压力容器的分析设计
- 格式:ppt
- 大小:843.50 KB
- 文档页数:59
压力容器设计分析模型方案1问题分析本次分析是针对换热器标准椭圆形封头(S30408)开孔进行分析。
图1 部件图筒体内径D i=850mm,壁厚t=12mm;标准椭圆形封头内径D i=850mm,壁厚t=12mm;在椭圆封头顶端开孔,且接管尺寸为φ524×20mm,筒体侧面开孔尺寸DN=50mm,且距离筒体上端部为250mm。
根据GB150-2011第152页得,凸形封头D i,得本模型中最大开孔应为425mm,显然不符合或球壳上开孔最大直径d≤12GB150-2011的规定,因此不能采用常规设计。
则应按照JB4732-95进行分析设计,我们可以通过有限元建立模型进行应力评定。
在筒体上有一个开孔,对于一般钢材泊松比v=0.3,应力衰减长度x=2.5√Rt=178.54mm<250mm,因此在利用ansys建模时可以忽略其应力影响。
通过观察发现本模型可以采用对称型建立模型,同时在接管顶端施加端面平衡载荷P c=pD i2,其中内压p=1.6MPa。
(D i+2t)2−D i22基本参数2.1 设计参数由模型总图得管程设计压力p=1.6MPa,设计温度为-10~130℃,取T=130℃。
取筒体长度L=500mm,标准椭圆形封头直边段L1=25.5mm,大开空接管外伸长度L2=212mm,接管倒角R=5mm。
2.2 材料参数由GB150-2011和JB4732-95标准,查得S30408不锈钢在该温度下材料性能参数如下:根据GB150-2011第84页插值得:E130℃=187GPa根据GB150-2011第49页插值得:[σ]130℃=137MPa根据JB4732-95表6-2钢材的设计应力强度,通过插值得到相应设计温度下的S30408材料的设计应力强度为:σs20℃=205MPa;厚度为3~60mm时,S m130℃=137MPa3有限元建模3.1几何模型简化选用plane183单元,在options中K3设置Axisymmetric,建立几何模型。
压力容器设计:技术策略与方案深度分析压力容器(Pressure Vessel)是一种普遍应用于工业领域的设备,它可以承受高压、高温等极端条件下的工作环境。
随着科技的不断发展,人们对压力容器的要求也越来越高,需要设计出更加稳定、可靠、安全的压力容器。
本文将就压力容器设计的技术策略与方案进行深入分析,并通过2023年的前瞻展望,展望未来压力容器领域的发展趋势。
一、压力容器设计中需要考虑的因素压力容器设计需要考虑的因素有很多,包括但不限于以下内容:1.材料选择压力容器的材料选择直接关系到容器的牢固程度和承载能力。
一般来说,压力容器可以采用不锈钢、合金钢、钛合金等材料。
2.结构设计良好的结构设计可以提高压力容器的抗压性能。
设计包括容器壳体结构形式、截面形状和尺寸、孔口的设置和布局等方面。
3.制造工艺制造工艺是保证压力容器制造质量和使用寿命的重要因素。
制造工艺包括热处理、造型、焊接、压力测试等过程。
4.使用环境压力容器的使用环境是影响容器使用寿命的关键因素,需要考虑温度、压力骤变等外界因素。
二、大规模工业制造对压力容器设计的影响随着制造业的不断发展,越来越多的企业开始使用大规模工业制造方法来生产压力容器。
大规模工业制造在提高生产效率的同时也加大了压力容器的制造难度。
这就需要在设计压力容器时更加注重规范标准和精细化技术。
为了保证生产效率和质量,压力容器制造需要遵循相关标准规范,例如ASME BPVC、EN 13445、GB 150等。
在设计过程中,应遵循相关标准规范,保证压力容器在材料选择、结构设计、制造工艺、压力测试等方面的安全性和可靠性,从而保障使用过程中的安全。
在大规模工业制造下,压力容器制造除了考虑工艺上的难点,还需要更高的自动化技术和专业化生产设备。
尤其在焊接技术方面,自动化水平提高将有利于提高生产效率,减少制造误差。
三、未来的压力容器设计趋势未来压力容器设计趋势主要表现在以下几个方面:1.轻量化设计轻量化设计是未来压力容器设计的一个重要趋势。
1 问题描述利用ANSYS软件对压力容器用标准椭圆形封头和半球形封头进行应力分析,并沿着压力容器轴向方向绘制笛卡尔坐标系下X、Y、Z方向应力曲线,三个主应力曲线以及第一强度理论,第三强度理论、第四强度理论计算方法下的应力理论值和应力曲线。
相关参数:筒体内径:400mm,筒体长度为1000mm,筒体、封头厚度均为5mm,材料弹性模量为206GPa,泊松比为0.3,内压P=1MPa。
2 建模过程:单元选取:本题研究的是薄壁压力容器,对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
材料特性:ANSYS 结构分析材料属性有线性 (Linear)、非线性 (Nolinear)、密度(Density)、热膨胀 (Thermal Expansion)、阻尼 (Damping)、摩擦系数 ( Friction Coefficient)、特殊材料 (Specialized Materials) 等七种。
本题选取材料模型为线弹性材料,材料参数E=206GPa,μ=0.3。
几何建模:本题采用实体建模,该方法适合于复杂模型,尤其适合于3D实体建模,需人工处理的数据量小,效率高。
允许对节点和单元实施不同的几何操作,支持布尔操作(相加、相减、相交等),支持ANSYS优化设计功能,可以进行自适应网格划分,可以进行局部网格划分,便于修正与改进。
本题采用的是从下往上的建模方式。
先建立点,再连线画圆,然后将线沿轴线旋转,得到压力容器模型,上封头为标准椭圆形封头,下封头为球形封头。
网格划分:对有限元分析,ANSYS有四种网格划分方法,自由网格划分、映射网格划分,延伸网格划分和自适应网格划分。
本题采用自由网格划分,自由网格划分功能十分强大,没有单元形状的限制,网格也不遵循任何的模式,因此适用于对复杂形状的面和体网格划分。
压力容器的设计问题分析摘要:本论文旨在对压力容器的设计问题进行分析,并探讨相关的挑战和未来发展方向。
首先介绍了压力容器的定义、分类和设计原则,以及力学性能要求。
然后详细讨论了材料选择与应力分析、结构设计与优化、焊接和连接技术,以及压力容器的安全性评估和监测等关键问题。
在现有问题和挑战方面,指出了安全性问题、材料选择和性能、环境影响以及监测与维护等方面的挑战。
本论文的研究有助于同业者更好地理解和解决压力容器设计中的问题,提高其安全性、可靠性和可持续性。
关键词:压力容器,容器设计,问题分析,探讨1压力容器设计的基本原理1.1 压力容器的定义和分类压力容器是指能够承受一定的内外压力,并用于储存、运输或处理液体、气体或多相物质的设备。
它们通常由金属或合金材料制造而成,具有一定的强度和密封性能。
现如今,压力容器广泛应用于化工、石油、能源、制药、食品等不同的领域。
根据结构和功能特点的不同,压力容器可分为以下几类:(1)容器类型:常见的容器类型包括储罐、反应器、分离器、换热器等等。
(2)压力等级:根据承受的压力范围,压力容器可分为低压容器、中压容器以及高压容器。
(3)安装位置:压力容器可以分为立式容器、卧式容器和倾斜式容器,根据实际需要安装在不同位置和方向上。
1.2 压力容器设计的基本原则和流程压力容器设计需要遵循以下基本原则和流程:(1)确定设计条件:确定容器的工作压力和温度等不同的设计条件,并根据相关规范和标准进行选择。
(2)材料选择:根据设计条件、介质性质和环境要求选择合适的材料,比如常用的钢材、合金材料等等。
(3)结构设计:设计容器的结构形式、壁厚、尺寸和连接方式等,以满足强度、刚度和泄漏要求。
(4)强度校核:进行容器的应力分析和强度校核,确保设计的容器在工作条件下具有足够的强度和稳定性。
(5)密封性设计:确保容器具有良好的密封性能,防止泄漏和安全隐患的发生。
(6)监测和维护设计:考虑容器的监测和维护手段,以保证容器安全运行和使用寿命。
低温压力容器的设计分析低温压力容器是指在低于零度的环境中工作的容器,通常用于存储和运输液态气体,液氮、液氧、液氩等均为常见的低温液体。
由于低温环境下物质的特性会发生变化,因此低温压力容器的设计必须考虑到这些因素,以确保容器在安全可靠地工作。
本文将对低温压力容器的设计要点和分析进行探讨。
一、设计要点1.材料选用2.结构设计3.绝热设计由于低温液体的蒸发潜热较高,容器内的温度会迅速下降,导致容器表面结霜。
为了减少热量的散失,提高容器的绝热性能是必要的。
可以采取增加绝热层厚度、使用保温材料等措施来提高容器的绝热性能。
4.安全阀设计低温液体具有较大的蒸气压,一旦容器内压力过高,就会导致容器爆炸。
因此,在设计中必须考虑安全阀的设置,确保在容器内压力超过设定值时能够及时安全地排放压力。
5.排水设计由于低温液体的存在,容器内部会有凝露水和结冰现象。
这些水汽会降低容器的强度和耐腐蚀性,因此必须设计合理的排水系统,定期排除容器内的凝露水和结冰。
6.储罐涂层为了保护容器免受腐蚀和低温影响,可以在容器表面涂上特殊的防腐涂层。
这些涂层能够增强容器的抗腐蚀性能,延长容器的使用寿命。
二、设计分析针对低温压力容器的设计,需要进行结构分析和性能测试,以验证容器的强度和安全性。
1.结构分析在设计初期,需要进行有限元分析等结构分析,评估容器的受力和变形情况。
通过模拟不同工况下的受力情况,确定容器的最大受力位置和最大应力值,以确保容器在工作过程中不会发生结构破坏。
2.强度测试设计完成后,需要进行强度测试,验证容器的最大承载能力是否符合设计要求。
常见的测试方法包括液压试验、氢氦试验、抗冲击测试等。
通过这些测试,可以验证容器的强度和安全性,确保容器在工作中不会发生泄漏或爆炸等情况。
3.低温性能测试设计完成后,还需要进行低温性能测试,评估容器在低温环境下的工作性能。
通过模拟低温环境下的工作情况,测试容器在不同温度下的性能表现,验证容器的低温抗裂性能和绝热性能。
压力容器设计与强度分析研究随着现代工业的不断发展,压力容器作为一种重要的设备,在许多工业领域发挥着重要的作用。
压力容器是指用于封装气体或液体的设备,其内部压力高于大气压力。
压力容器主要应用于石油化工、能源、化工、航空航天等领域。
首先,压力容器的设计至关重要。
在整个设计过程中,需要考虑许多因素,例如容器的尺寸、形状、承载能力等。
设计师需要根据使用环境和工作条件来选择合适的材料和结构。
此外,还需要遵循一系列国际标准和规范,确保容器的设计在实际运行中具有良好的可靠性和安全性。
在压力容器的设计中,其中一个重要的方面是强度分析。
强度分析是指对容器的主要应力和变形进行计算和评估。
通过强度分析可以确保容器在承受内外部压力的同时保持结构的稳定和完整性。
在进行强度分析时,需要考虑多种因素。
首先是容器的载荷计算,即确定所需承载力的大小。
载荷计算需要考虑到容器内外的压力、温度、材料特性以及各种工况下的加载情况,以确保设计的安全性和可靠性。
其次是材料的强度特性,包括材料的屈服强度、抗拉强度和断裂韧性等。
通过对材料的强度特性进行分析和测试,可以更好地选择适合的材料,对容器进行设计和优化。
最后还需要考虑到容器的边界条件和约束条件,以及在容器使用过程中可能产生的各种外力和环境因素。
在进行强度分析时,可以利用各种计算方法和工程软件。
常用的方法包括有限元分析、应力强度法和层板理论等。
有限元分析是一种广泛应用的计算方法,它可以将复杂的结构分割成许多小的有限元进行分析,通过求解各个有限元的应力和变形,最终得出整个结构的应力分布和变形情况。
应力强度法是一种基于结构应力的分析方法,通过计算结构的应力强度因子,来评估结构的抗裂性能。
层板理论是一种应用于薄壁结构的计算方法,通过分析结构的层板应力和变形,来评估结构的强度和稳定性。
除了设计和强度分析之外,还需要对压力容器进行一系列的检验和测试。
这些检验和测试包括可视检验、射线检验、超声波检验、涡流检验等。
压力容器设计方法分析对比压力容器在化工、石化、工程机械等领域得到广泛的应用,而正确的设计是压力容器安全运行的基础。
本文将介绍三种常用的压力容器设计方法,并分析其各自的优缺点,以便应用者根据实际需求选用合适的设计方法。
1. ASME VIII-1 标准ASME VIII-1 标准是美国机械工程师学会发布的压力容器设计规范,适用于低压容器 (设计压力不大于 10MPa)。
该标准要求设计考虑容器的载荷、材料性能、焊接、校核、检验等各方面问题,并对各个部位的厚度、连接件的要求以及强度校核进行详细规定。
ASME VIII-1 标准以其全面、详细的设计要求而得到了广泛应用。
优点:•ASME VIII-1 标准设计要求全面、严谨,设计过程具有一定保障。
•认可度高,符合国际标准,可以接受国际认可。
缺点:•该标准要求详细、繁琐,需要对标准内容熟悉,且容器设计需要由认可的专业人员进行。
•需要经过审查与认证,过程较为繁琐。
2. CODAP 标准CODAP (Construction Operation Design of Pressure Vessels) 标准是欧洲标准委员会发布的压力容器设计规范,适用于设计压力不超过3000MPa 的容器。
通过规定基本要求、公差、厚度、防腐、焊接、检验、强度校核等方面的规范,保证了压力容器的安全性和可靠性。
优点:•CODAP 标准对压力容器的设计和制造过程提供了全面的规范,以保证容器在长时间的使用中保持良好的使用性能。
•该标准可以适用不同条件下的容器,使得设计者可以根据实际条件来选择不同的设计方案。
•CODAP 标准的认同度很高,在国际上具有广泛的通用性和识别度。
缺点:•该标准的设计过程繁琐,需要一定的设计经验和专业技能。
•CODAP 标准可能不适合一些非欧洲的国家,需要根据不同的国家标准进行认证。
3. CNS 三合标准CNS 三合标准是由中华民国国家标准局颁布的压力容器设计标准,适用于设计压力不超过 50MPa 的容器。
压力容器分析设计标准
压力容器是工业生产中常见的设备,用于储存或加工压缩气体、液体或蒸汽。
由于其特殊的工作环境和功能,压力容器的设计、制造和使用需要严格遵守一系列的标准和规定,以确保其安全可靠地运行。
首先,压力容器的设计必须符合国家相关标准和规范,如《压力容器设计规范》GB150、《钢制压力容器》GB151等。
这些标准规定了压力容器的设计参数、结构要求、材料选用、焊接工艺、安全阀选型等方面的内容,确保了压力容器在设计阶段就具备了安全可靠的基础。
其次,压力容器的制造需要严格按照《压力容器制造规范》GB151中的要求进行。
制造过程中需要严格控制材料的质量、焊接工艺的可靠性、表面处理的完整性等,以确保制造出的压力容器符合设计要求,并且能够在实际工作中承受所需的压力和温度。
除了设计和制造阶段的标准要求,压力容器的安装、使用和维护也需要遵守相
应的标准和规范。
例如,在安装过程中需要保证容器的支撑结构稳固可靠,管道连接紧密无泄漏,安全阀和压力表的选型和安装符合要求。
在使用过程中需要定期进行压力测试和安全阀的调整,确保容器在正常工作范围内运行。
在维护过程中需要按照规定的周期进行检查和维护,及时发现并处理潜在的安全隐患。
总的来说,压力容器的分析设计标准涵盖了从设计、制造到使用和维护的全过程,这些标准的遵守是保证压力容器安全运行的基础。
只有严格按照标准要求进行设计、制造和使用,才能确保压力容器在工业生产中发挥应有的作用,避免因为安全隐患而导致事故发生。
因此,对于从事压力容器相关工作的人员来说,熟悉并遵守相关标准和规范是至关重要的。
压力容器结构特性分析与设计1. 引言压力容器作为一种用于储存或输送物质的设备,广泛应用于工业生产和民用领域。
设计和使用压力容器需要考虑其结构特性,确保其能够安全可靠地承受内外压力。
本文将对压力容器结构的特性进行分析与设计。
2. 压力容器结构特性压力容器的结构特性主要包括强度、刚度和稳定性。
在设计中,强度是最基本的要求,即容器在最大工作压力下不发生塑性变形或破坏。
刚度则确保容器在内外压力作用下不会产生过大的变形,从而保证其功能的正常发挥。
稳定性考虑容器在受到外力或其他扰动时的抗倾覆和抗滚动能力。
3. 强度分析与设计压力容器的强度分析与设计主要考虑容器壁的应力分布和薄弱点的强化。
采用有限元分析等方法可以得到应力分布情况,进而对壁厚进行选择和优化。
例如,对于圆筒形容器,应力最大的地方一般位于筒体与头部的交界处,因此可以适当增加这一区域的壁厚以提高强度。
4. 刚度分析与设计刚度分析与设计旨在确保容器在工作过程中不变形或过度变形。
一种常用的方法是通过增加支撑结构或加装支撑环使容器刚度增加。
另外,也可以通过优化容器的几何形状来增加其刚度。
例如,对于圆筒形容器,增加半径或者长度可以大幅提高刚度。
5. 稳定性分析与设计稳定性分析与设计主要考虑容器在受到外力或其他扰动时倾覆和滚动的问题。
通过合理的设计和选择支撑结构、引入抗滚环或抗倾覆支撑装置等手段,可以提高容器的稳定性。
此外,对于高压容器,还可以考虑采用多层壳体结构,增加容器的整体刚度和稳定性。
6. 材料选择与焊接技术材料选择对压力容器的结构特性至关重要。
通常选择具有良好的强度和耐蚀性的材料,如碳钢、不锈钢、合金钢等。
对于一些耐高温或特殊介质的容器,还可以选择高温合金材料。
此外,焊接技术在容器的制造过程中也起到重要的作用,高质量的焊接可以提高容器的强度和密封性。
7. 结语压力容器作为一种重要的储存和输送设备,在设计和使用中必须考虑其结构特性,确保其安全可靠。
本文对压力容器结构的特性进行了分析与设计,并介绍了强度、刚度和稳定性的考虑要点。
第1章压力容器分析设计概述1.1 压力容器基本知识1.2 压力容器设计规范13压力容器分析设计思想1.3 压力容器分析设计思想从业人员要求14压力容器分析设计从业人员要求 1.4 压力容器分析设计从业人员要求1.1压力容器基本知识1.1 压力容器基本知识(1)压力容器定义《特种设备安全监察条例》的第八章“附则”中:压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压),且压力与容为最高工作压力大于或者等于(表压),且压力与容积的乘积大于或者等于2.5MPa·L的气体、液化气体和最高工作温度高于或者等于标准沸点的液体的固定式容器和移动式容器作温度高于或者等于标准沸点的液体的固定式容器和移动式容器;盛装公称工作压力大于或者等于0.2MPa(表压),且压力与容积的乘积大于或者等于1.0MPa·L的气体、液化气体和标准沸点等于或者低于60℃液体的气瓶;氧舱等。
(2)压力容器分类低压容器(代号L)0.1MPa≤p<1.6MPa中压容器(代号M) 1.6MPa≤p <10MPa16MPa≤高压容器(代号H)10MPa≤p <100MPa超高压容器(代号U)p ≥100MPa按《压力容器安全技术监察规程》(99版、09版):按压力容器安全技术监察规程①第三类压力容器高压容器;中压容器(极度毒性和高度危害)②第二类压力容器中压容器;低压容器(极度毒性和高度危害)③第类压力容器第一类压力容器除第二和第三类外,所有低压容器按《固定式压力容器安全技术监察规程》(09版)第一组介质:第介质毒性程度为极度危害、高度危害的化学介质;易燃介质;液化气体第二组介质:由除第组以外的介质组成如水蒸气氮气等由除第一组以外的介质组成,如水蒸气、氮气等第类第三类第二类第一组(3)压力容器失效形式强度失效:爆破、过度变形稳定性失效:失稳稳定性失效失稳刚性失效:泄漏疲劳失效:疲劳开裂腐蚀失效:均匀腐蚀、晶间腐蚀、应力腐蚀压力容器常规设计计算一般要解决三类问题:强度:在内压作用下不允许产生塑性(永久)变形,是涉及安全的主要问题,如筒体、封头等;刚性:在外力作用(制造、运输、安装与使用)下产生不允刚性在外力作用(制造运输安装与使用)下产生不允许的弹性变形,如法兰(密封)、管板等;稳定性:在外压作用下防止突然失去原有形状的稳定性,如在外压作用下防止突然失去原有形状的稳定性如外压及真空容器。
压力容器的稳定性分析与设计优化压力容器是一种能够储存和运输高压介质的设备,广泛应用于石化、化工、能源、医药等众多领域。
然而,由于高压环境下容器受力情况复杂,容器的稳定性问题一直是工程师们关注的焦点。
本文将从压力容器的稳定性分析和设计优化两个方面进行论述,探讨如何在容器设计中降低事故风险,提高运行安全性。
一、压力容器的稳定性分析1. 弯曲稳定性分析在高压环境下,容器会承受来自介质内部以及外部环境的力,容器壁的弯曲稳定性是保证容器不发生变形和破裂的重要因素。
因此,对容器的弯曲稳定性进行分析是容器设计的基础。
首先,需要计算容器在弯曲时的应力和应变分布情况,通过有限元分析等手段,确定容器壁的最大应力点和最大应力值。
然后,结合材料的力学性能,进行强度校核,确保容器能够满足正常使用条件下的强度需求。
2. 局部稳定性分析容器壁的局部几何缺陷或开口可能导致局部应力集中,引发容器的局部失稳或破裂。
因此,在容器设计中需要对局部稳定性进行充分考虑。
针对容器壁的几何缺陷或开口,可以采用应力集中系数和强度减少系数等方法进行评估。
通过计算得到的应力集中系数和强度减少系数,判断局部失稳的可能性,并进行优化设计,降低缺陷处的应力集中程度,提高容器的局部稳定性。
二、压力容器的设计优化1. 材料选择与工艺优化在压力容器的设计过程中,正确选择合适的材料对提高容器的稳定性至关重要。
材料的力学性能、耐腐蚀性能以及可焊接性等因素都应该被考虑。
同时,还需要优化焊接工艺,避免焊缝处的强度降低,以提高容器的整体稳定性。
2. 结构优化与加强设计容器的结构设计对其稳定性具有重要影响。
合理的结构设计可以提高容器的整体刚度,降低容器的应力集中程度,从而提高容器的稳定性。
在结构设计过程中,可以采用有限元分析等先进的计算方法,优化容器的结构,减少质量,提高容器的刚度,从而提高容器的整体稳定性。
3. 考虑温度和压力变化容器在运行过程中,温度和压力的变化会对容器的稳定性产生影响。
压力容器分析设计的应力分类法与塑性分析法压力容器在石油化工行业的应用非常广泛,通过分析压力容器分析设计的应力分类法与塑性分析法的发展,可以实现压力容器应用前景的扩大,并为其良好运行提供参考意见。
进一步推动压力容器在石油化工行业的应用,有效提高压力容器的经济效益。
标签:压力容器;应力分类法;塑性分析法近年来很多研究学者对压力容器的工作原理、性能等方面进行研究,并取得了显著效果。
以往的压力容器在设计过程中,都是采用薄膜应力的方式进行设计,将其他应力影响包括在安全系数之中。
但是在实际应用过程中,压力容器及承压部件中,除去介质压力所形成的薄膜应力之外,还会受到热胀冷缩变形而导致的温差应力以及局部应力,因此,在进行压力分析设计时,需要利用应力分类法和塑性分析法,才能够明确不同应力对压力容器安全性的影响,从而有效提高压力容器的科学性和合理性。
1应力分类法1.1一次应力一次应力是指压力容器因为受到外载荷的影响,压力容器部件出现剪应力。
一次应力超过材料屈服极限时压力容器就会发生变形破坏。
主要可以分为以下几种情况:第一,总体薄膜应力。
因压力容器受到内压的影响在壳体上出现薄膜应力,总体薄膜应力会在整个壳体上均匀分布,当应力超过材料屈服极限时,壳体壁厚的材料会发生变形。
第二,局部薄膜应力。
是指压力容器的局部范围内,应受到机械载荷或者压力所导致的薄膜应力,其中主要包括支座应力以及力距所形成的薄膜应力。
第三,一次弯曲应力。
由于压力容器受到内压作用的影响,在平板盖中央位置会出现弯曲引力,随着载荷的不断增加,应力会进行重新调整。
1.2二次应力二次应力是指压力容器部件受到约束而出现的剪应力。
二次应力满足变形条件。
例如,在压力容器的半球形封头以及薄壁圆筒的连接位置,由于受到压力容器内压的作用,两者会出现不同的径向位移,因此两者的连接部位会形成相互约束关系,出现变形协调情况。
在这种情况下,连接部位会附加剪力应力,从而形成二次应力。