进深化1. 认识等腰三角形。
给出三种等腰三角形的形状,包括锐角、钝角、直角形状的图形。
2. 介绍等腰三角形的概念及各部分名称。
给出生活中含有等腰三角形的建筑物图片,生活中的实例随处可见,给学生们呈现最直观的现象。
如艾菲尔铁塔、埃及金字塔等。
三、能力再提升等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有一些特殊的性质吗?拿出你的等腰三角形纸片,把纸片折折看,你能发现什么现象吗?1. 思考(1)等腰三角形是轴对称图形吗?找出对称轴。
(2)顶角的平分线所在的直线是等腰三角形的对称轴吗?(3)底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高呢?(4)沿对称轴折叠,你能发现等腰三角形的哪些特征?2.归纳(1)等腰三角形是轴对称图形。
(2)∠B =∠C(3 )∠BAD=∠CAD,AD为顶角的平分线(4)∠ADB=∠ADC=90°AD为底边上的高(5 )BD=CD,AD为底边上的中线。
等腰三角形的特征:1).等腰三角形是轴对称图形2).等腰三角形的顶角平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
3).等腰三角形的两个底角相等。
生活中的轴对称美国数学家克莱因曾对数学美作过这样的描绘:音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。
下面就让我们一起来看看数学是怎样让人赏心悦目的。
轴对称图形是沿着某直线折叠后,直线两旁的局部互相重合的图形。
这条直线就是他们的对称轴。
这条对称轴就像一个公正的法官,左右两边的长度、面积、形状等,都一点儿也不差,唯一不同的就是他们所朝的方向。
在数学课本里,我们已见过它们的身影,也接触、理解过它们。
下面让我们一起看看生活当中的轴对称图形。
当我们漫步在校园时,随手捡起一片树叶,假如将树叶中间的那根茎当成是其左右两边的对称轴,将树叶右边局部沿着这条对称轴对折过去,我们会惊奇地发现它正好与左边的一半树叶重合。
一只蝴蝶停留在花朵上,张合着翅膀时,假如将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的直线就是其对称轴。
而右边的翅膀就像是左边的翅膀沿着对称轴翻折过去的图形。
像蝴蝶这样成轴对称图形的动物还有很多,比方蜻蜓、飞蛾、螃蟹等。
动物进化经历了由海绵动物、双胚层辐射对称动物〔包括腔肠动物〕、三胚层两侧对称动物的开展阶段,其中从辐射对称动物到两侧对称动物的演化,是生物进化过程中的一个重大事件,它意味着一系列遗传基因的重要创新,并由此促进生命的形态、行为向更加复杂的阶段快速开展。
“贵州小春虫〞的发现,将生物进化史上的一个重要阶段——两侧对称动物化石记录的历史前推到了寒武纪之前4000万年。
对称是动物的美学,左右对称是动物世界普遍的安康、强壮的特征。
人类的耳、眼、四肢都是对称生长的。
耳的轴对称不仅使我们听到的声音具有强烈的立体感,还可以判断声源的位置;眼的对称使我们看物体更明晰、准确。
演出前化装时,你肯定不希望眉毛被画得一高一低、两边眼线不一样粗细吧?这就要求化装师随时把轴对称放在心里。
中国银行的图形标志也是一个轴对称图形。
这个图形的对称轴有两条,一条是图形程度直径所在的直线,另一条是与程度直径相垂直的直径所在的直线。
轴对称在生活中的应用我们生活在一个充满对称的世界中,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子,而轴对称是对称中重要的一种,在日常生活中有着非常重要的应用。
本文试举几例,谈谈轴对称在生活中的应用。
一.利用轴对称巧妙设计, 使所用的输水管线最短例1:如图1,要在河道L上修建一座水泵站,分别向A、B两镇供水,泵站建在河道的什么地方,可使所用的输水管线最短?L(图1)分析:我们可以把河道近似地看成一条直线l,问题就是要在直线L上找一点C,使AC与BC的和最小。
设B’是B关于l 的对称点,本题就是要使AC与CB’的和最小。
在连接AB’的线中,线段AB’最短。
因此,线段AB’与直线l的交点C的位置即为所求。
二.利用轴对称,在台球比赛中准确击球例2:如图2,已知台球桌ABCD内有两球P、Q,现击打球Q 去撞击AD边后反弹,再撞击P球。
请画出Q球撞击AD边的位置。
DC图2分析:要使球Q撞击AD边反弹,再撞击球P,必须使球Q的入射角等于其反射角,显然,作P点关于AD的对称点P’,连结P’Q, P’Q 与AD相交于点E,很容易得到∠QED=∠AEP’=∠AEP。
所以点E即为所求的点。
三.利用轴对称,求出镜中电子钟的实际时刻和水中车牌倒影的实际号码例3.小明从平面镜里看到镜子对面电子钟示数的像如图3所示,这时的实际时刻应该是()A. 21:10B. 10:21C. 10:51D. 12:013分析:根据镜子中电子钟示数与实际时刻的读数成轴对称,镜子是对称轴,所以在镜中电子钟示数的右边划一条直线作为对称轴,找出各数字的对称图形,立即可以得出这时的实际时刻是10:51,所以选择C.例4.一辆汽车的车牌在水中的倒影如图4所示,请问该车的车牌号码是多少?分析:水中的倒影与实际的车牌号成轴对称,但两组数据的方向是一致的,所以在水中的倒影下边划一条直线作为对称轴,就很容易求得该车的实际车牌号是M17936,本题应和例3区别开来。
北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]研究目标】1.增进对身边轴对称图形的认识和欣赏,提高对数学的兴趣。
2.了解轴对称的概念,探索轴对称图形的基本性质和应用。
3.探究线段垂直平分线、角平分线和等腰三角形的性质及判定方法。
4.能够按照要求画出一些轴对称图形。
要点梳理】要点一、轴对称1.轴对称图形和轴对称1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
要点诠释:成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上。
3)轴对称图形与轴对称的区别和联系要点诠释:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的。
联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。
2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一。
同时也给出了引辅助线的方法,即遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。
三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。
第五章生活中的轴对称轴对称图形轴对称分类轴对称角平分线轴对称实例线段的垂直平分线等腰三角形等边三角形生活中的轴对称轴对称的性质轴对称的性质镜面对称的性质图案设计轴对称的应用镶边与剪纸一、轴对称图形1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、理解轴对称图形要抓住以下几点:(1)指一个图形;(2)存在一条直线(对称轴);(3)图形被直线分成的两部分互相重合;(4)轴对称图形的对称轴有的只有一条,有的则存在多条;(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、轴对称1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
2、理解轴对称应注意:(1)有两个图形;(2)沿某一条直线对折后能够完全重合;(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;(4)对称轴是直线而不是线段;三、角平分线的性质1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等.五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。
5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。
6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。
7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。
8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。
丰富的轴对称图形(多媒体展示)在实际生活和学习中,只要我们细心留意,就会发现一些图片、图形具有对称和谐美,这些图片、图形就是轴对称图形.一、来自生活中的轴对称图片蝴蝶剪纸脸谱倒影双喜建筑国旗塔松喇叭灯泡二、来自标志类图片隧道机场警示银行标志汽车标志三、来自字母、文字及数字1.英文大写字母A 、B 、C 、D 、E 、H、 I、K 、M、 O、 T 、U V 、W、 X、 Y2.数字0, 3, 83.汉字美、中、田、口、目、日、十、一、丰等四、来自简笔画眼镜彩旗山中雾千斤顶五、来自数学图形生活中的轴对称图形千姿百态,千变万化,只要我们用心去观察,去体验,才能感受到对称图形的美,感受数学的广阔空间,数学的美妙无穷.信息技术的应用能丰富课堂教学的形式,突出教学重点,突破教学难点,加大课堂教学的容量。
尤其在本章内容的教学中,非常需要多媒体的辅助,我们可以上网搜集到许多精美的课件,结合我们的实际情况修改后合理运用,一定能真正调动学生思维的积极性,真正发挥信息技术在教学中不可替代的作用,打造出学生的知识与技能都能得到创新发展的高质量的课堂。
五、教师教学中的困惑在教学这部分知识的过程中,我们往往会产生一些疑惑,在这里,和老师们一起探讨。
1、轴对称现象和轴对称图形有什么区别?教材中类似“天安门”“蜻蜓”等图形是轴对称图形吗?对称,是一个宽泛的概念,既是数学中的概念,也是生活中的概念。
人们通常在生活中进行交流的时候,说某个建筑物是对称的,或某种昆虫的身体具有对称性是没有任何问题的,人们能够按照一般常识互相理解。
也就是说生活中的概念通常是不严格的、不统一的。
但是数学上的概念应该是严格的,像“轴对称图形”的定义:“如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”。
这样,轴对称图形是平面图形,并且有对称轴。
问题中所说的图形,应该是将实物经过抽象化后得到的数学图形,在判断它们是否成轴对称时,只从“形”上看,而不再考虑实物。