压力容器设计基础
- 格式:pptx
- 大小:859.18 KB
- 文档页数:101
压力容器设计基础压力容器设计基础一、基本概念压力容器的设计,就是根据给定的性能要求、工艺参数和操作条件,确定容器的结构型式,选择合适的材料,计算容器主要受压元件的尺寸,最后给出容器及其零部件的图纸,并提出相应的技术条件。
正确完整的设计应达到保证完成工艺生产。
正确完整的设计应达到保证完成工艺生产,运行安全可靠,保证使用寿命、制造、检验、安装、操作及维修方便易行,经济合理等要求。
压力容器设计中的关键问题是力学问题,即强度、刚度及稳定性问题。
在本节中,主要讨论压力容器设计中的有关强度问题。
所谓强度,就是结构在外载荷作用下,会不会因应力过大而发生破裂或由于过度性变形而丧失其功用。
具体来讲,就是在外载荷作用下,容器结构内产生的应力不大于材料的许用应力值,即:ζ≤K〔ζ〕t (1)这个式子就是强度问题的基本表达式。
压力容器的设计计算就是围绕这一关系式而进行的。
公式(1)中的左端项是结构内的应力,它是人们最为关心的问题。
求解结构的应力状态,它们的大小,是一个十分复杂的问题,常用的方法有解法(如弹性力学法、弹型性分析法等)、试验法(如电阻应变计测量法、光弹法、云纹法等)及数值解法(如有限元法、边界元法等)。
应用这些方法可以精确或近似地求出结构的应力,然而,每一种结构的应力都有其特殊性,目前可求解的只是问题的绝大部分,仍有许多复杂结构的应力分析有等人们进一步探讨。
求出结构内任一点的应力后,所遇到的问题就是怎样处理这些应力。
一点的应力状态最多可含有6个应力分量,哪个应力起主要作用,这些应力对失效起什么作用,对它们如何控制才不致发生破坏,解决这一问题,就要选择相应的强度理论计算当量应力,以便与单向拉伸试验得到的许用应力相比较,将应力控制在许可的范围内。
公式(1)中的右端项是强度控制指标,即材料的许用应力。
它涉及到材料强度指标(如抗拉强度ζb、屈服强度ζs 等)的确定及安全系数的选用等问题。
当采用常规设计法,且只考虑静载问题时,系数K=1.0;如果考虑动载荷,或采用应力分析设计法,K≥1.0,此时设计计算将更加复杂。
压力容器基础知识压力容器是用于存储各种气体、液体和气体-液体混合物的设备。
这些设备不仅需要承受不同介质的压力,还需要保证设备的密封性和耐腐蚀性能。
因此,压力容器的设计、制造、安装和维护都需要符合相关的标准和规范。
1. 压力容器的应用场景压力容器广泛应用于石油化工、核工业、制药、冶金、燃气等领域。
比如,在石油化工中,压力容器被用于储存石油、汽油等可燃液体。
在核工业中,压力容器被用于储存和运输放射性物质。
在制药中,压力容器被用于制造药品、医疗设备等。
2. 压力容器的设计原则压力容器的设计需要遵循以下原则:(1) 安全性和可靠性原则:设备应能承受其设计条件下的最大工作压力和温度,同时应考虑容器内介质的性质以及应力集中等因素。
(2) 容器材质选择原则:要根据介质的性质、使用条件和操作环境等因素来选择合适的材质。
(3) 规范性原则:设计要符合相关的标准和规范,如ASME、GB等标准。
(4) 可维护性原则:设计要考虑设备的可维护性和易检修性。
3. 压力容器的制造工艺压力容器通常需要使用高强度的钢材制造。
在制造过程中需要进行焊接、加工和检验等工艺。
压力容器的制造工艺需要注意以下问题:(1) 设备加工精度和工艺控制:保证制造误差在运行条件内范围并满足规定的偏差控制要求。
(2) 设备检验:确保制造设备的质量和设计要求一致,并符合相关标准和规范的要求。
(3) 设备安装:在安装过程中需要保证设备安装牢固,并且需遵守安全操作规范。
4. 常见的压力容器故障原因(1) 经常受到冲击或振动。
(2) 长期使用导致设备老化或疲劳。
(3) 腐蚀或受到化学侵蚀。
(4) 压力容器设计或制造过程存在缺陷。
(5) 不正常操作或使用不当。
总之,对于一些需要使用压力容器的行业和领域,人们必须要关注和遵守相关的标准和规范,才能确保设备的安全稳定运行。
压力容器设计基础讲义第一部分、压力容器设计基础知识第一章压力容器失效模式压力容器在载荷作用下丧失了正常的工作能力称为失效。
压力容器所考虑的失效模式主要为断裂、泄漏、过度变形和失稳。
压力容器失效常以三种形式表现出来:强度、刚度、稳定性。
压力容器建造标准中主要考虑的失效模式:1)短期失效模式:(1)脆性断裂(2)韧性断裂(3)超量变形引起的接头泄漏(4)超量局部应变引起的裂纹形成或韧性剪切(5)弹性、塑性或弹塑性失稳2)长期失效模式:(1)蠕变断裂(2)蠕变超量变形(3)蠕变失稳(4)冲蚀、腐蚀(5)环境助长开裂,如:应力腐蚀开裂3)循环失效(1)扩展性塑性变形(2)交替塑性(3)弹性应变疲劳或弹-塑性应变疲劳(4)环境助长疲劳,如:腐蚀疲劳第二章 GB150适用范围(1)适用的设计压力①对于钢制容器不大于35MPa;②其它金属材料制容器的设计压力适用范围按相应引用标准确定。
(2)适用的设计温度范围①设计温度范围:-269℃~900℃。
②钢制容器不得超过按GB 150.2 中列入材料的允许使用温度范围。
③其他金属材料制容器按本部分相应引用标准中列入的材料允许使用温度确定。
(3)下列各类容器不在标准的适用范围内:①设计压力低于0.1MPa且真空度低于0.02MPa的容器;②《移动式压力容器安全监察规程》管辖的容器;③旋转或往复运动机械设备中自成整体或作为部件的受压器室(如泵壳、压缩机外壳、涡轮机外壳、液压缸等);④核能装置中存在中子辐射损伤失效风险的容器;⑤直接火焰加热的容器;⑥内直径(对非圆形截面,指截面内边界的最大几何尺寸,如:矩形为对角线,椭圆为长轴)小于150mm的容器;⑦搪玻璃容器和制冷空调行业中另有国家标准或行业标准的容器。
(4)对不能按 GB 150.3确定结构尺寸的容器或受压元件,允许采用以下方法进行设计:①按照附录C的规定,进行验证性实验分析(如实验应力分析、验证性液压试验)。
②按照附录D的规定,利用可比的已投入使用的结构进行对比经验设计。
压力容器的强度与设计(江苏省压力容器检验员培训考核班专题讲座)董金善南京工业大学过程装备研究所第一节概述一、容器的结构在工厂中可以看到许多设备。
在这些设备中,有的用来储存物料,如各种储罐、计量罐;有的进行热量交换,如各种换热器、蒸发器、冷凝器、结晶器等;有的用来进行化学反应,如反应釜、聚合釜、发酵罐、合成塔等。
这些设备虽然尺寸大小不一,形状结构不同,内部构件的型式更是多种多样,但是它们都有一个外壳,这个外壳就叫作容器。
容器一般是由筒体(圆筒)、封头(端盖)、法兰、支座、接管、人孔(手孔)、视镜、安全附件等组成(图1)。
它们统称为压力容器通用零部件,常、低压压力容器通用零部件大都已有标准,设计时可直接选用。
图-1 容器的结构二、压力容器常用标准1.国务院《特种设备安全监察条例》(2003)2.国家质量技术监督局《压力容器安全技术监察规程》 (1999)3.国家质量监督检验检疫总局《特种设备行政许可工作程序》 (2003)4.国家质量监督检验检疫总局《特种设备行政许可实施办法》 (2003)5.国家质量监督检验检疫总局《特种设备行政许可分级实施范围》(2003)6.国家质量监督检验检疫总局《锅炉压力容器制造监督管理办法》(2003)7.国家质量监督检验检疫总局《锅炉压力容器制造许可工作程序》(2003)8.国家质量监督检验检疫总局《锅炉压力容器制造许可条件》 (2003)9.国家质量监督检验检疫总局《锅炉压力容器产品安全性能监督检验规则》 (2003)10.国家质量监督检验检疫总局《压力容器压力管道设计单位资格许可与管理规则》 (2002)11.G B150-1998《钢制压力容器》12.G B151-1999《管壳式换热器》13.J B/T4735-1997《钢制焊接常压容器》14.J B4710-1992《钢制塔式容器》15.J B4731-XXXX《钢制卧式容器》16.H G/T20569-1994《机械搅拌设备》17.G B12337-1998《钢制球形储罐》18.G B16749-1997《压力容器波形膨胀节》19.J B4732-1994《钢制压力容器-分析设计标准》20.H G20580-1998《钢制化工容器设计基础规定》21.H G20581-1998《钢制化工容器材料选用规定》22.H G20582-1998《钢制化工容器强度计算规定》23.H G20583-1998《钢制化工容器结构设计规定》24.H G20584-1998《钢制化工容器制造技术要求》25.H G20585-1998《钢制低温压力容器技术规定》26.H G20531-1993《铸钢、铸铁容器》27.J B/T4734-2002《铝制焊接容器》28.J B/T4745-2002《钛制焊接容器》29.G B/T15386-1994《空冷式换热器》30.G B16409-1996《板式换热器》31.H G/T2650-1995《钢制管式换热器》32.G B5842-1996《液化石油气钢瓶》33.J B/T4750-2003《制冷装置用压力容器》34.J B/T6539-1992《微型空气压缩机用钢制压力容器》35.J B8701-1998《制冷用板式换热器》36.J B/T4751-2003《螺旋板式换热器》37.G B18442-2001《低温绝热压力容器》38.G B12130-1995《医用高压氧舱》39.G B9019-1988《压力容器公称直径》40.J B/T4700~4707-2000《压力容器法兰》41.H G20592~20635-2009《钢制管法兰、垫片、紧固件》42.G B/T9112~9124-2000《钢制管法兰》43.J B/T74~90-1994《管路法兰及垫片》44.J B/T4746-2002《钢制压力容器用封头》45.J B/T4736-2002《补强圈》46.H GJ527-1990《补强管》47.J B/T4712-1992《鞍式支座》48.J B/T4713-2007《腿式支座》49.J B/T4724-1992《支承式支座》50.J B/T4725-1992《耳式支座》51.G B16749-1997《波形膨胀节》52.H G501~502-1986《压力容器视镜》53.H G21588~21591-1995《玻璃板液面计》54.H G21592-95《玻璃管液面计》55.H G/T21584-95《磁性液面计》56.H G21514~21527-1995《碳钢、低合金钢人孔》57.H G21528~21535-1995《碳钢、低合金钢人孔》58.H GJ504~509-1986《不锈钢人孔》59.H GJ510~513-1986《不锈钢手孔》60.H G21537-1992《填料箱》61.H G21571~21572-1995《机械密封》62.H G21563~21569-1995《搅拌传动装置》63.H G5-220~222-1965《搅拌器》64.H G/T21574-1994《设备吊耳》65.G B41-1986《I型六角螺母-C级》66.G B6170-1986《I型六角螺母-A和B级》67.G B5780-1986《六角头螺栓-C级》68.G B5782-1986《六角头螺栓-A和B级》69.J B/T4714-1992《浮头式换热器和冷凝器型式与基本参数》70.J B/T4715-1992《固定管板式换热器型式与基本参数》71.J B/T4716-1992《立式热虹吸式重沸器型式与基本参数》72.J B/T4717-1992《U型管式换热器型式与基本参数》73.H G21503-1992《钢制固定式薄管板列管换热器》74.G B567-1989《拱形金属爆破片形式与参数》75.G B/T14566-93《正形金属爆破片形式与参数》76.G B/T14567-93《反形金属爆破片形式与参数》77.G B/T14568-93《开缝形金属爆破片形式与参数》78.H G/T20668-2000《化工设备设计文件编制规定》79.T CED41002-2000《化工设备图样技术要求》80.G B6654-1996《压力容器用钢板》81.G B713-1986《锅炉用碳素钢和低合金钢板》82.G B3531-1996《低温压力容器用低合金钢钢板》83.G B4237-1992《不锈钢热轧钢板》84.G B8165-1987《不锈钢复合钢板》85.G B8163-1999《输送流体用无缝钢管》86.G B9948-1988《石油裂化用无缝钢管》87.G B6479-1986《化肥设备用高压无缝钢管》88.G B5310-1995《高压锅炉用无缝钢管》89.G B/T14976-94《流体输送不锈钢无缝钢管》90.G B13296-91《锅炉、热交换器用不锈钢无缝钢管》91.J B4726-2000《压力容器用碳素钢和低合金钢锻件》92.J B4727-2000《低温压力容器用碳素钢和低合金钢锻件》93.J B4728-2000《压力容器不锈钢锻件》94.G B/T983-1995《不锈钢焊条》95.G B/T5117-1995《碳钢焊条》96.G B/T5118-1995《低合金钢焊条》97.G B5293-1985《碳素钢埋弧焊用焊剂》98.G B12470-1990《低合金钢埋弧焊用焊剂》99.G B/T14957-1994《熔化焊用钢丝》100.GB/T14958-1994《气体保护焊用钢丝》101.GB/T8110-1995《气体保护电弧焊用碳钢、低合金钢焊丝》102.JB/T2835-1979《低温钢焊条》103.JB4708-2000《钢制压力容器焊接工艺评定》104.JB/T4709-2000《钢制压力容器焊接规程》105.JB4730-1994《压力容器无损检测》106.JB/T4711-2003《压力容器涂敷与运输包装》107.JB/T613-1993《锅炉受压元件焊接技术条件》108.HG20660-2000《压力容器中化学介质毒性危害和爆炸危险程度分类》109.GB/T18182-2000《金属压力容器声发射检测及结果评价方法》三、压力容器许可证1. 锅炉制造许可证3. 压力容器设计许可证注:①锅炉设计图纸由省级交由被核准的检验检测机构鉴定;②气瓶(B类)、氧舱设计图纸由总局核准的检验检测机构鉴定;③客运索道、大型友游乐设施设计图纸由总局核准的检验检测机构鉴定。