西电阵列信号处理第八章
- 格式:ppt
- 大小:237.50 KB
- 文档页数:20
《数字信号处理》课程教学大纲课程代码:IB3123008课程名称:数字信号处理英文名称:Digital Signal Processing开课学期:第6学期学分:3 学时:48课程类別:必修课,专业基础课适用专业:电子信息工程、信息对抗技术、遥感科学与技术、电磁场与无线技术、智能科学与技术开课对象:三年级本科生先修课程:信号与系统、MATLAB语言后修课程:雷达原理、数字图像处理、数字音视频处理等开课单位:电子工程学院团队负责人:史林责任教授:史林执笔人:史林核准院长:苏涛一、课程性质、目的和任务数字信号处理采用数字技术,研究信号和系统分析、处理、设计的基本原理和方法,是电子信息与电气工程类专业(电子信息工程专业、通信工程专业、信息工程专业等)的专业基础课,具有理论与实践紧密结合的特点。
通过本课程的学习,使学生建立数字信号处理的基本概念,掌握数字信号处理的基本原理、理论和方法,了解数字信号处理的新方法和新技术,熟练应用现代工具进行数字信号处理的仿真、分析和设计,达到能够对数字信号和系统进行分析、处理和设计的能力水平。
为学习后续专业课程、进行创新性研究和解决复杂工程问题,奠定坚实的专业基础理论知识和工程实践能力。
本课程对学生达到如下毕业要求有贡献二、教学内容、基本要求及学时分配《数字信号处理》课程的教学内容、基本要求、学时分配和毕业要求指标点在教学中的具体体现如下。
(一)绪论 ( 2学时)1.教学内容介绍数字信号处理的基本概念、研究的内容及应用领域、发展概况和发展趋势,数字信号处理的基本特点,用数字方法处理信号的基本概念和一般方法。
2.基本要求(1)了解数字信号处理研究的内容、应用领域、发展概况和发展趋势;(2)熟悉数字信号处理的基本概念和特点;(3)掌握用数字方法处理信号的基本概念和一般方法。
3.重点、难点重点:数字信号处理的基本概念和特点。
难点:用数字方法处理信号的基本概念和一般方法4.作业及课外学习要求作业:分析数字信号处理的特点;熟悉用数字方法处理信号的一般方法,理解其中每个模块单元的作用。
多通道信号处理中的阵列信号处理技术在现代通信领域中,多通道信号处理已成为一项重要的技术,能够在众多应用中实现高效的信号提取和处理。
而其中,阵列信号处理技术则是多通道信号处理中的关键技术之一。
本文将以阵列信号处理技术为主题,探讨其在多通道信号处理中的应用和重要性。
一、阵列信号处理技术的基本概念阵列信号处理技术是指利用多个接收通道对信号进行采集和处理的一种信号处理方法。
这些接收通道可以部署在不同的位置上,通过对各通道接收到的信号进行分析和处理,可以获得目标信号的方向、距离和频率等信息。
阵列信号处理技术在无线通信、雷达、声纳等领域中都有着广泛的应用。
二、阵列信号处理技术的原理在阵列信号处理中,通过合理地设计和部署接收通道,并利用差分和合成等技术,可以实现对信号的增强和抑制。
其基本原理可以概括为以下几个方面:1. 时差测量:通过计算不同通道接收到信号的时间差,可以确定信号的到达方向。
这种方法被广泛应用于声纳和雷达领域,用于目标定位和跟踪。
2. 相关性分析:通过对不同通道接收到的信号进行相关性分析,可以提取出目标信号并抑制噪声。
这种方法在无线通信和雷达等领域中被广泛应用,可以提高信号的质量和可靠性。
3. 波束形成:通过对接收到的信号进行加权合成,可以实现对信号的增强和抑制。
这种方法在天线和无线通信系统中被广泛应用,可以提高通信质量和距离。
三、阵列信号处理技术在多通道信号处理中的应用阵列信号处理技术在多通道信号处理中有着重要的应用。
以下列举了几个常见的应用场景:1. 无线通信系统:在无线通信系统中,利用阵列技术可以实现多天线发射和接收。
通过对接收到的信号进行处理,可以提高无线信号的覆盖范围和传输速率。
2. 声纳系统:在声纳系统中,通过部署多个接收通道,可以实现对海洋中的声波信号进行定位和跟踪。
阵列信号处理技术可以提高声纳系统的性能和探测范围。
3. 雷达系统:在雷达系统中,利用阵列技术可以实现对目标信号的定位和跟踪。
信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈L称()()()()12,,,P span a a a θθθL 为信号子空间,是N 维线性空间中的P 维子空间,记为P N S 。
P N S 的正交补空间称为噪声子空间,记为N P N N -。
正交投影设子空间m S R ∈,如果线性变换P 满足,()1),,,2),,,0m mx R Px S x S Px x x R y S x Px y ∀∈∈∀∈=∀∈∀∈-=且则称线性变换P 为正交投影。
导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑,其中矢量()i ia θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()HHy t W X t s t W a θ==,通过加权系数W 实现对θ的选择。
最大似然已知一组服从某概率模型()f X θ的样本集12,,,N X X X K ,其中θ为参数集合,使条件概率()12,,,N f X X X θK 最大的参数θ估计称为最大似然估计。
不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ∆,则确定其导向矢量()2jn i a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时:首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为(1)sin()(1)cos()mn i i n d m d θθ∆=---故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M而当信源与阵列不共面时: 首先将信源投影到阵列平面然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为[(1)sin()(1)cos()]sin()mn i i i n d m d θθϕ∆=-+-故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M线性约束最小方差准则(LCMV )的自适应波束形成算法: 对于信号模型:()()()0X t s t a J N θ=++, 波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使()0HW a θ为一个固定值的条件下,求取使得()HWJ N +方差最小的W 作为最有权值,即:()0min .H X W HW R Ws t W a Fθ⎧⎪⎨⎪=⎩,其中F 为常数利用拉格朗日乘子法可解得:()10X opt W R a μθ-=当取1F =时,则()()11H X a R a μθθ-=,μ的取值不影响SNR 和方向图。
阵列信号处理是信号处理的一个年青的分支,属于现代信号处理的重要研究内容之一,其应用范围很广,可用于雷达、声呐、通信、地震勘察、射电天文和医用成像等众多领域。
阵列信号处理是将一组传感器在空间的不同位置按一定规则布置形成的传感器阵列(尽管采用的传感器的类型可以不同,如天线、水听器、听地器、超声探头、X射线检测器,但是传感器的功能是相同的,它是连接信号处理器和感兴趣的空间纽带),用传感器阵列发射能量和(或)接收空间信号,获得信号源的观测数据并加以处理。
阵列信号处理的目的是从这些观测数据中提取信号的有用特征,获取信号源的属性等信息。
目前,阵列信号处理在雷达及移动通信等领域有着广泛而重要的应用。
在相控阵雷达体制中,自适应波束形成技术在抑制杂波干扰方面起着关键的作用。
在移动通信中,基于阵列信号处理的波达方向估计技术,使移动通信进入一个崭新的阶段。
本论文首先介绍阵列信号处理的基础知识。
在此基础上,着重讨论阵列波束形成技术,非理想线性阵列的雷达信号波达方向和多普勒频率估计,均匀圆形阵列的信号波达方向估计和复杂信号的波达方向及参数估计等四方面内容。
这些内容都是阵列信号处理领域的研究热点。
它们无论对阵列信号处理的理论发展还是实际应用,都有重要的意义。
目前,人们普遍关注在阵列响应矢量未知情况下,自适应波束形成问题,即盲自适应波束形成技术。
本文第一方面介绍了最基本的阵列波束形成方法,即最小均方误差波束形成器,线性约束最小方差波束形成器和基于特征空间的波束形成器(ESB)。
在此基础上,提出一个基于特征空间的盲自适应波束形成算法。
此算法首先根据高分辨波达方向估计方法,估计信号源的波达方向,然后以此方向形成约束导向矢量,进而计算出ESB波束形成算法的最优权矢量,最后,对期望目标形成笔状波束。
此算法能够有效地抑制信号的对消现象,并且能够应用于在波束中有多个期望信号的场合。
当阵列存在各种误差时,一般高分辨波达方向估计方法(如MUSIC)的估计性能严重下降。
西安电子科技大学电子信息工程专业课考试科目080902 电路与系统03 智能图像处理、核心算法硬件设计与实现04 信号处理与仿真05 电子系统设计与仿真、DSP技术及应用08 嵌入式系统、图像获取、处理、压缩与分析技术09 仿真与信息处理10 数模混合电路与功率系统集成、设计自动化11 智能信号处理、信息融合、图像处理12 图像处理、模式识别、生物特征识别13 信息融合、图像分析与理解、智能信息处理14 智能信息处理、智能控制15 网络信息处理、Web信息系统、数据库系统16 电子设计自动化、嵌入式技术17 电路与系统CAD及设计自动化18 智能信息处理、图像处理19 智能测试与控制、微弱信号检测、系统集成与信息处理20 智能信息处理21 图像融合与图像处理、基于DSP的信号处理系统设计22 图像多尺度几何分析23 雷达信号处理、电子对抗技术、系统仿真和模拟25 智能信号处理与模式识别26 智能信号处理27 新一代通信网及嵌入式系统设计29 信息安全与信息对抗30 图像处理、电子系统设计及嵌入式系统设计31 自然计算、聚类分析、基于内容的信息检索32 电子对抗技术、电子对抗系统仿真33 数据挖掘和进化算法34 数据挖掘与智能信息处理35 电子对抗技术、信号处理与仿真36 智能信息处理37 机器学习、模式识别、智能信息处理38 数模混合信号处理与集成电子学40 电子对抗技术、网络对抗技术41 电子设计自动化、智能测试与控制42 智能信息处理、图像处理与分析43 数据挖掘、聚类分析、图像处理080904 电磁场与微波技术01 电磁兼容、电磁逆问题、计算微波与计算电磁学04 计算电磁学、智能天线、射频识别07 宽带天线、电磁散射与隐身技术08 卫星通信、无线通信、智能天线、信号处理09 天线理论与工程及测量、新型天线10 电磁散射与微波成像11 天线CAD、工程与测量13 移动卫星通信天线14 天线理论与工程16 电磁散射与隐身技术17 电磁兼容、微波测量、信号完整性分析20 移动通信中的相控阵、共形相控阵天线技术21 计算微波与计算电磁学、微波通信、天线工程、电磁兼容22 电阻抗成像、电磁兼容、非线性电磁学23 天线工程与CAD、微波射频识别技术、微波电路与器件24 电磁场、微波技术与天线电磁兼容25 天线测量技术与伺服控制26 天线理论与工程技术27 天线近远场测试技术及应用、无线网络通讯技术28 天线工程及数值计算29 微波电路与微波工程30 近场辐射及散射测量理论与技术31 微波系统和器件设计、电磁场数值计算32 电磁新材料、计算电磁学、电磁兼容33 计算电磁学、电磁兼容、人工合成新材料34 计算电磁学35电磁隐身技术、天线理论与工程36 宽带小型化天线及电磁场数值计算081002 信号与信息处理05 信号处理与检测09 信号检测与信息处理、星载计算机及应用、数据融合10 信号处理与检测11 信号获取与处理、高速信息处理系统设计12 自适应信号处理、智能检测、电子系统设计与仿真13 现代信号处理、微弱信号检测与特性分析14 智能信息处理、影像处理与分析15 信号处理与检测、电子系统仿真与设计、智能天线18 信号处理与检测、高速信息处理系统19 高速实时信号处理20 现代雷达信号处理、高速DSP系统设计与应用21 电子系统设计与仿真、弱信号检测与处理26 子波理论及应用、图像处理28 信号检测与处理、雷达自动目标识别29 雷达成像、目标识别30 雷达信号处理、阵列信号处理、高速信息处理系统设计31 信号处理与检测、多速率信号处理32 实时信号处理与检测、视频信号处理33 高速实时信号处理与检测、DSP应用系统设计34 信号变换、多速率信号处理35 雷达成像、机载雷达信号处理、实时信号处理36 信号处理与检测、高速信息处理系统设计37 信号处理与检测、高速实时数字信号处理系统38 通信信号处理、阵列信号处理39 信号与信息处理、实时信号处理40 智能信息处理、模式识别、信息隐藏、图像处理41 阵列信号处理及其在雷达、通信系统中的应用42 雷达信号处理、目标识别、机器学习43 图像和视频编码、图像处理★081022 信息对抗01 信息对抗系统和技术仿真、电子系统侦察与干扰02 雷达、通信对抗系统仿真与信息处理03 电子侦察与干扰、测向和无源定位技术★081023 智能信息处理01 网络智能信息处理、计算智能与模式识别02 智能信息/图像、目标检测、跟踪与编码03 进化计算04 机器学习与计算智能、医学影像可视化技术05 智能信息处理、多源信息融合081103 系统工程01系统建模仿真与设计、系统集成技术与应用02 最优化算法、智能算法及在无线系统设计中的应用03 系统工程、检测与故障诊断、无线传感器网络04 进化计算及应用、人工智能05 网络化控制系统06 嵌入式控制系统、信号检测及信息处理07 系统集成技术081104 模式识别与智能系统01 图像处理、图像压缩、芯片设计、实时操作系统、光机电控制系统02 网络智能信息处理与识别05 智能信号处理、智能控制、光源控制系统设计、电机控制应用06 模式识别、基于内容的信息检索07 模式识别、信号分类与识别08 目标检测与识别、信息融合、智能图像处理09 机器学习、模式识别、智能信息处理10 智能信息处理、图像处理11 智能信息处理、图像处理与分析12 多源信息融合13 医学影像分析与处理、生物特征识别14 网络多媒体技术研究、图像通信与图像处理、模式识别与人工智能15 复杂智能网络081105 导航、制导与控制01 先进导航技术及应用、目标探测制导与控制技术02 智能GPS技术、复合导航技术03 智能控制及应用、制导与控制中的信息处理技术04 智能信号与信息处理、嵌入式实时操作系统及应用、图像匹配制导05 电子系统建模与仿真、无线电测向技术06 制导信息处理技术、制导抗干扰技术、网络安全技术07 卫星导航定位与时间同步08 导航与制导实时信号处理、数据融合、先进DSP系统设计09 雷达精确制导技术、多传感器信息融合技术10 空间数据系统11 电机控制应用083001 环境科学02 天线布局设计及优化、电磁环境测量08 电子系统电磁环境分析、电磁兼容083002 环境工程01 工程环境电磁学02 工程环境电磁学05 工程环境电磁学06 电磁环境检测与分析、电子系统的电磁兼容性08 环境监控与检测09 环境监控与检测10 微波暗室设计、电磁环境检测与评估083100 生物医学工程01 分子影像与医学图像处理、生物信息处理02 生物电磁学及信号处理05 医学影像信息处理06 生物信号及图像处理07 生物传感器及弱信号检测09 信号的获取与处理及智能仪器10 电磁成像与脑监护、生物医学信号处理与检测11 磁场的生物效应12 计算电磁学和射频通信系统13 生物医学信息处理通信工程学院的专业考:通信原理,信号与系统电子工程学院的专业考:信号,电路与系统专业分布见下图。
阵列信号处理基础教程阵列信号处理是一项重要的数字信号处理技术,用于从多个传感器接收到的信号中提取有用的信息。
阵列信号处理可以用于各种应用,例如无线通信、声学信号处理和雷达系统等。
本文将介绍阵列信号处理的基本概念、技术和应用。
阵列信号处理的主要目标是通过对多个传感器接收到的信号进行处理,从中提取有用的信息。
其中一个常见的任务是估计信号的到达方向。
通过测量信号在不同传感器间的相位差,可以估计信号的波前到达角度。
这种估计可以用于声源定位、雷达目标跟踪等应用中。
在阵列信号处理中,有几种常用的方法用于估计信号的到达方向。
其中一种方法是波束形成技术。
波束形成是一种利用传感器阵列的相干性增强信号的方法,从而提高信号的功率和信噪比。
波束形成通过对传感器接收到的信号进行加权和相干处理,使得来自特定方向的信号在输出中得到增强,而来自其他方向的信号被压制。
另一种常用的方法是空间谱估计技术。
空间谱估计是一种通过对传感器接收到的信号进行功率谱估计从而估计信号的到达方向的方法。
空间谱估计技术包括传统方法如基于协方差矩阵或自相关矩阵的方法,以及现代方法如基于模型的方法或压缩感知方法。
除了信号波前到达角度的估计,阵列信号处理还可以用于其他任务,例如信号分离、自适应滤波和声源增强等。
在信号分离中,阵列信号处理可以通过对传感器接收到的混合信号进行处理,将其分解为原始信号的组合。
自适应滤波是一种利用传感器阵列的几何结构和信号统计性质设计滤波器的方法。
声源增强是一种通过改善信号的信噪比来提高信号质量的方法,从而增强人们对声音的感知。
阵列信号处理在无线通信、声学信号处理和雷达系统等领域都有广泛的应用。
在无线通信中,阵列信号处理可以用于无线通信信道的估计和均衡,以提高通信性能。
在声学信号处理中,阵列信号处理可以用于语音信号的增强和麦克风阵列的防噪声设计。
在雷达系统中,阵列信号处理可以用于目标检测、目标跟踪和成像等任务。
综上所述,阵列信号处理是一项重要的数字信号处理技术,用于从多个传感器接收到的信号中提取有用的信息。
信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈称()()()()12,,,P span a a a θθθ为信号子空间,是N 维线性空间中的P 维子空间,记为P N S 。
PN S 的正交补空间称为噪声子空间,记为N P N N -。
正交投影设子空间m S R ∈,如果线性变换P 满足, 则称线性变换P 为正交投影。
导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑,其中矢量()i ia θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()HHy t W X t s t W a θ==,通过加权系数W 实现对θ的选择。
最大似然已知一组服从某概率模型()f X θ的样本集12,,,N X X X ,其中θ为参数集合,使条件概率()12,,,N f X X X θ最大的参数θ估计称为最大似然估计。
不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ∆,则确定其导向矢量()2jn i a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时: 首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦而当信源与阵列不共面时: 首先将信源投影到阵列平面 然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦线性约束最小方差准则(LCMV )的自适应波束形成算法 对于信号模型:()()()0X t s t a J N θ=++, 波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使()0HW a θ为一个固定值的条件下,求取使得()HWJ N +方差最小的W 作为最有权值,即:()0min .H X WHW R Ws t W a Fθ⎧⎪⎨⎪=⎩,其中F 为常数利用拉格朗日乘子法可解得:()10X opt W R a μθ-=当取1F =时,则()()11H X a R a μθθ-=,μ的取值不影响SNR 和方向图。