压力容器分析设计2
- 格式:pdf
- 大小:436.64 KB
- 文档页数:3
ASME压力容器及其有限元分析压力容器,英文:pressure vessel,是指盛装气体或者液体,承载一定压力的密闭设备。
贮运容器、反应容器、换热容器和分离容器均属压力容器。
压力容器的用途十分广泛。
它是在石油化学工业、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。
压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。
此外,还配有安全装置、表计及完全不同生产工艺作用的内件。
压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。
ASME压力容器设计意味着计算方法是按ASME第8卷中的规则和计算方法进行设计和计算,不一定要选用ASME材料,除非和客户签订的技术协议里特别注明需要使用ASME材料,容器的管路当然也是要按ASME的要求。
由于产品的安全性和经济性的要求,有限元分析应用需求是最广泛的。
根据标准的要求,设计者可以借助有限元来解决容器的结构强度、稳定性及寿命(疲劳)的设计问题。
压力容器的主要特点结构形式:压力容器主要的结构形式为回转壳,当然最典型的是柱壳(常称为筒体)和球壳(球罐和封头等)。
常见的结构主要特点是:开孔、支撑、加强构件等;壳体的厚度远小于壳体的曲率半径;结构不规则;异种材料连接等。
根据其结构形式的主要特点和用途还可以进一部分类为:塔式容器、卧式容器、换热器、球罐等。
载荷形式:1) 压力:这是最重要的载荷形式,包括内压和外压;2) 热载荷:主要是由于温度梯度引起来的热应力;3) 力和力矩:设备管道传给设备的外力,附加载荷等4) 地震:设备的地震也是必须考虑的问题;5) 风载荷:对于一些塔式容器和球罐,风载荷也是主要考虑的载荷;6) 雪载荷:对我国北方地区的室外容器;求解模式:静力,动力,屈曲,疲劳,线弹性,弹塑性,非线性,接触等压力容器的分类一、按设计压力分类:1、低压(L)0.1MPa≤P<1.6 MPa2、中压(M)1.6 MPa≤P<10 MPa3、高压(H)10 MPa≤P<100 MPa4、超高压(U)P≥100 MPa二、按工艺过程中的作用分:1、反应压力容器(R):主要是用于完成介质的物理、化学反应的压力容器。
压力容器的设计问题分析摘要:本论文旨在对压力容器的设计问题进行分析,并探讨相关的挑战和未来发展方向。
首先介绍了压力容器的定义、分类和设计原则,以及力学性能要求。
然后详细讨论了材料选择与应力分析、结构设计与优化、焊接和连接技术,以及压力容器的安全性评估和监测等关键问题。
在现有问题和挑战方面,指出了安全性问题、材料选择和性能、环境影响以及监测与维护等方面的挑战。
本论文的研究有助于同业者更好地理解和解决压力容器设计中的问题,提高其安全性、可靠性和可持续性。
关键词:压力容器,容器设计,问题分析,探讨1压力容器设计的基本原理1.1 压力容器的定义和分类压力容器是指能够承受一定的内外压力,并用于储存、运输或处理液体、气体或多相物质的设备。
它们通常由金属或合金材料制造而成,具有一定的强度和密封性能。
现如今,压力容器广泛应用于化工、石油、能源、制药、食品等不同的领域。
根据结构和功能特点的不同,压力容器可分为以下几类:(1)容器类型:常见的容器类型包括储罐、反应器、分离器、换热器等等。
(2)压力等级:根据承受的压力范围,压力容器可分为低压容器、中压容器以及高压容器。
(3)安装位置:压力容器可以分为立式容器、卧式容器和倾斜式容器,根据实际需要安装在不同位置和方向上。
1.2 压力容器设计的基本原则和流程压力容器设计需要遵循以下基本原则和流程:(1)确定设计条件:确定容器的工作压力和温度等不同的设计条件,并根据相关规范和标准进行选择。
(2)材料选择:根据设计条件、介质性质和环境要求选择合适的材料,比如常用的钢材、合金材料等等。
(3)结构设计:设计容器的结构形式、壁厚、尺寸和连接方式等,以满足强度、刚度和泄漏要求。
(4)强度校核:进行容器的应力分析和强度校核,确保设计的容器在工作条件下具有足够的强度和稳定性。
(5)密封性设计:确保容器具有良好的密封性能,防止泄漏和安全隐患的发生。
(6)监测和维护设计:考虑容器的监测和维护手段,以保证容器安全运行和使用寿命。
低温压力容器的设计分析低温压力容器是指在低于零度的环境中工作的容器,通常用于存储和运输液态气体,液氮、液氧、液氩等均为常见的低温液体。
由于低温环境下物质的特性会发生变化,因此低温压力容器的设计必须考虑到这些因素,以确保容器在安全可靠地工作。
本文将对低温压力容器的设计要点和分析进行探讨。
一、设计要点1.材料选用2.结构设计3.绝热设计由于低温液体的蒸发潜热较高,容器内的温度会迅速下降,导致容器表面结霜。
为了减少热量的散失,提高容器的绝热性能是必要的。
可以采取增加绝热层厚度、使用保温材料等措施来提高容器的绝热性能。
4.安全阀设计低温液体具有较大的蒸气压,一旦容器内压力过高,就会导致容器爆炸。
因此,在设计中必须考虑安全阀的设置,确保在容器内压力超过设定值时能够及时安全地排放压力。
5.排水设计由于低温液体的存在,容器内部会有凝露水和结冰现象。
这些水汽会降低容器的强度和耐腐蚀性,因此必须设计合理的排水系统,定期排除容器内的凝露水和结冰。
6.储罐涂层为了保护容器免受腐蚀和低温影响,可以在容器表面涂上特殊的防腐涂层。
这些涂层能够增强容器的抗腐蚀性能,延长容器的使用寿命。
二、设计分析针对低温压力容器的设计,需要进行结构分析和性能测试,以验证容器的强度和安全性。
1.结构分析在设计初期,需要进行有限元分析等结构分析,评估容器的受力和变形情况。
通过模拟不同工况下的受力情况,确定容器的最大受力位置和最大应力值,以确保容器在工作过程中不会发生结构破坏。
2.强度测试设计完成后,需要进行强度测试,验证容器的最大承载能力是否符合设计要求。
常见的测试方法包括液压试验、氢氦试验、抗冲击测试等。
通过这些测试,可以验证容器的强度和安全性,确保容器在工作中不会发生泄漏或爆炸等情况。
3.低温性能测试设计完成后,还需要进行低温性能测试,评估容器在低温环境下的工作性能。
通过模拟低温环境下的工作情况,测试容器在不同温度下的性能表现,验证容器的低温抗裂性能和绝热性能。
1 问题描述利用ANSYS软件对压力容器用标准椭圆形封头和半球形封头进行应力分析,并沿着压力容器轴向方向绘制笛卡尔坐标系下X、Y、Z方向应力曲线,三个主应力曲线以及第一强度理论,第三强度理论、第四强度理论计算方法下的应力理论值和应力曲线。
相关参数:筒体内径:400mm,筒体长度为1000mm,筒体、封头厚度均为5mm,材料弹性模量为206GPa,泊松比为0.3,内压P=1MPa。
2 建模过程:单元选取:本题研究的是薄壁压力容器,对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
材料特性:ANSYS 结构分析材料属性有线性 (Linear)、非线性 (Nolinear)、密度(Density)、热膨胀 (Thermal Expansion)、阻尼 (Damping)、摩擦系数 ( Friction Coefficient)、特殊材料 (Specialized Materials) 等七种。
本题选取材料模型为线弹性材料,材料参数E=206GPa,μ=0.3。
几何建模:本题采用实体建模,该方法适合于复杂模型,尤其适合于3D实体建模,需人工处理的数据量小,效率高。
允许对节点和单元实施不同的几何操作,支持布尔操作(相加、相减、相交等),支持ANSYS优化设计功能,可以进行自适应网格划分,可以进行局部网格划分,便于修正与改进。
本题采用的是从下往上的建模方式。
先建立点,再连线画圆,然后将线沿轴线旋转,得到压力容器模型,上封头为标准椭圆形封头,下封头为球形封头。
网格划分:对有限元分析,ANSYS有四种网格划分方法,自由网格划分、映射网格划分,延伸网格划分和自适应网格划分。
本题采用自由网格划分,自由网格划分功能十分强大,没有单元形状的限制,网格也不遵循任何的模式,因此适用于对复杂形状的面和体网格划分。
《过程设备设计基础》教案2—压力容器应力分析课程名称:过程设备设计基础专业:过程装备与控制工程任课教师:第2章 压力容器应力分析§2-1 回转薄壳应力分析一、回转薄壳的概念薄壳:(t/R )≤0.1 R----中间面曲率半径 薄壁圆筒:(D 0/D i )max ≤1.1~1.2 二、薄壁圆筒的应力图2-1、图2-2 材料力学的“截面法”三、回转薄壳的无力矩理论1、回转薄壳的几何要素(1)回转曲面、回转壳体、中间面、壳体厚度 * 对于薄壳,可用中间面表示壳体的几何特性。
tpD td pR tpD Dt D p i 22sin 24422====⨯⎰θπθϕϕσσαασπσπ(2)母线、经线、法线、纬线、平行圆(3)第一曲率半径R1、第二曲率半径R2、平行圆半径r(4)周向坐标和经向坐标2、无力矩理论和有力矩理论(1)轴对称问题轴对称几何形状----回转壳体载荷----气压或液压应力和变形----对称于回转轴(2)无力矩理论和有力矩理论a、外力(载荷)----主要指沿壳体表面连续分布的、垂直于壳体表面的压力,如气压、液压等。
P Z= P Z(φ)b、内力薄膜内力----Nφ、Nθ(沿壳体厚度均匀分布)弯曲内力---- Qφ、Mφ、Mθ(沿壳体厚度非均匀分布)c、无力矩理论和有力矩理论有力矩理论(弯曲理论)----考虑上述全部内力无力矩理论(薄膜理论)----略去弯曲内力,只考虑薄膜内力●在壳体很薄,形状和载荷连续的情况下,弯曲应力和薄膜应力相比很小,可以忽略,即可采用无力矩理论。
●无力矩理论是一种近似理论,采用无力矩理论可是壳地应力分析大为简化,薄壁容器的应力分析和计算均以无力矩理论为基础。
在无力矩状态下,应力沿厚度均匀分布,壳体材料强度可以得到合理的利用,是最理想的应力状态。
(3)无力矩理论的基本方程a、无力矩理论的基本假设小位移假设----壳体受载后,壳体中各点的位移远小于壁厚。
考虑变形后的平衡状态时壳用变形前的尺寸代替变形后的尺寸直法线假设----变形前垂直于中面的直线变形后仍为直线,且垂直于变形后的中面。
压力容器的强度与设计(江苏省压力容器检验员培训考核班专题讲座)第三节强度理论一、压力容器的失效压力容器在设定的操作条件下,因尺寸、形状或材料性能发生改变而完全失去或不能达到原设计要求(包括功能和寿命等)的现象,称为压力容器失效。
尽管失效的原因多种多样,失效的最终表现形式均为泄漏、过度变形和断裂。
压力容器的失效形式大致可分为强度失效、刚度失效、稳定失效和泄漏失效等四大类。
1.强度失效因材料屈服或断裂引起的压力容器失效,称为强度失效。
包括韧性断裂、脆性断裂、疲劳断裂、蠕变断裂、腐蚀断裂等。
韧性断裂:是压力容器在载荷作用下,产生的应力达到或接近所用材料的强度极限而发生的断裂。
其特征是断后有肉眼可见的宏观变形,断口处厚度显著减薄;没有或偶尔有碎片。
厚度过薄和内压过高是引起压力容器韧性断裂的主要原因。
脆性断裂:是指变形量很小、且在壳壁中的应力值远低于所用材料的强度极限时所发生的断裂。
这种断裂是在较低应里状态下发生,故又称为低应力脆断。
其特征是断裂时容器没有鼓胀,即无明显的塑性变形;其断口齐平,并与最大应力方向垂直;断裂的速度极快,常使容器断裂成碎片。
材料脆性和缺陷两种原因都会引起压力容器发生脆性断裂。
疲劳断裂:压力容器在服役中,在交变载荷作用下,经一定循环次数后产生裂纹或突然发生断裂失效的过程,称为疲劳断裂。
交变载荷是指大小和(或)方向都随时间周期性(或无规则)变化的载荷,它包括压力波动、热应力变化、开车停车等;原材料或制造过程中产生的裂纹,在交变载荷的反复作用下扩展也会导致压力容器的疲劳破坏。
由于疲劳源于局部应力较高的部位,如接管根部,往往在压力容器工作时发生,因而破坏时容器总体应力水平较低,没有明显的变形,是突发性破坏,危险性很大。
随着交变载荷反复作用次数的增加,疲劳裂纹不断扩展。
只有当疲劳裂纹扩展到一定值时,才回发生疲劳破坏。
因此,疲劳破坏需要有一定时间。
蠕变断裂:压力容器在高温下长期受载,随时间的增加材料不断发生蠕变变形,造成厚度明显减薄与鼓胀变形,最终导致压力容器断裂的现象,称为蠕变断裂。
压力容器结构设计要点分析及解读压力容器属于特种设备,为保障压力容器的安全使用,预防和减少事故,保护人民生命和财产安全,促进社会经济发展,压力容器结构设计工作十分重要。
由于压力容器的工作介质具有复杂多样性,操作压力、操作温度随不同的工艺单元更是不同,随着现在生产技术的飞速升级,高温、高压、低温、深冷各种工况频出,因此在结构设计中必须要注重安全性问题,需要设计者掌握压力容器结构设计要点,不断提高设计质量。
基于此,本文重点对压力容器结构设计要点进行分析。
标签:压力容器;结构设计;要点;分析0 引言压力容器设计中,合理的结构设计是设计工作的重中之重,必须要确保结构的设计质量,由于现有压力多在高温、高压、低温、疲劳及腐蚀介质等各种苛刻工况下工作,安全使用寿命要长达20年甚至更久,国家也加强了对压力容器各环节的管理特别是结构设计的管理工作,使得压力容器在制造、安装、使用、维修中的质量得到了保证。
现如今,压力容器结构设计也在逐渐摆脱传统思想的束缚,彰显了现代化工艺设计理念,以安全性、时效性、经济性和谐统一为基础,全面加强压力容器结构设计的合理性。
1 压力容器结构设计要求压力容器,特别是化工压力容器,其内部结构带有装配内件,设计工作十分繁琐、复杂,如果压力内部结构设计不当就会直接影响压力容器的性能,甚至会造成安全隐患,对设备及工艺单元的安全正常运行会造成极大的影响。
这就需要结合压力容器的具体使用条件:使用介质、工作压力、工作温度、连接管口、工作环境等,根据现行有效的压力容器的设计法规、标准进行系统风险评估后方可始设计工作,这样才能够充分考虑潜在的风险因素,在设计的过程予以规避,保障设计质量,满足日益苛刻的使用要求,使得压力容器在设计使用寿命期间,设备能够安全可靠的运行。
2 压力容器结构设計要点分析2.1 主体结构设计在进行压力容器的主体设计时,要根据设备使用条件,按规则设计或应力分析设计的方法,对设备进行综合风险评估,确定合理的设备长径比及焊接结构。