平面4自由度欠驱动机器人的位置和姿态控制
- 格式:pdf
- 大小:1.79 MB
- 文档页数:10
四自由度机器人反解
1.四自由度机器人反解的概念
四自由度机器人反解是指已知机器人末端执行器的姿态和位置,需要计算出机械臂各个关节的角度,以便机械臂能够完成特定的工作。
2.四自由度机器人反解的基本原理
四自由度机器人的姿态可以用三个欧拉角以及末端执行器的坐标来表示。
然后,可以使用正逆运动学的方法来计算机械臂各个关节的角度。
正运动学是指已知各个关节的角度和机械臂的初始姿态,来计算机械臂末端执行器的位置和姿态。
而反运动学则是相反的——已知机械臂的末端执行器的位置和姿态,来计算各个关节的角度。
3.四自由度机器人反解的计算方法
四自由度机器人的反解可以使用雅克比矩阵或牛顿-拉夫森方法来计算。
首先,通过正运动学来确定机械臂的末端执行器的位置和姿态,并计算出雅克比矩阵或牛顿-拉夫森方法中需要的其他参数。
然后,使用逆矩阵来计算雅克比矩阵的逆矩阵,或者使用牛顿-拉夫森方法来迭代计算机械臂各个关节的角度,直到误差满足要求为止。
4.四自由度机器人反解的应用
四自由度机器人反解在许多工业应用中被广泛应用,如在制造业中的精密加工、自动化生产线中的零件组装、以及医疗设备中的手术操作等领域,都需要机器人反解来协助完成工作。
在未来,随着人工智能和机器人技术的不断发展,四自由度机器人反解的应用将会更加广泛,并且会在许多领域中发挥越来越重要的作用。
1 绪论1.1四自由度的工业机器人的概念四自由度的工业机器人是一个在三维空间中具有较多自由度,并能实现较多拟人动作和功能的机器,而工业四自由度的工业机器人则是在工业生产上应用的四自由度的工业机器人。
美国四自由度的工业机器人工业协会提出的工业四自由度的工业机器人定义为:“四自由度的工业机器人是一种可重复编程和多功能的,用来搬运材料、零件、工具的操作机”。
英国和日本四自由度的工业机器人协会也采用了类似的定义。
我国的国家标准GB/T12643-90将工业四自由度的工业机器人定义为:“四自由度的工业机器人是一种能自动定位控制、可重复编程的、多功能的、多自由度的操作机。
能搬运材料、零件或操持工具,用以完成各种作业”。
而将操作机定义为:“具有和人手臂相似的动作功能,可在空间抓放物体或进行其它操作的机械装置”。
四自由度的工业机器人系统一般由操作机、驱动单元、控制装置和为使四自由度的工业机器人进行作业而要求的外部设备组成。
1.1.1操作机操作机是四自由度的工业机器人完成作业的实体,它具有和人手臂相似的动作功能。
通常由下列部分组成:a.末端执行器又称手部,是四自由度的工业机器人直接执行工作的装置,并可设置夹持器、工具、传感器等,是工业四自由度的工业机器人直接与工作对象接触以完成作业的机构。
b. 手腕是支承和调整末端执行器姿态的部件,主要用来确定和改变末端执行器的方位和扩大手臂的动作范围,一般有2~3个回转自由度以调整末端执行器的姿态。
有些专用四自由度的工业机器人可以没有手腕而直接将末端执行器安装在手臂的端部。
c. 手臂它由四自由度的工业机器人的动力关节和连接杆件等构成,是用于支承和调整手腕和末端执行器位置的部件。
手臂有时包括肘关节和肩关节,即手臂与手臂间。
手臂与机座间用关节连接,因而扩大了末端执行器姿态的变化范围和运动范围。
d. 机座有时称为立柱,是工业四自由度的工业机器人机构中相对固定并承受相应的力的基础部件。
机械设计四自由度机器人机器人在现代工业生产中发挥着重要的作用,它能够替代人工完成一些重复性的、危险性的和精确度高的工作。
在众多机器人中,四自由度机器人是一种常见且广泛应用的机器人,它具有较好的灵活性和适用性,能够适应不同工作任务的需求。
四自由度机器人是指机器人系统具有4个运动自由度,即可以在三维空间内进行四种基本运动:平移运动、旋转运动、摆动运动和夹持运动。
这种设计使得四自由度机器人具有更强的机械臂灵活性和适应性,能够完成更多种类的工作任务。
在四自由度机器人的设计中,需要考虑机器人的结构和运动机构的设计。
机器人的结构是指机器人整体的组成和布局,包括机械臂、末端执行器、控制系统等。
通常,机器人的结构应该具备轻便、稳定和易操作的特点,以保证机器人在工作中具有高效性和可靠性。
在机器人的运动机构设计中,需要选择合适的传动机构和电机驱动系统。
传动机构是机器人运动的关键,影响着机器人的运动精度和可靠性。
常见的传动机构包括直线传动、旋转传动等,可以根据具体的工作任务选择合适的传动机构。
另外,电机驱动系统在机器人运动中起到了关键作用,电机的选择和驱动方式根据工作需求确定。
四自由度机器人广泛应用于各个领域,如工业生产、医疗器械、电子产品等。
它可以完成一些重复性的、危险性的和精确度高的工作,提高工作效率和质量。
以工业生产为例,四自由度机器人能够完成装配、焊接、喷涂等工作,取代人工操作,降低了工作强度和安全风险。
总之,四自由度机器人是一种常见且广泛应用的机器人,它具备较好的灵活性和适应性,能够适应不同工作任务的需求。
在机器人的设计中,需要考虑机器人的结构和运动机构的设计,以保证机器人在工作中具有高效性和可靠性。
四自由度机器人在各个领域发挥着重要的作用,提高了工作效率和质量,推动了现代工业的发展。
四自由度机器人设计及分析首先,设计一个四自由度机器人需要考虑机器人的结构和运动方式。
机器人的结构可以采用串联结构或并联结构。
串联结构是将各个旋转关节按照顺序链接起来,形成一个连续链条;而并联结构是通过并联机构将多个旋转关节连接起来,共同作用于机器人的末端执行器。
接下来,需要确定机器人的关节类型和参数。
常见的关节类型包括旋转关节和剪切关节。
旋转关节可以实现绕一些固定轴旋转,而剪切关节可以实现平移和旋转的复合运动。
在确定关节类型后,还需要考虑各个关节的转动范围、转动速度和负载能力等参数。
在进行四自由度机器人的运动分析时,可以采用运动学方法和动力学方法。
运动学方法主要研究机器人的位置、速度和加速度等随时间变化的规律,可以通过矩阵运算和几何推导等方法求解。
动力学方法则关注机器人的力学特性和运动过程中的力、力矩等量,可以通过运动学和力学方程来描述机器人的运动。
在运动学分析中,可以通过正逆运动学求解机器人的位置和姿态。
正运动学是根据关节参数和关节角度求解机器人位姿的问题,可以通过矩阵变换和旋转矩阵等方法求解。
逆运动学则是根据机器人末端执行器的位姿求解各个关节的角度,可以通过三角函数和解方程等方法求解。
在动力学分析中,可以通过运动学和基本力学原理推导出机器人的运动方程。
运动学方程描述机器人各个关节的速度和加速度与末端执行器的位姿之间的关系;动力学方程则描述机器人的力、力矩与关节角度、角速度和角加速度之间的关系。
同时,还可以利用仿真软件对四自由度机器人进行仿真分析。
通过建立机器人的仿真模型,可以模拟机器人的运动轨迹和运动过程,验证设计参数的合理性以及对不同操作条件的响应。
总之,设计和分析四自由度机器人需要考虑机器人的结构和运动方式,确定关节类型和参数,并通过运动学和动力学方法来研究机器人的运动特性。
利用仿真软件可以对机器人进行仿真分析,验证设计参数的合理性。
四自由度多用途气动机器人结构设计及控制实现首先,四自由度多用途气动机器人的结构设计包括机器人的机械结构和气动元件的选择。
机械结构应尽量简单、紧凑,以减少机器人的体积和重量。
同时,机械结构应该能够实现机器人的各种运动,如平移、旋转和弯曲等。
为了实现这些运动,可以采用链式结构或并联结构。
链式结构由多个连接件组成,通过连接件的运动实现机器人的运动。
并联结构由多个执行器和驱动器组成,每个执行器驱动机器人的一个运动自由度。
气动元件的选择应根据机器人的需求和工作环境来确定,常用的气动元件有气缸和气动执行器等。
气动元件具有体积小、重量轻、响应快等优点,适合用于多自由度机器人的驱动。
其次,四自由度多用途气动机器人的控制实现包括机器人的运动规划和运动控制。
机器人的运动规划是指确定机器人在工作空间中的轨迹和姿态。
一般可以通过运动学模型和逆运动学模型来实现机器人的运动规划。
运动学模型描述了机器人的姿态和轨迹之间的关系,逆运动学模型则反过来计算机器人的关节角度和末端姿态。
运动控制是指控制机器人按照规划的轨迹和姿态进行运动。
控制方法可以采用开环控制或闭环控制。
开环控制是通过预先设定的轨迹和姿态来控制机器人的运动,闭环控制则通过传感器反馈来调整机器人的运动。
根据机器人的需求和控制精度要求,可以选择适合的控制方法。
综上所述,四自由度多用途气动机器人的结构设计和控制实现是一个相互关联的过程。
机械结构应能够实现机器人的各种运动,气动元件的选择应根据机器人的需求和工作环境来确定。
机器人的运动规划和运动控制则是必不可少的,可以通过运动学模型和逆运动学模型来实现机器人的运动规划,通过开环控制或闭环控制来实现机器人的运动控制。
通过合理的结构设计和控制实现,四自由度多用途气动机器人可以完成各种任务,具有广泛的应用前景。
(机器⼈)4⾃由度关节型机器⼈简介四⾃由度关节型机器⼈设计简介摘要本设计内容为四⾃由度关节型机器⼈,主要对关节型机器⼈的操作臂进⾏系统的设计,机器⼈的末端操作器即⼿指是可替换夹具,操作臂有四个⾃由度,可实现在⼯作空间范围内的物体的转移,⼿⽖⼀次可载荷0.5kg.操作臂的动⼒源为舵机,总共有5个舵机,它们分别控制腰部旋转,⼤臂、⼩臂、⼿腕的摆动,以及⼿⽖张合,本⽂设计的四⾃由度关节型机器⼈可⽤于⼩⼯作空间内完成对⼩质量物体的转移⼯作,同时也可以做为教学机器⼈。
关键词:四⾃由度;操作臂;舵机AbstractThis design is the 4-DOF joint robot, mainly designs on the operate arm system.The ender operator of the robot is usually called paw is a exchangeable clamp. the operator has degrees of freedom. which can transform objects in workspace. the paw is able to weigh 0.5kg loads each time.It is servo that is the power of operating arm. There are five servo which are used respectively to control waist rolling、big arm、small arm、hand swing and paw opening and closing, the robot can be well applied to transfer the object with light in limited working space. Meanwhile it’s also used as teaching robot.Key words:4-DOF ;operate arm;servo⼀.概述:1.机器⼈定义机器⼈是近年来快速发展的⾼新技术密集的机电⼀体化产品,通常只按照⼈们预定的程序重复⼀些⼈们看似简单的动作,设计⼈员往往只重视机器⼈的功能。
欠驱动四指灵巧手的抓持运动规划与控制摘要:随着机器人技术的发展,机械手的灵巧性和智能化水平不断提高,但在抓持运动规划与控制方面仍然存在一些挑战。
本文主要研究欠驱动四指灵巧手的抓持运动规划与控制方法,通过对手指运动学建模和灵巧手的控制算法设计,实现对物体的精准抓取。
引言:机器人抓取技术是机器人领域的重要研究方向之一。
传统的机械手在抓取物体时需要全部手指同时运动,但这种方式在抓取不规则形状或者变形物体时存在困难。
欠驱动机械手则能够通过少量的自由度实现复杂的抓取动作,因此成为了研究的热点。
手指运动学建模:首先,需要对欠驱动四指灵巧手的运动学进行建模。
根据手指的几何特征和运动约束,可以建立手指的运动学方程。
通过对运动学方程进行求解,可以得到手指的关节角度和末端执行器的位姿。
抓持运动规划:在得到手指的关节角度和末端执行器的位姿之后,需要进行抓持运动规划。
根据物体的形状和位置,可以通过逆运动学方法计算出手指的目标位置和姿态。
同时,考虑到物体的稳定性,需要优化手指的运动轨迹,使得手指能够稳定地抓取物体。
控制算法设计:在抓持运动规划的基础上,需要设计相应的控制算法。
通过对手指的关节角度进行控制,可以实现对手指的灵活运动。
同时,需要考虑到手指的力和力矩控制,以保证抓取物体的稳定性和安全性。
实验与结果:通过对欠驱动四指灵巧手的抓持运动规划与控制方法进行实验验证,可以得到可行的抓取方案。
实验结果表明,该方法能够实现对不规则形状或者变形物体的精准抓取,并具有较好的稳定性和灵活性。
结论:本文研究了欠驱动四指灵巧手的抓持运动规划与控制方法。
通过手指运动学建模和灵巧手的控制算法设计,实现了对物体的精准抓取。
该方法在工业自动化、物流领域等具有重要的应用价值,为机器人抓取技术的进一步发展提供了一定的参考和借鉴。
未来,可以进一步优化算法,提高抓取的稳定性和适应性,以满足更多实际应用需求。
毕业设计(论文)任务书
设计(论文)题目:
四自由度多用途气动机器人结构设计及控制
学生姓名:
申世稳学号:
1104201007
专业:
机械设计制造及其自动化
所在学院:
机电工程学院
指导教师:
陈曼华
职称:
讲师
发任务书日期:年月日
任务书填写要求
1.毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在专业的负责人审查、系(院)领导签字后生效。
此任务书应在毕业设计(论文)开始前一周内填好并发给学生。
2.任务书内容必须用黑墨水笔工整书写,不得涂改或潦草书写;或者按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,要求正文小4号宋体,1.5倍行距,禁止打印在其它纸上剪贴。
3.任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系(院)主管领导审批后方可重新填写。
4.任务书内有关“学院”、“专业”等名称的填写,应写中文全称,不能写数字代码。
学生的“学号”要写全号,不能只写最后2位或1位数字。
5.任务书内“主要参考文献”的填写,应按照《金陵科技学院本科毕业设计(论文)撰写规范》的要求书写。
6.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。
如“2002年4月2日”或“2002-04-02”。
毕业设计(论文)任务书
毕业设计(论文)任务书
毕业设计(论文)任务书。