第五章 阵列信号的高分辨处理
- 格式:ppt
- 大小:881.00 KB
- 文档页数:43
阵列信号处理原理、方法与新
阵列信号处理是一种利用多个传感器(如麦克风、天线等)获取信号,通过信号处理
算法将其合成为一个复合信号,并在此基础上分离、定位、去除、增强等操作的新型信号
处理技术。
在目前的通信、雷达、声学、医学等领域都有广泛应用。
阵列信号处理的基本原理是通过获取多个传感器采样的信号,根据它们的相对位置和
接收到信号的时间差异,构建一个信号阵列,然后通过信号合成的方法将这些信号合成为
一个复合信号。
根据复合信号的特征,进行后续的信号处理。
阵列信号处理的主要方法包括波束形成、空间滤波、方向估计等。
波束形成的主要目
的是聚焦探测器的接收能力,使其在目标方向上获得更高的灵敏度。
空间滤波的主要目的
是通过利用阵列传感器之间的相对位置和互相之间的传感器响应差异,对信号进行滤波,
达到抑制噪声、增强信号等效果。
方向估计则是通过对信号在阵列中传播的速度和波束方
向的监测,对信号的方向进行估计。
阵列信号处理技术的应用十分广泛,其中最为常见的应用领域是通信、雷达和声学等。
在通信中,利用阵列信号处理技术进行信号增强和去除干扰,并根据信号的传播速度和方
向进行信号定位和跟踪。
在雷达中,利用阵列信号处理技术对雷达信号进行波束形成和目
标方向估计,提高雷达的探测效率和目标定位精度。
在声学中,利用阵列信号处理技术进
行声波信号的定位、分离和降噪等操作,提高语音识别和音频娱乐的质量。
总之,阵列信号处理技术是一种高效、可靠的信号处理方法,可以广泛应用于各个领域,有着十分重要的实际应用价值。
摘要光纤传感技术以其独特的优势,成为目前智能结构健康监测技术中研究较为广泛的技术。
针对大型结构、复合材料内部裂纹、金属结构腐蚀等主要损伤类型,由于其具有隐蔽性强、结构失效机理复杂、结构破坏程度难以判断等特点,需进行超高空间分辨率、复用容量大、精度高的传感检测。
本文采用间距极小的超短弱反射的光纤光栅(Fiber Bragg Grating,FBG)构筑的光纤光栅法布里珀罗(Fiber Bragg Grating Fabry-Perot,FBG-FP)阵列搭建传感网络,基于光频域反射技术搭建传感光路,通过对解调原理、解调算法和实验验证等相关问题的研究,实现一种具有超高空间分辨率、超大容量、高精度的全分布式光纤传感新方法与新技术。
主要研究内容如下:(1)FBG-FP阵列的传感机理与复用容量研究。
以FBG的耦合模式方程为基础推导FBG-FP的光谱数学表达式,并分析其温度和应变的传感机理。
数值模拟多重反射效应和光谱阴影效应对FBG-FP传感阵列的复用极限的制约,证明降低反射率可抑制上述两种效应,并进一步提出采用光栅间隔不小于栅长和中心波长随机分布的传感阵列可分别抑制多径反射效应和光谱阴影效应,其中波长随机分布对传感没有坏的影响。
(2)FBG-FP阵列的分布式传感解调系统的研究。
提出基于光频域反射(Optical Frequency-domain Reflectometry,OFDR)技术的FBG-FP阵列的分布式解调系统。
一方面研究传感单元高空间分辨率的定位方法,通过对可调谐光源的非线性调谐效应进行补偿,在50m的传感距离内实现82μm内的超高空间分辨率;通过计算等效光频域调谐速率和可调谐光源的时间波长转换轴,提高系统的定位稳定度和波长解调精度。
另一方面研究传感单元的波长解调方法,推导FBG-FP光谱重构的数学表达式,提出FBG-FP阵列的分布式传感解调算法。
(3)裂纹尖端检测。
温度实验测试系统解调性能,实现8557个长度为400μm、间隔为440μm、反射率约为-42dB的FBG构成的超短弱反射的FBG-FP阵列传感,传感解调空间分辨率达到840μm,温度解调精度小于0.65℃。
阵列信号处理概述研究背景及意义和波达方向估计技术1 概述阵列信号处理作为信号处理的一个重要分支,在通信、雷达、声呐、地震、勘探、射电天文等领域获得了广泛应用和迅速发展。
对所有探测系统和空间传输系统,空域信号的分析和处理是其基本任务。
将多个传感器按一定方式布置在空间不同位置上,形成传感器阵列。
并利用传感器阵列来接收空间信号,相当于对空间分布的场信号采样,得到信号源的空间离散观测数据。
阵列信号处理的目的是通过对阵列接收的信号进行处理,增强所需要的有用信号,抑制无用的干扰和噪声,并提取有用的信号特征以及信号所包含的信息。
与传统的单个定向传感器相比,传感器阵列具有灵活的波束控制、高的信号增益、极强的干扰抑制能力以及高的空间分辨能力等优点,这也是阵列信号处理理论近几十年来得以蓬勃发展的根本原因。
阵列信号处理的最重要应用包括:①信(号)源定位——确定阵列到信源的仰角和方位角,甚至距离(若信源位于近场);②信源分离——确定各个信源发射的信号波形。
各个信源从不同方向到达阵列,这一事实使得这些信号波形得以分离,即使他们在时域和频域是叠加的;③信道估计——确定信源与阵列之间的传输信道的参数(多径参数)。
阵列信号处理的主要问题[]1包括:波束形成技术——使阵列方向图的主瓣指向所需方向;零点形成技术——使天线的零点对准干扰方向;空间谱估计——对空间信号波达方向的分布进行超分辨估计。
空间谱估计技术是近年来发展起来的一门新兴的空域信号处理技术,其主要目标是研究提高在处理带宽内空间信号(包括独立、部分相关和相干)角度的估计精度、角度分辨率和提高运算速度的各种算法。
在所有利用空间谱估计技术来实现对到达方向(DOA)估计的方法中,以R. O. Schmidt 提出的MUSIC 算法最为经典且最有代表性。
Schmidt 在MUSIC 算法中提出了信号子空间的概念,即在维数大于信号个数的观测空间中进行子空间的划分,找出仅由噪声贡献生成的空间(噪声子空间)和由信号和噪声共同作用产生的空间,根据这两个子空间的基底以及阵列流型即可得到待测方向满足的方程,由其解得到来波方向的估计。
信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈称()()()()12,,,P span a a a θθθ 为信号子空间,是N 维线性空间中的P 维子空间,记为P NS 。
PN S 的正交补空间称为噪声子空间,记为N P N N -。
正交投影设子空间m S R ∈,如果线性变换P 满足,()1),,,2),,,0m mx R Px S x S Px x x R y S x Px y ∀∈∈∀∈=∀∈∀∈-=且则称线性变换P 为正交投影。
导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑,其中矢量()i ia θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()HHy t W X t s t W a θ==,通过加权系数W实现对θ的选择。
最大似然已知一组服从某概率模型()f X θ的样本集12,,,N X X X ,其中θ为参数集合,使条件概率()12,,,N f X X X θ 最大的参数θ估计称为最大似然估计。
不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ∆,则确定其导向矢量()2jn i a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时:首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为(1)sin()(1)cos()mn i i n d m d θθ∆=---故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦而当信源与阵列不共面时: 首先将信源投影到阵列平面然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为[(1)sin()(1)cos()]sin()mn i i i n d m d θθϕ∆=-+-故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦线性约束最小方差准则(LCMV )的自适应波束形成算法: 对于信号模型:()()()0X t s t a J N θ=++, 波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使()0HW a θ为一个固定值的条件下,求取使得()HWJ N +方差最小的W 作为最有权值,即:()0min .H X WHW R Ws t W a Fθ⎧⎪⎨⎪=⎩,其中F 为常数利用拉格朗日乘子法可解得:()10X opt W R a μθ-=当取1F =时,则()()11H X a R a μθθ-=,μ的取值不影响SNR 和方向图。
阵列信号处理是信号处理的一个年青的分支,属于现代信号处理的重要研究内容之一,其应用范围很广,可用于雷达、声呐、通信、地震勘察、射电天文和医用成像等众多领域。
阵列信号处理是将一组传感器在空间的不同位置按一定规则布置形成的传感器阵列(尽管采用的传感器的类型可以不同,如天线、水听器、听地器、超声探头、X射线检测器,但是传感器的功能是相同的,它是连接信号处理器和感兴趣的空间纽带),用传感器阵列发射能量和(或)接收空间信号,获得信号源的观测数据并加以处理。
阵列信号处理的目的是从这些观测数据中提取信号的有用特征,获取信号源的属性等信息。
目前,阵列信号处理在雷达及移动通信等领域有着广泛而重要的应用。
在相控阵雷达体制中,自适应波束形成技术在抑制杂波干扰方面起着关键的作用。
在移动通信中,基于阵列信号处理的波达方向估计技术,使移动通信进入一个崭新的阶段。
本论文首先介绍阵列信号处理的基础知识。
在此基础上,着重讨论阵列波束形成技术,非理想线性阵列的雷达信号波达方向和多普勒频率估计,均匀圆形阵列的信号波达方向估计和复杂信号的波达方向及参数估计等四方面内容。
这些内容都是阵列信号处理领域的研究热点。
它们无论对阵列信号处理的理论发展还是实际应用,都有重要的意义。
目前,人们普遍关注在阵列响应矢量未知情况下,自适应波束形成问题,即盲自适应波束形成技术。
本文第一方面介绍了最基本的阵列波束形成方法,即最小均方误差波束形成器,线性约束最小方差波束形成器和基于特征空间的波束形成器(ESB)。
在此基础上,提出一个基于特征空间的盲自适应波束形成算法。
此算法首先根据高分辨波达方向估计方法,估计信号源的波达方向,然后以此方向形成约束导向矢量,进而计算出ESB波束形成算法的最优权矢量,最后,对期望目标形成笔状波束。
此算法能够有效地抑制信号的对消现象,并且能够应用于在波束中有多个期望信号的场合。
当阵列存在各种误差时,一般高分辨波达方向估计方法(如MUSIC)的估计性能严重下降。