球面感应电荷分布
- 格式:ppt
- 大小:262.50 KB
- 文档页数:10
/jp2007/02/wlkc/htm/c_4_p_4.htm§4.4 镜像法镜像法是求解电磁场的一种特殊方法,特别适用于边界面较规则(如平面、球面和柱面等)情况下,点源或线源产生的静态场的计算问题。
例如当一点电荷q 位于一导体附近时,该导体将处于点电荷q产生的静电场中,在导体表面上会产生感应电荷,则空间的电场应为该感应电荷产生的电场和点电荷q产生的电场的叠加。
一般情况下,在空间电场未确定之前,导体表面的感应电荷分布是不知道的,因此直接求解该空间的电场是困难的。
然而,在一定条件下,可以用一个或多个位于待求场域边界以外虚设的等效电荷来代替导体表面上感应电荷的作用,且保持原有边界上边界条件不变,则根据惟一性定理,空间电场可由原来的电荷q和所有等效电荷产生的电场叠加得到。
这些等效电荷称为镜像电荷,这种求解方法称为镜像法。
可见,惟一性定理是镜像法的理论依据。
在镜像法应用中应注意以下几点:(1)镜像电荷位于待求场域边界之外。
(2)将有边界的不均匀空间处理为无限大均匀空间,该均匀空间中媒质特性与待求场域中一致。
(3)实际电荷(或电流)和镜像电荷(或电流)共同作用保持原边界上的边界条件不变。
4.4.1 点电荷对无限大接地导体平面的镜像zqdx设在自由空间有一点电荷位于无限大接地导体平面上方,且与导体平面的距离为d 。
如图4.2(a)所示上半空间的电位分布和电场强度计算可用镜像法解决。
待求场域为0z >空间,边界为0z =的无限大导体平面,边界条件为在边界上电位为零,即(,,)0x y z φ= (4.29)设想将无限大平面导体撤去,整个空间为自由空间。
在原边界之外放置一镜像电荷'q ,当'q q =-,且'q 和q 相对于0z =边界对称时,如图4.2(b)所示。
点电荷q 和镜像电荷'q 在边界上产生的电位满足式(4.29)所示的边界条件。
根据镜像法原理,在0z >空间的电位为点电荷q 和镜像电荷'q 所产生的电位叠加,即1/21/2222222011{}4()()qx y z d x y z d φπε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦ (4.30)上半空间任一点的电场强度为E φ=-∇电场强度E 的三个分量分别为3/23/22222220{}4()()x q x x E x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦ (4.31a) 3/23/22222220{}4()()y q yy E x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦ (4.31b) 3/23/22222220{}4()()z q z d z dE x y z d x y z d πε-+=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦ (4.31c)可见,在导体表面0z =处,0x y E E ==,只有z E 存在,即导体表面上法向电场存在。
/jp2007/02/wlkc/htm/c_4_p_4.htm§4.4 镜像法镜像法是求解电磁场的一种特殊方法,特别适用于边界面较规则(如平面、球面和柱面等)情况下,点源或线源产生的静态场的计算问题。
例如当一点电荷q 位于一导体附近时,该导体将处于点电荷q产生的静电场中,在导体表面上会产生感应电荷,则空间的电场应为该感应电荷产生的电场和点电荷q产生的电场的叠加。
一般情况下,在空间电场未确定之前,导体表面的感应电荷分布是不知道的,因此直接求解该空间的电场是困难的。
然而,在一定条件下,可以用一个或多个位于待求场域边界以外虚设的等效电荷来代替导体表面上感应电荷的作用,且保持原有边界上边界条件不变,则根据惟一性定理,空间电场可由原来的电荷q和所有等效电荷产生的电场叠加得到。
这些等效电荷称为镜像电荷,这种求解方法称为镜像法。
可见,惟一性定理是镜像法的理论依据。
在镜像法应用中应注意以下几点:(1)镜像电荷位于待求场域边界之外。
(2)将有边界的不均匀空间处理为无限大均匀空间,该均匀空间中媒质特性与待求场域中一致。
(3)实际电荷(或电流)和镜像电荷(或电流)共同作用保持原边界上的边界条件不变。
4.4.1 点电荷对无限大接地导体平面的镜像zqdx设在自由空间有一点电荷位于无限大接地导体平面上方,且与导体平面的距离为d 。
如图4.2(a)所示上半空间的电位分布和电场强度计算可用镜像法解决。
待求场域为0z >空间,边界为0z =的无限大导体平面,边界条件为在边界上电位为零,即(,,)0x y z φ= (4.29)设想将无限大平面导体撤去,整个空间为自由空间。
在原边界之外放置一镜像电荷'q ,当'q q =-,且'q 和q 相对于0z =边界对称时,如图4.2(b)所示。
点电荷q 和镜像电荷'q 在边界上产生的电位满足式(4.29)所示的边界条件。
根据镜像法原理,在0z >空间的电位为点电荷q 和镜像电荷'q 所产生的电位叠加,即1/21/2222222011{}4()()qx y z d x y z d φπε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.30)上半空间任一点的电场强度为E φ=-∇电场强度E 的三个分量分别为3/23/22222220{}4()()x qxxE x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31a)3/23/22222220{}4()()y qyyE x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31b)3/23/22222220{}4()()z qz dz dE x y z d x y z d πε-+=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31c)可见,在导体表面0z =处,0x y E E ==,只有z E 存在,即导体表面上法向电场存在。
1静电场的边值问题1.镜象法的理论依据是()。
基本方法是在所求场域的外部放置镜像电荷以等效的取代边界表面的()。
2.根据边界面的形状,选择适当的坐标系,如平面边界,则选直角坐标;圆柱面选圆柱坐标系;球面选球坐标。
以便以简单的形式表达边界条件。
将电位函数表示成三个一维函数的乘积,将拉普拉斯方程变为三个常微分方程,得到电位函数的通解,然后寻求满足条件的特解,称为()3.将平面、圆柱面或球面上的感应电荷分布(或束缚电荷分布)用等效的点电荷或线电荷(在场区域外的某一位置处)替代并保证边界条件不变。
原电荷与等效点电荷(即通称为像电荷)的场即所求解,称为(),其主要步骤是确定镜像电荷的位置和大小。
4.()是一种数值计算方法,把求解区域用网格划分,同时把拉普拉斯方程变为网格点的电位有限差分方程(代数方程)组。
在已知边界点的电位值下,用迭代法求得网格点电位的近似数值。
5.用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是()。
A.镜像电荷是否对称 B.电位所满足的方程是否未改变C.边界条件是否保持不变 D.同时选择B和C∇⨯=,其中的J()。
6.微分形式的安培环路定律表达式为H JA.是自由电流密度B.是束缚电流密度C .是自由电流和束缚电流密度D .若在真空中则是自由电流密度;在介质中则为束缚电流密度7.在边界形状完全相同的两个区域内的静电场,满足相同的边界条件,则两个区域中的场分布( )。
A .一定相同B .一定不相同C .不能断定相同或不相同8.两相交并接地导体平板夹角为α,则两板之间区域的静电场( )。
A .总可用镜象法求出。
B .不能用镜象法求出。
C .当/n απ= 且n 为正整数时,可以用镜象法求出。
D .当2/n απ= 且n 为正整数时,可以用镜象法求出。
9.将一无穷大导体平板折成如图的90°角,一点电荷Q 位于图中(1, π/6)点10. 两个平行于 XOY 面的极大的金属平板,两平板间的距离为 d ,电位差为。
点电荷电场中导体球面上的感应电荷分布
关于点电荷电场中导体球面上的感应电荷分布,通过观察我们可以发现,当放在一个场中时,导体球体上的感应电荷分布是经过一定的分布规律的,主要表现在其外部与它的位置有关,这是因为电场的数量与强度本身是一定的。
首先,点电荷电场中的感应电荷分布在外部的分布保持的对称性是最重要的,即对于导体球体来说,其外部的感应电荷以某种以中心为,可以分成几部分进行分析,相互之间有一定的规律。
根据电磁学定律,外部感应电荷强度和电荷集中于球体内部的强度成正比,这也就意味着在一个给定的电荷电场中,外部感应电荷强度是一定的,而且与位置有关,电荷的场强度也是一定的。
此外,点电荷电场中的感应电荷分布还有另一个重要的特性,即它的分布具有分步趨近性,这表明当电荷在空间中运动时,它的感应电荷将以分步趨近形式逐渐衰减,大小与距离有关,这也就有助于说明电荷在感应电荷分布过程中对空间附近电势场的影响。
而且,由于导体球体表面上的电荷数量是一定的(根据电磁学定律要求),所以在点电荷电场中,感应电荷的分布也是一定的。
所以,我们很容易得出这样的结论,即在点电荷电场中,导体球面上的感应电荷分布以外部与它的位置有关,但是强度是固定的,并且有一定的对称性,而且它的分布具有分步趨近性。
球体内外的电势分布
电势是描述电场中电荷状态的物理量,它在球体内外的分布对
于理解电场和电荷分布具有重要意义。
在球体内外的电势分布中,
我们可以观察到一些有趣的现象和规律。
首先,让我们来看球体外部的电势分布。
根据库仑定律,球体
外部的电势分布与距离球心的距离成反比,即电势随着距离的增加
而减小。
这符合我们对电场的直观认识,即离电荷越远,电势越小。
接着,我们来看球体内部的电势分布。
根据高斯定律,球体内
部的电势分布是均匀的,与距离球心的距离无关。
这意味着在球体
内部任意一点的电势是相同的,这是因为球体内部的电荷分布是均
匀的,所以在任何一点的电势都是相同的。
另外,我们还可以利用球体内外的电势分布来求解一些实际问题。
比如,如果我们知道了球体上的电荷分布,我们就可以利用球
体外部的电势分布来计算球体表面上的电势分布;如果我们知道了
球体内部的电势分布,我们就可以利用球体内部的电势分布来计算
球体内部的电场分布。
总之,球体内外的电势分布是电场和电荷分布的重要性质,它不仅能帮助我们理解电场和电荷的行为,还可以帮助我们解决一些实际问题。
通过深入研究和理解球体内外的电势分布,我们可以更好地掌握电场理论,并应用于实际工程和科学问题中。
电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
/jp2007/02/wlkc/htm/c_4_p_4.htm§4.4 镜像法镜像法是求解电磁场的一种特殊方法,特别适用于边界面较规则(如平面、球面和柱面等)情况下,点源或线源产生的静态场的计算问题。
例如当一点电荷q 位于一导体附近时,该导体将处于点电荷q产生的静电场中,在导体表面上会产生感应电荷,则空间的电场应为该感应电荷产生的电场和点电荷q产生的电场的叠加。
一般情况下,在空间电场未确定之前,导体表面的感应电荷分布是不知道的,因此直接求解该空间的电场是困难的。
然而,在一定条件下,可以用一个或多个位于待求场域边界以外虚设的等效电荷来代替导体表面上感应电荷的作用,且保持原有边界上边界条件不变,则根据惟一性定理,空间电场可由原来的电荷q和所有等效电荷产生的电场叠加得到。
这些等效电荷称为镜像电荷,这种求解方法称为镜像法。
可见,惟一性定理是镜像法的理论依据。
在镜像法应用中应注意以下几点:(1)镜像电荷位于待求场域边界之外。
(2)将有边界的不均匀空间处理为无限大均匀空间,该均匀空间中媒质特性与待求场域中一致。
(3)实际电荷(或电流)和镜像电荷(或电流)共同作用保持原边界上的边界条件不变。
4.4.1 点电荷对无限大接地导体平面的镜像zqdx设在自由空间有一点电荷位于无限大接地导体平面上方,且与导体平面的距离为d 。
如图4.2(a)所示上半空间的电位分布和电场强度计算可用镜像法解决。
待求场域为0z >空间,边界为0z =的无限大导体平面,边界条件为在边界上电位为零,即(,,)0x y z φ= (4.29)设想将无限大平面导体撤去,整个空间为自由空间。
在原边界之外放置一镜像电荷'q ,当'q q =-,且'q 和q 相对于0z =边界对称时,如图4.2(b)所示。
点电荷q 和镜像电荷'q 在边界上产生的电位满足式(4.29)所示的边界条件。
根据镜像法原理,在0z >空间的电位为点电荷q 和镜像电荷'q 所产生的电位叠加,即1/21/2222222011{}4()()qx y z d x y z d φπε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.30)上半空间任一点的电场强度为E φ=-∇电场强度E 的三个分量分别为3/23/22222220{}4()()x qxxE x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31a)3/23/22222220{}4()()y qyyE x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31b)3/23/22222220{}4()()z qz dz dE x y z d x y z d πε-+=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31c)可见,在导体表面0z =处,0x y E E ==,只有z E 存在,即导体表面上法向电场存在。
房改房大锅饭大公国静电场中的导体:例题1如图,半径为的接地导体球附近有一个静止点电荷,它与球心相距为,求导体球表面上感应电荷。
解:点电荷在球心处的电势为设为球面上感应面电荷密度,在球面上各点不尽相同(注意:对一个孤立的带电球形导体而言,其电荷是均匀分布在球面上的,即面电荷密度处处相同。
而今,导体球处于点电荷的电场中,对球面上各点的感应电荷分布是不均匀的。
)为此,可先在球面上任取一面积元,其上的感应电荷为,它在球心点的电势为整个球面上的感应电荷在球心点的电势为显然,,上式成为而球心点的电势为与之代数和,且其和应等于零,即由此可得,导体球表面上的感应电荷q′为按题意,导体球接地,以地的电势为零,考虑到位于点电荷q的静电场中的导体是一个等势体,这样,球心的电势亦应为零;而球心的电势则等于点电荷q和球面上的感应电荷q′所激发的电场在点O的电势之代数和。
据此即可求出解。
2.如图,三块平行的金属板A、B和C,面积均为。
板A、B相距,板A、C相距,B、C 两板都接地。
如果使A板带正电,并略去边缘效应,问B板和C板的内、外表面上感应电荷各是多少? 以地的电势为零,问A板的电势为多大解: 按题意,可判断感应电荷的分布如图所示。
因为B、C两板接地,所以两板都带负电,且即(a)考虑到 , , , , 则(b)由式(a)、(b),可得或这里,, , 代入上式,便可算出两板内表面感应电荷分别为,由于 B、C 板接地,外表面感应电荷为零。
又由 , 且,带入上述数值可算得 A 板的电势为。
有介質的靜電場:例题1.在无限长电缆内,导体圆柱A和同轴导体圆柱壳B的半径分别为和(<),单位长度所带电荷分别为+λ和-λ,内、外导体之间充满电容率为的均匀电介质。
求电介质中任一点的场强及内、外导体间的电势差。
解:取高斯面,它是半径为(<<)、长度为的同轴圆柱形闭合面。
左、右两底面与电位移的方向平行,其外法线方向皆与成夹角θ=π/2,故电位移通量为0;柱侧面与的方向垂直,其外法线与同方向,θ=0°通过侧面的电位移通量为cos0°(2π)。
同心带电球面的电场强度分布
首先,我们可以从几何角度来理解同心带电球面的电场强度分布。
假设球心处有一个正电荷,那么根据库仑定律,球面上的每一点都会受到这个正电荷的电场影响。
由于球面是同心的,电场线会从球心向外辐射,呈放射状分布。
这意味着离球心越近的点,电场强度越大;离球心越远的点,电场强度越小。
因此,在同心带电球面上,电场强度是随着距离球心的远近而变化的。
其次,我们可以从数学角度来描述同心带电球面的电场强度分布。
根据库仑定律,同心带电球面上的电场强度可以用以下公式表示:
E = k Q / r^2。
其中,E表示电场强度,k是库仑常数,Q是球心处的电荷量,r是球面上某一点到球心的距离。
这个公式表明,电场强度与电荷量成正比,与距离的平方成反比。
因此,离球心越近的点,电场强度越大;离球心越远的点,电场强度越小。
此外,我们还可以从物理学角度解释同心带电球面的电场强度
分布。
根据电场的性质,电场线总是从正电荷指向负电荷,或者指向无穷远。
在同心带电球面的情况下,球心处的电荷是正电荷,因此电场线会从球心向外辐射。
这意味着球面上的每一点都会受到来自球心的电场力,而这个力的大小与电场强度成正比。
因此,离球心越近的点,电场强度越大;离球心越远的点,电场强度越小。
综上所述,同心带电球面的电场强度分布是随着距离球心的远近而变化的,离球心越近的点,电场强度越大;离球心越远的点,电场强度越小。
这一分布可以通过几何、数学和物理学的角度来解释和描述。