偶然误差的统计规律.
- 格式:docx
- 大小:12.67 KB
- 文档页数:2
测量误差理论一、中误差估值(也称中误差):Δi (i=1,2,…,n ) (6—8)【例】 设有两组同精度观测值,其真误差分别为:第一组 —3″、+3″、-1″、—3″、+4″、+2″、-1″、—4″; 第二组 +1″、-5″、-1″、+6″、—4″、0″、+3″、-1″. 试比较这两组观测值的精度,即求中误差。
解:"22222219.2841243133±=+++++++±=m"222223.3813046151±=+++++++±=m由于m 1〈m 2,可见第一组观测值的精度比第二组高。
同时,通过第二组观测误差的分布情况可看出其误差值的波动幅度较大,因而也可判断出第二组观测值的稳定性较差,则精度较低。
另外,由以上分析可知,中误差仅代表了一组观测值的精度,并不表示某个观测值的真误差。
二、相对误差:观测值中误差m 的绝对值与相应观测值S 相比,并化为分子为1、分母为整数的形式,即mS Sm K 1==(6-10) 三、误差传播定律【例】 丈量某段斜距S =106。
28 m ,斜距的竖角038'︒=δ,斜距和竖角的中误差分别为cm 5m s ±=、"20m ±=δ,求斜距对应的平距D 及其中误差D m .解:平距 105.113m 30'cos8106.28cos =︒⨯=⋅=δS D由于δcos ⋅=S D 是一个非线性函数,所以,对等式两边取全微分,化成线性函数,并用“∆”代替“d ”得δδδ∆⋅⋅-∆⋅=∆sin cos S S D再根据(6—29)式,可以直接写出平距方差计算公式,并求出平距方差值n m ] [∆∆ ±=2""2222"2222)(477.24)20626520()'308sin 28.106(5)'308(cos )()sin ()(cos cm m S m m SD=⋅︒⋅+⋅︒=⋅⋅+⋅=ρδδδ因此,平距的中误差为:m D =±5 cm 。
一、填空题:1、观测条件由观测仪器、____________和_____________三部分构成。
2、观测误差按其性质的不同可分为系统误差和偶然误差,其中____________误差在观测或计算过程中可以采用一定的措施消除或削弱,而___________误差在观测结果中必然存在。
3、测量平差的首要任务是经过数据处理,确定观测值的________________,而__________________________________________也是其必不可少的任务。
4、偶然误差的统计规律性是指:界限性、_______性、_______性和_______性。
5、在某相片上量得一距离长为200㎝,其相对中误差为1/3000,则该距离的绝对中误差为_____________________㎝。
6、测量平差是在______________的基础上利用_______________原理进行的。
7、单位权中误差mo、权Pi和中误差mi之间的关系为_______________________。
8、有一四边形导线环,同精度观测其各内角,共观测5组结果,计算出5个闭合差为﹣8″、9″、7″、﹣5″、-7″,则每组观测值之和中误差为____________,每个导线角观测值中误差___________。
(保留一位小数)9、设某角度观测值的协因数为3,则其观测值的权为_________。
10、观测成果的质量高低__________(能、否)反映观测条件的好坏。
11、理论上我们取3倍中误差为极限误差;而等级控制测量因为观测的精度要求比较高,往往规定______倍中误差为极限误差12、衡量精度常用的几种指标有中误差、___________误差和__________误差。
13、精度是指误差分布的________________程度。
14、由三角形闭合差ω计算测角中误差mβ的公式为______________________。
名词解释题库及参考答案1、圆水准器轴——圆水准器零点(或中点)法线。
2、管水准器轴——管水准器内圆弧零点(或中点)切线。
3、水平角——过地面任意两方向铅垂面之间的两面角。
4、垂直角——地面任意方向与水平面在竖直面内的夹角。
5、视差——物像没有成在望远镜十字丝分划板面上,产生的照准或读数误差。
6、真北方向——地面P点真子午面与地球表面交线称为真子午线,真子午线在P点的切线北方向称真北方向。
7、等高距——相邻两条等高线的高差。
8、水准面——处处与铅垂线垂直的连续封闭曲面。
9、直线定向——确定地面直线与标准北方向的水平角。
10、直线定线——用钢尺分段丈量直线长度时,使分段点位于待丈量直线上,有目测法与经纬仪法。
11、竖盘指标差——经纬仪安置在测站上,望远镜置于盘左位置,视准轴水平,竖盘指标管水准气泡居中(或竖盘指标补偿器工作正常),竖盘读数与标准值(一般为90°)之差为指标差。
12、坐标正算——根据一条边长的方位角与水平距离,计算坐标增量。
13、坐标反算——根据一条边长的坐标增量,计算方位角与水平距离。
14、直线的坐标方位角——直线起点坐标北方向,顺时针到直线的水平夹角,其值应位于0°~360°之间。
15、地物——地面上天然或人工形成的物体,它包括湖泊、河流、海洋、房屋、道路、桥梁等。
16、地貌——地表高低起伏的形态,它包括山地、丘陵与平原等。
17、地形——地物和地貌总称。
18、测定——使用测量仪器和工具,通过测量与计算将地物和地貌的位置按一定比例尺、规定的符号缩小绘制成地形图,供科学研究与工程建设规划设计使用。
19、测设——将在地形图上设计建筑物和构筑物的位置在实地标定出来,作为施工的依据。
20、真误差——观测值与其真值之差。
21、闭合差——一系列测量函数的计算值与应用值之差。
22、限差——在一定测量条件下规定的测量误差绝对值的允许值。
23、相对误差——测量误差与其相应观测值之比。
偶然误差的概念
偶然误差是指偶然的、不可预知的误差,即受观察者本身及观察者所处的环境等客观条件影响的误差,这种误差并不直接反映测量值的真实情况。
偶然误差是由于若干偶然原因所引起的微量变化的综合作用所造成的误差。
这些偶然原因可能与观测设备、方法、外界条件、观测者的感觉等因素有关。
偶然误差对测值个体而言是没有规律的(或者规律还未被人掌握),不可预言和不可控制的,但其总体(大量个体的总和)服从于统计规律,可以从理论上计算它对观测结果的影响。
误差理论与测量平差》课程自测题(1) 一、 正误判断。
正确“ T ”,错误“ F ”。
( 30分)1. 在测角中正倒镜观测是为了消除偶然误差()。
2. 在水准测量中估读尾数不准确产生的误差是系统误差()。
( )。
4. 观测值与最佳估值之差为真误差( )。
5.系统误差可用平差的方法进行减弱或消除( )。
6.权一定与中误差的平方成反比( )。
7.间接平差与条件平差一定可以相互转换( )。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差( )。
9. 对同一量的 N 次不等精度观测值的加权平均值与用条件平差所得的结果一定相同)。
10. 无论是用间接平差还是条件平差, 对于特定的平差问题法方程阶数一定等于必要观测数( )。
11. 对于特定的平面控制网, 如果按条件平差法解算, 则条件式的个数是一定的, 形式是多 样的( )。
12•观测值L 的协因数阵 Q L 的主对角线元素 Q 不一定表示观测值 L 的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14•定权时(T 0可任意给定,它仅起比例常数的作用( )。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
用“相等”或“相同”或“不等”填空( 8分)。
300.158m ± 3.5cm;)。
25 分)。
1, 则长为D 的直线之丈量结果的权 f=( )。
22 2/d 23. 如果随机变量 X 和Y 服从联合正态分布,且X 与Y 的协方差为0,则X 与Y 相互独立 已知两段距离的长度及其中误差为600.686m ±3.5cm 。
则:1 •这两段距离的中误差()。
2.这两段距离的误差的最大限差(3 •它们的精度()。
4 •它们的相对精度( )。
三、 选择填空。
只选择一个正确答案(1 •取一长为 d 的直线之丈量结果的权为a ) d/Db ) D/d 22c )d 2/D 2 d ) D2.有一角度测20测回,得中误差土0.42秒,如果要使其中误差为土0.28秒,则还需增加的测回数N= ( )oa) 25b) 20c) 45d) 53.某平面控制网中一点P,其协因数阵为:Q Q xy] ■ 0.5 —0.25]Q XX = =[Q yx Q yy_ >0.25 0.5 一2单位权方差Co =± 2.0。
误差一、直接测量和间接测量在物化实验中需对某些物理量进行测量,以便寻找出化学反应中的某些规律,测量又可分为直接测量和间接测量。
直接测量是指实验结果可直接用实验数据表示。
如用温度计测量温度,用米尺测量长度,用压力计测量压力等。
另一类间接测量是指实验结果不能直接用实验数据表示,而必须由若干个直接测量的数据通过某种公式进行数学运算方可表示的实验结果。
如用凝固点降低法测溶质的分子量,就必须通过测量质量、体积和温差这些直接测量的数据,再用冰点降低公式进行数学运算后,方可得到溶质的分子量。
在直接测量过程中由于所使用的测量工具不准确,测量方法的不完善,都使得测量结果不准确,以致于偏离真实值,这就是误差。
在间接测量中由于直接测量的结果有误差,此误差可传递到最后的结果中,也可使其偏离真实值。
由上所述,可知误差存在于一切测量之中,所以讨论误差,了解其规律、性质、来源和大小就非常有必要。
实验误差的分析,对人们改进实验,提高其精密度和准确度(精密度和准确度的意义在以后讨论),甚至新的发现都具有重要的意义。
二、真值真值是一个实际上不存在的值,它只是一个理论上的数值。
例如,我们可取光在真空中的速度作为速度的计量标准,又如,可用理论安培作为电流的计量标准,其定义为:若在真空中有两根截面无限小的相距2米的无限长平行导体,在其上流过一安的电流时,则在二导体间产生10-7牛顿/米的相互作用力。
这样的参考标准实际上是不存在的,它只存在于理论之中,因此这样的真值是不可知的。
但人类的认识总是在发展的,能够无限地逐渐迫近真值。
由于真值是不可知的,所以一般国家(或国际上)都设立一个能维持不变的实物基础和标准器。
指定以它的数值作为参考标准。
例如,以国家计量局的铯射束原子频率标准中,铯原子的基态超精细能级跃迁频率的平均值作为9,129,631,770赫。
这样的参考标准叫做指定值。
在实际工作中,我们不可能把所使用的仪器都一一地与国家或国际上的指定值相对比,所以通常是通过多级计量检定网来进行一系列的逐级对比。
偶然误差的统计规律
、实验目的:从摆的周期测量值的变化认识偶然误差的规律性:
1、平均值X 和测量列标准偏差S 将随n 的增大而趋于稳定值。
2、 测量值的分布和高斯分布接近。
3、 在(x s )~(X s )区域中测量值的数目约为总数的 68%
二、 实验仪器:
复摆、秒表。
三、 实验方法:
1、 测量复摆的周期,将支架底座调水平。
2、 复摆摆动角度不就过大,尽量避免系统误差,不应让摆前后摆动。
3、 用秒表测量复摆周期,可测量摆动 5次、10次、20次的时间,再计算周
期,共测量100次。
此实验是研究偶然误差规律性,不要人为的有意选择数据,测量时尽量保持振幅 稳定。
四、 数据的统计
S(x)
2、易9
除坏数据:使用格罗面斯判据去判断,可保留的数据范围为:
(P G n S) X (P G n S) G n 为格罗布斯判据系数 3、求剔除坏数据后的平均值及测量列的标准偏差,要求按测量顺序每增加 10个数据,求出一次结果,即
测量顺序 个数N 平均值P 标准偏差S (x ) 1~10 10
1~20 20
1~100 100
最后用折线图表示P 、S (x )的变化情形(横坐标为N )
4、分区统计并和正态分布作比较
① 找出数据的最小值(A )和最大值(B )
② 将(B ―― A )等分为M 个区间,区间宽度E 为
③ 统计每个区间的数据的个数n i (1=1,2,3…100)
④ 作统计直方图和正太分布的概率密度曲线比较,以测量值为横坐标,以
频率屯和区间宽度的比值 匹 为纵坐标,作统计直方图
n
n E
1、求平均值P 及测量列标准偏差S ( x )
X i n i (X i P)2 n 1
⑤统计在(P—S) ~ (P+S)量值范围中,测量值的个数,求n s/n 值。