柴油机电控喷油技术
- 格式:ppt
- 大小:1.36 MB
- 文档页数:15
书山有路勤为径;学海无涯苦作舟
柴油机电控燃油喷射系统技术解析
现在的柴油发动机大多使用了电控喷射系统,与传统的机械喷射系统相比,电控喷射系统可以有效的提高柴油机的动力性和经济性,同时大幅度的降低尾气的污染。
今天我们就来简单说说柴油机电控喷射系统的工作原理和组成结构。
柴油机可燃混合气形成有什幺特点
1.混合空间小、时间短:供油的持续时间只有汽油机的1/20~1/10,只占曲轴转角的15°~35°
2.混合气不均匀,α值变化范围很大:大负荷时喷油量多、α值小、混合气浓;怠速时喷油量少、α值大、混合气稀,α值可达4~6。
3.边喷边燃,成分不断变化。
柴油机燃烧过程
燃烧过程可以分为四个阶段:
备燃期Ⅰ:从燃油喷出(A点)到出现火焰中心(B点)为止。
备燃期特点:
1、首先着火的是浓度合适是地方,火源是位置和数量是不固定的;
2、此时喷入的油量占每循环供油量的30%----40%;
3、备燃期积油量越多,达到一定程度时,一旦燃烧,由于同时着火的油量多,压力升高率过大,冲击性的压力是燃烧噪音加大,工作粗暴,机件磨损加剧。
速燃期Ⅱ:从出现火焰中心(B点)到产生最大压力点(C点)为止。
速燃期特点:
1、活塞正靠近上止点,燃烧几乎在等容下进行;
专注下一代成长,为了孩子。
电控高压共轨直喷柴油机技术图文教程●Pizezo喷射器(压电式喷油器)Piezo 喷射器具有极快和精确的燃油量分配。
Piezo喷射器的响应时间是原系统的4倍,允许在预喷和主喷之间更短和更多可变距离的喷射。
图为Piezo喷射器由于通过能量恢复获得必需的触发能的可能,必需的触发能会相当地减少。
另外,通过简单的电控制,可达到忍受较大的电磁和基本减少感应错误。
Piezo喷射器安装在油轨上,将燃油喷入燃烧室。
每冲程的喷入量由预喷量和主喷量构成。
这种分层喷射使得柴油机燃烧过程变得柔和。
由于Piezo喷射器的配置,使其具有极快的响应速度(时间)。
因此,喷射的燃油量和剂量可以非常准确的控制,而且确保极好的循环。
喷射器由发动机控制单元控制(ECU)。
与以前的系统比较,Piezo喷射器需要相当小的触发能,它可通过可能的能量恢复得到。
注意:在发动机工作期间,连接线束连接器到发动机控制装置,喷射器必须连接可靠,否则有损坏发动机的危险。
在维修工作时,喷射器不应拆散。
每个件都不许被松动或没有拧紧,否则将引起喷射器的损坏。
●柴油共轨泵DCP柴油共轨泵由布置在一个单一壳体里的下列部件组成:内置传输泵ITP内置叶片泵的作用是将燃油从燃油箱经过燃油滤抽出,供给带有柴油的高压燃油泵。
除此之外,还有润滑高压油泵的目的。
柴油共轨泵DCP是需求控制中心,由凸轮盘驱动具有相差120°的三个排量装置的柱塞泵。
DCP提供体积流量以保证油轨正常的高压,同时也提供喷射器在发动机所所有工作条件下必需的燃油量和在DCP里的燃油压力。
油箱中的柴油完整的内置传输泵ITP(1)经燃油滤清器抽出。
燃油也被传送至润滑阀(6)和体积控制阀(2)。
平行位于燃油供应泵里的预压控制阀,当体积控制阀关闭时打开,使燃油再次到燃油泵的吸入端。
燃油经润滑阀(6)到泵里边,并从那到燃油回油管。
体积控制阀由发动机控制装置控制,计量输送到高压元件(3)的燃油量,同时到高压泵HPP。
电控柴油机工作原理
电控柴油机是一种利用电子控制技术来控制柴油机工作的一种发动机。
它基本原理如下:
1. 燃油喷射系统:电控柴油机采用电喷系统来控制燃油喷射过程。
电控柴油机的燃油喷射系统包括电喷油泵、喷油嘴和喷油控制器。
通过电喷油泵将燃油压力提高到所需的喷油压力,再通过喷油嘴将燃油喷入进气歧管或燃烧室。
喷油控制器控制喷油的时间、量和压力,以实现最佳的燃烧效果。
2. 进气与排气系统:电控柴油机的进气系统和传统柴油机相似,通过进气歧管将空气引入到燃烧室。
排气系统则将燃烧产生的废气排出。
3. 点火系统:电控柴油机不需要点火系统来点燃燃料,而是通过压燃的方式实现燃料的自燃。
4. 电子控制单元(ECU):电控柴油机的关键部件是电子控制单元。
ECU接收各种传感器的输入信号,包括发动机转速、
进气温度、进气压力和冷却水温度等信息。
ECU根据这些信
息计算出最佳的燃油喷射时间和量,并控制喷油控制器来实现精确的燃油喷射控制。
同时,ECU还可以监测发动机的工作
情况,并对其进行故障诊断和故障码存储。
总的来说,电控柴油机通过电子控制技术来精确控制燃油喷射过程,提高燃油喷射的精度和效率,从而实现更好的经济性和环保性能。
电喷柴油机控制原理
电喷柴油机控制原理是通过电子控制单元(ECU)对柴油喷油系统进行精确控制,实现燃油的喷射时间、喷射量以及喷油压力的调节,从而达到优化燃烧和提高发动机性能的目的。
电喷柴油机控制原理分为以下几个关键步骤:
1. 传感器采集:引入多个传感器,如气温传感器、气压传感器、曲轴传感器等,用于检测环境条件和发动机工作状态参数。
2. 数据处理:ECU接收传感器信号,并将其转换成数字信号
进行处理。
通过对各种传感器信号的综合分析和计算,ECU
可以判断当前发动机工况。
3. 控制策略:ECU根据当前发动机工况和预设的控制策略,
计算出需要调节的喷油时间、喷油量和喷油压力等参数。
4. 喷油控制:根据计算结果,ECU通过驱动喷油器的电磁阀
来控制喷油量和喷油时间。
电磁阀会周期性地开关来控制喷油器的喷油时间,从而实现精确的喷油控制。
5. 反馈调节:ECU通过返回的实际工作参数,如转速、燃油
压力等,与设定值进行比较并进行修正,以保持发动机的稳定运行。
整个控制过程是一个不断循环的闭环控制系统,通过不断的反馈和修正,ECU可以实现对发动机喷油系统的精确控制。
电喷柴油机控制原理的优点是可以实现高精度的喷油控制,提高燃烧效率和发动机性能。
同时,通过电子控制的方式,还可以更好地适应不同工况下的喷油需求,提供更多的动力输出和更少的尾气排放。
柴油机电控燃油喷射系统的工作原理柴油机电控燃油喷射系统是一种现代化的燃油供给系统,它通过电控单元来控制燃油的喷射和供应。
其工作原理可分为传感器部分、电控单元部分和执行器部分。
首先,传感器部分是负责监测柴油机的工况和环境参数,例如转速、负荷、空气温度等。
传感器将这些参数实时传输给电控单元,以便后续的计算和控制。
接下来,电控单元是燃油喷射系统的核心。
它根据传感器传来的参数和预设的工作模式,通过内置的控制算法来确定最佳的燃油喷射量和喷射时间。
电控单元中还包含了一个存储器,用于存储各种不同工况下的喷射曲线和参数,以满足不同工况下的燃油需求。
最后,执行器部分是根据电控单元的指令来执行燃油喷射。
它包括喷油器和喷油泵。
当电控单元发送喷油指令时,执行器会将燃油从喷油泵中压力供应到喷油器中,并通过喷油器的喷油嘴将燃油以雾化的形式喷入气缸中。
喷油器的喷油量和喷油时间是通过控制喷油嘴的开启时间和喷孔的大小来实现的。
整个系统的工作原理可以归纳为:传感器监测并传输工况参数给电控单元,电控单元根据输入的参数选择最佳的喷油曲线和参数,再通过执行器控制喷油器实现燃油的喷射和供应。
与传统的机械喷油系统相比,柴油机电控燃油喷射系统具有很多优点。
首先,它可以根据不同的工况和负荷要求精确控制燃油的喷射量和喷射时间,提高燃烧效率,减少燃油消耗和排放物的生成。
其次,电控单元可以根据不同的工况和负荷要求灵活地调整燃油喷射参数,提高柴油机的动力性和响应速度。
此外,电控单元还可以进行自我诊断和故障监测,及时发现和修复系统的故障,提高柴油机的可靠性和稳定性。
总结来说,柴油机电控燃油喷射系统通过传感器、电控单元和执行器的协同工作,实现了对燃油喷射的精确控制,提高了柴油机的使用效率和环保性。
它是现代柴油机的重要组成部分,对于提高柴油机的性能和经济性具有重要的指导意义。
第八节电控共轨柴油机一例一、慨述五十铃FORWARD型中型系列卡车从1994年全面改型以后,一直受到市场的好评。
其中的6HK1-TC型发动机(图3—239)采用日本电装公司的ECD-U2型电控共轨燃油系统,是比较具有代表性的电控共轨柴油卡车之一。
以此为实例,简要介绍中型柴油机卡车用电控高压共轨式燃油系统的全貌。
关于ECD-U2系统的部分零部件已在专项内容中介绍,此处从略。
未作具体介绍的内容尽可能列出,给出一个关于电控共轨燃油系统的整体概念。
6HK1-TC型发动机满足1998年日本国内的排放法规。
当时的法规值为:NOx(氮氧化物) 4.5g/(k W.h)PM(微粒,Particulate Matter) 0.25g/(k W·h)黑烟25%CO(一氧化碳)7.4g/(k W·h)HC(碳氢化合物) 2.9g/(k W·h)二、结构和参数6HK1-TC型发动机采用的ECD-U2电控共轨燃油系统的主要参数如表3—35,重要特性曲线如图3—240所示。
三、电控共轨柴油机的特点与采用普通机械式燃油系统的柴油机相比,电控共轨柴油机有如下重要的不同之处图3-239 6HK1-TC型发动机的结构变更(1)用供油泵代替了原来的喷油泵。
利用发动机的转动,通过供油泵将燃油加压,并送入共轨中。
在供油泵上配置了供油泵控制阀(PCV———Pump Control Valve).在ECU指令的控制下,调节供人共轨中的燃油量。
此外,供油泵带有输油泵。
输油泵的作用是从油箱中抽油,并将燃有油供人供油泵的往塞腔中。
(2)取消了调速器和提前器;新增加了储存高压燃油的共轨组件;由于采用共轨式电控燃油系统,原来安装喷油泵的托架变更了。
(3)机械式喷油器变更为电控式喷油器。
可以最佳地控制喷油量、喷油时间和喷油率(4)高压配管(即高压油管)的形状变更了(图3—241)。
高压配管外径由∮6.35变更为∮8,内径由∮2.0变更为∮4.0。